360\(^\circ \) User-Generated Videos: Current Research and Future Trends

  • Chapter
  • First Online:
High Performance Vision Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 913))

Abstract

The 360\(^\circ \) video, also known as immersive or spherical video, allows the observer to have a 360\(^\circ \) view and an immersive experience of the surroundings. Each direction in this video is recorded at the same time either by an omni-direction camera or by an assembly of cameras synchronized together. The viewing perspectives are controlled by the viewer during playbacks. This article gives an overview of the existing research areas and methods in the user-generated 360\(^\circ \) videos for streaming, transcoding, viewport-based projections, video standardization, and summarization. This survey also provides an analysis of the experience estimation in 360\(^\circ \) videos. The study of multiple quality evaluation criteria is also reviewed. Moreover, 360\(^\circ \) video user experience studies are also focused on this survey. The merits and demerits of each technique are investigated in depth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R.G. de A. Azevedo, N. Birkbeck, F. De Simone, I. Janatra, B. Adsumilli, P. Frossard, Visual distortions in 360-degree videos, ar**v:1901.01848 (2019)

  2. Y.-U. Yoon, D.-H. Park, J.-G. Kim, A method of padding inactive region for sphere segmented projection of 360\(^\circ \) video, in 2018 International Workshop on Advanced Image Technology (IWAIT). IEEE (2018), pp. 1–3

    Google Scholar 

  3. K.-C. Huang, P.-Y. Chien, C.-A. Chien, H.-C. Chang, J.-I. Guo, A 360-degree panoramic video system design. Technical Papers of 2014 International Symposium on VLSI Design, Automation and Test, IEEE (2014), pp. 1–4

    Google Scholar 

  4. P. Hanhart, X. **u, Y. He, Y. Ye, 360-degree video coding based on projection format adaptation and spherical neighboring relationship, in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, IEEE (2018)

    Google Scholar 

  5. Y.-C. Su, K. Grauman, Learning spherical convolution for fast features from 360 imagery, in Advances in Neural Information Processing Systems (2017), pp. 529–539

    Google Scholar 

  6. J.-L. Lin, Y.-H. Lee, C.-H. Shih, S.-Y Lin, H.-C. Lin, S.-K. Chang, P. Wang, L. Lin C.-C. Ju, Efficient Projection and coding tools for 360\(^\circ \) Video. IEEE J. Emerging Selected Topics Circuits Syst. IEEE (2019)

    Google Scholar 

  7. Y. Wang, D. Liu, S. Ma, F. Wu, W. Gao, Spherical coordinates transform- based motion model for panoramic video coding. IEEE J. Emerg. Selected Topics Circuits Syst. IEEE (2019)

    Google Scholar 

  8. B. Vishwanath, T. Nanjundaswamy, K. Rose, Rotational motion model for temporal prediction in 360 video coding, in 2017 IEEE 19th International Workshop on Multimedia Signal Processing (MMSP). IEEE (2017), pp. 1–6

    Google Scholar 

  9. R. Aksu, J. Chakareski, V. Swaminathan, Viewport-driven rate-distortion optimized scalable live 360\(^\circ \) video network multicast, in 2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). IEEE (2018), pp. 1–6

    Google Scholar 

  10. T. Thanh Le, J.B. Jeong, E.-S. Ryu, Efficient transcoding and encryption for live 360 CCTV system. Applied Sciences, 9, 4, 760, Multidisciplinary Digital Publishing Institute (2019)

    Google Scholar 

  11. A. Mazumdar, B. Haynes, M. Balazinska, L. Ceze, A. Cheung, M. Oskin, Vignette: perceptual compression for video storage and processing systems, ar**v:1902.01372 (2019)

  12. X. **u, Y. He, Y. Ye, R. Vanam, H. Philippe, T. Lu, E. Pu, P. Yin, W. Husak, T. Tao., Improved video coding techniques for next generation video coding standard, in 2019 Data Compression Conference (DCC). IEEE (2019), pp. 290–299

    Google Scholar 

  13. M. Zhang, J. Zhang, Z. Liu, C. An, An efficient coding algorithm for 360-degree video based on improved adaptive qp compensation and early cu partition termination, in Multimedia Tools and Applications, 78, 1. Springer (2019), pp. 1081–1101

    Google Scholar 

  14. K. Choi, J. Chen, A. Tamse, H. Yang, M.W. Park, S. Ikonin, W. Choi, S. Esenlik, New video codec for high- quality video service and emerging applications, in 2019 Data Compression Conference (DCC). IEEE (2019), pp. 310–319

    Google Scholar 

  15. L. Lin, S. Yu, T. Zhao, Z. Wang, others, PEA265: Perceptual assessment of video compression artifacts, ar**v:1903.00473 (2019)

  16. F. Duanmu, E. Kurdoglu, Y. Liu, Y. Wang, View direction and bandwidth adaptive 360 degree video streaming using a two-tier system, in 2017 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE (2017), pp. 1–4

    Google Scholar 

  17. R. Skupin, Y. Sanchez, Y.-K. Wang, M.M. Hannuksela, J. Boyce, M. Wien, Standardization status of 360 degree video coding and delivery, in 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE (2017), pp. 1–4

    Google Scholar 

  18. L. Sun, F. Duanmu, Y. Liu, Y. Wang, Y. Ye, H. Shi, D. Dai, A two- tier system for on- demand streaming of 360 degree video over dynamic networks. IEEE J. Emerg. Selected Topics Circuits Syst. IEEE (2019)

    Google Scholar 

  19. X. Jiang, Y.-H. Chiang, Y. Zhao, Y. Ji, Plato: learning- based adaptive streaming of 360-degree videos, in 2018 IEEE 43rd Conference on Local Computer Networks (LCN). IEEE (2018), pp. 393–400

    Google Scholar 

  20. F. Qian, L. Ji, B. Han, V. Gopalakrishnan, Optimizing 360 video delivery over cellular networks, in Proceedings of the 5th Workshop on All Things Cellular: Operations, Applications and Challenges. ACM (2016), pp. 1–6

    Google Scholar 

  21. C. Zhou, Z. Li, Y. Liu, A measurement study of oculus 360 degree video streaming, in Proceedings of the 8th ACM on Multimedia Systems Conference. ACM (2017), pp. 27–37

    Google Scholar 

  22. Q. Yang, J. Zou, K. Tang, C. Li, H. **ong, Single and sequential viewports prediction for 360-degree video streaming, in 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE (2019), pp. 1–5

    Google Scholar 

  23. X. Corbillon, G. Simon, A. Devlic, J. Chakareski, Viewport- adaptive navigable 360-degree video delivery, in 2017 IEEE International Conference on Communications (ICC). IEEE (2017), pp. 1–7

    Google Scholar 

  24. Y. Sanchez, G.S. Bhullar, R. Skupin, C. Hellge, T. Schierl, Delay Impact on MPEG OMAF’s tile-based viewport- dependent 360\(^\circ \) video streaming. IEEE J. Emerg. Selected Topics Circuits Syst. IEEE (2019)

    Google Scholar 

  25. L. **e, Z. Xu, Y. Ban, X. Zhang, Z. Guo, 360probdash: improving qoe of 360 video streaming using tile-based Http adaptive streaming, in Proceedings of the 25th ACM international conference on Multimedia. ACM (2017), pp. 315–323

    Google Scholar 

  26. M. Graf, C. Timmerer, C. Mueller, Towards bandwidth efficient adaptive streaming of omnidirectional video over Http: design, implementation, and evaluation, in Proceedings of the 8th ACM on Multimedia Systems Conference. ACM (2017), pp. 261–271

    Google Scholar 

  27. J. Le Feuvre, C. Concolato, Tiled- based adaptive streaming using MPEG-DASH, in Proceedings of the 7th International Conference on Multimedia Systems. ACM (2016), p. 41

    Google Scholar 

  28. K. Kammachi-Sreedhar, I.D.D. Curcio, Omnidirectional video delivery with decoder instance reduction, in Internet Technology Letters, vol. 2, 1, e79, Wiley Online Library (2019)

    Google Scholar 

  29. D.V. Nguyen, H.T.T. Tran, T.C. Thang, Adaptive tiling selection for viewport adaptive streaming of 360-degree video, in IEICE Transactions on Information and Systems, vol. 102, 1. The Institute of Electronics, Information and Communication Engineers (2019), pp. 48–51

    Google Scholar 

  30. A. Mahzari, A. Taghavi Nasrabadi, A. Samiei, R. Prakash, Fov- aware edge caching for adaptive 360 video streaming, in 2018 ACM Multimedia Conference on Multimedia Conference. ACM (2018), pp. 173–181

    Google Scholar 

  31. W.-C. Lo, C.-L. Fan, S.-C. Yen, C.-H. Hsu, Performance measurements of 360\(^\circ \) video streaming to head-mounted displays over live 4G cellular networks, in 2017 19th Asia-Pacific Network Operations and Management Symposium (APNOMS). IEEE (2017), pp. 205–210

    Google Scholar 

  32. J. Son, D. Jang, E.-S. Ryu, Implementing 360 video tiled streaming system, in Proceedings of the 9th ACM Multimedia Systems Conference. ACM (2018), pp. 521–524

    Google Scholar 

  33. M. Takada, D. Nishioka, Y. Saito, Proposal of a spherical heat map in 360-degree internet live broadcasting using viewers’ POV, in 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE (2019), pp. 596–600

    Google Scholar 

  34. J. Heyse, M.T. Vega, F. De Backere, F. De Turck, Contextual bandit learning-based viewport prediction for 360 video, in IEEE Virtual Reality (VR) (2019)

    Google Scholar 

  35. H.-N. Hu, Y.-C. Lin, M.-Y. Liu, H.-T. Cheng, Y.-J. Chang, M. Sun, Deep 360 pilot: learning a deep agent for piloting through 360 sports videos, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2017), pp. 1396–1405

    Google Scholar 

  36. C. Li, W. Zhang, Y. Liu, Y. Wang, Very long term field of view prediction for 360-degree video streaming, in 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). IEEE (2019), pp. 297–302

    Google Scholar 

  37. A. Pavel, B. Hartmann, M. Agrawala, Shot orientation controls for interactive cinematography with 360 video, in Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology. ACM (2017), pp. 289–297

    Google Scholar 

  38. B.M. Poblete, E.C. Mendoza, J.P. De Castro, J.A. Deja, G. Nodalo, A research through design (Rtd) approach in the design of a 360-video platform interface, in Proceedings of the 5th International ACM In-Cooperation HCI and UX Conference. ACM (2019), pp. 166–171

    Google Scholar 

  39. A. Tang, O. Fakourfar, Watching 360 videos together, in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM (2017), pp. 4501–4506

    Google Scholar 

  40. M.V. den Broeck, F. Kawsar, J. Schöning, It’s all around you: exploring 360 video viewing experiences on mobile devices, in Proceedings of the 25th ACM international conference on Multimedia. ACM (2017), pp. 762–768

    Google Scholar 

  41. Y.C. Lin, Y.-J. Chang, H.-N. Hu, H.-T. Cheng, C.-W. Huang, M. Sun, Tell me where to look: investigating ways for assisting focus in 360 video, in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM (2017), pp. 2535–2545

    Google Scholar 

  42. A.T. Nasrabadi, A. Samiei, A. Mahzari, R.P. McMahan, R. Prakash, M.C.Q. Farias, M.M. Carvalho, A taxonomy and dataset for 360\(^\circ \) videos, in Proceedings of the 10th ACM Multimedia Systems Conference. ACM (2019), pp. 273–278

    Google Scholar 

  43. P. Bala, D. Dionísio, V. Nisi, N. Nunes, Visually induced motion sickness in 360\(^\circ \) videos: comparing and combining visual optimization techniques, in 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). IEEE (2018), pp. 244–249

    Google Scholar 

  44. S. Lee, J. Sung, Y. Yu, G. Kim, A memory network approach for story-based temporal summarization of 360 videos, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 1410–1419

    Google Scholar 

  45. A. Brown, J. Turner, J. Patterson, A. Schmitz, M. Armstrong, M. Glancy, Subtitles in 360-degree video, in Adjunct Publication of the 2017 ACM International Conference on Interactive Experiences for TV and Online Video. ACM (2017), pp. 3–8

    Google Scholar 

  46. M. Wien, J.M. Boyce, T. Stockhammer, W.H. Peng, Standardization status of immersive video coding. IEEE J. Emerg. Selected Topics Circuits Syst., IEEE (2019)

    Google Scholar 

  47. M.M. Hannuksela, Y.K. Wang, A. Hourunranta, An overview of the OMAF standard for 360\(^\circ \) video, in 2019 Data Compression Conference (DCC). IEEE (2019), pp. 418–427

    Google Scholar 

  48. M. Domański, O. Stankiewicz, K. Wegner, T. Grajek, Immersive visual media- mpeg-i: 360 video, virtual navigation and beyond, in 2017 International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE (2017), pp. 1–9

    Google Scholar 

  49. J. Kopf, 360 video stabilization. ACM Trans. Graph. (TOG) 35(6), 195 (2016), ACM

    Google Scholar 

  50. C. Tang, O. Wang, F. Liu, P. Tan, Joint stabilization and direction of 360\(^\circ \) videos. ACM Trans. Graph. (TOG) 38(2), 18 (2019), ACM

    Google Scholar 

  51. H. Huang, Y. Xu, J. Chen, S. Song, T. Zhao, Latitude-based visual attention in 360-degree video display, in Pacific Rim Conference on Multimedia. Springer (2018), pp. 282–290

    Google Scholar 

  52. P. Hanhart, Y. He, Y. Ye, J. Boyce, Z. Deng, L. Xu, 360-degree video quality evaluation, in 2018 Picture Coding Symposium (PCS). IEEE (2018), pp. 328–332

    Google Scholar 

  53. V. Zakharchenko, K.P. Choi, J.H. Park, Quality metric for spherical panoramic video, optics and photonics for information processing X, 9970, 99700C. International Society for Optics and Photonics (2016)

    Google Scholar 

  54. H.T.T. Tran, C.T. Pham, N.P. Ngoc, C.M. Bui, M.H. Pham, T.C. Thang, An evaluation of quality metrics for 360 videos, in 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN). IEEE (2017), pp. 7–11

    Google Scholar 

  55. H.T.T. Tran, C.T. Pham, N.P. Ngoc, A.T. Pham, T.C. Thang, A study on quality metrics for 360 video communications, in IEICE TRANSACTIONS on Information and Systems, vol. 101, 1. The Institute of Electronics, Information and Communication Engineers (2018), pp. 28–36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansuman Mahapatra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Priyadharshini, S., Mahapatra, A. (2020). 360\(^\circ \) User-Generated Videos: Current Research and Future Trends. In: Nanda, A., Chaurasia, N. (eds) High Performance Vision Intelligence. Studies in Computational Intelligence, vol 913. Springer, Singapore. https://doi.org/10.1007/978-981-15-6844-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6844-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6843-5

  • Online ISBN: 978-981-15-6844-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation