Abstract

Data visualization plays an important role in gaining insight from data. Generally, traditional methods are used to systematically create graphical formats of data attributes of either numeric or textual data. However, these traditional methods are very time-consuming computationally when they must display data points of big data sources. It is significant to explore new methods and algorithms that require less computational time while taking into consideration the volume of data attributes involved. In this chapter, the behavior of animals is explored to help create a method and an algorithm for data visualization suited for big data visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 169.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 169.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agbehadji, I. E., Millham, R., Fong, S. J., & Yang, H. (2018). Kestrel-based search algorithm for association rule mining of frequently changed items with numeric and time dimension (under consideration).

    Google Scholar 

  • Agbehadji, I. E., Millham, R., Thakur, S., Yang, H. & Addo, H. (2018). Visualization of frequently changed patterns based on the behaviour of dung beetles. In International Conference on Soft Computing in Data Science (pp. 230–245).

    Google Scholar 

  • Agrawal, D., Das, S., & El Abbadi, A. (2010). Big data and cloud computing: New wine or just new bottles? Proceedings of the VLDB Endowment, 3(1–2), 1647–1648.

    Article  Google Scholar 

  • Burtica, R., et al. (2012). Practical application and evaluation of no-SQL databases in cloud computing. In 2012 IEEE International Systems Conference (SysCon). IEEE.

    Google Scholar 

  • Card, S. K., Mackinlay, J. D., & Shneiderman, B. (1999). Readings in information visualization—Using vision to think. San Francisco, CA: Morgan Kaufmann Publishers.

    Google Scholar 

  • Choy, J., Chawla, V., & Whitman, L. (2011). Data visualization techniques: From basics to big data with SAS visual analytics. https://www.slideshare.net/AllAnalytics/data-visualization-techniques.

  • Dull, R. B., & Tegarden, D. P. (1999). A comparison of three visual representations of complex multidimensional accounting information. Journal of Information Systems, 13(2), 117.

    Article  Google Scholar 

  • Etienne, A. S., & Jeffery, K. J. (2004). Path integration in mammals. Hippocampus, 14, 180–192.

    Article  Google Scholar 

  • Etienne, A. S., Maurer, R., & Saucy, F. (1988). Limitations in the assessment of path dependent information. Behavior, 106, 81–111.

    Article  Google Scholar 

  • Gemignani, Z. (2010). Better know a visualization: Parallel coordinates. www.juiceanalytics.com/writing/parallel-coordinates.

  • Golani, I., Benjamini, Y., & Eilam, D. (1993). Stop** behavior: Constraints on exploration in rats (Rattus norvegicus). Behavioural Brain Research, 53, 21–33.

    Article  Google Scholar 

  • Heinrich, J. (2013). Visualization techniques for parallel coordinates.

    Google Scholar 

  • Inselberg, A. (1981). N-dimensional graphics (Technical Report G320-2711). IBM. Cited on page 7.

    Google Scholar 

  • Inselberg, A. (1985). The plane with parallel coordinates. The Visual Computer, 1(4), 69–91. Cited on pages 7,8,18, 25, and 38.

    Google Scholar 

  • Inselberg, A., & Dimsdale, B. (1990). Parallel coordinates: A tool for visualizing multi-dimensional geometry (pp. 361–370). San Francisco, CA: Visualization 90.

    Google Scholar 

  • Keim, D. (2000). Designing pixel-oriented visualization techniques: Theory and applications. IEEE Trans Visualization and Computer Graphics, 6(1), 59–78.

    Article  Google Scholar 

  • Keim, D. A. (2001). Visual exploration of large data sets. Communications of the ACM, 44, 38–44.

    Article  Google Scholar 

  • Keim, D. A. (2002). Information visualization and visual data mining. IEEE Transactions on Visualization and Computer Graphics, 8(1).

    Google Scholar 

  • Keim, D. A., Kriegel, H. (1996). Visualization techniques for mining large databases: A comparison. IEEE Transactions on Knowledge and Data Engineering, Special Issue on Data Mining, 8(6), 923–938.

    Google Scholar 

  • Keim, D. A., Bergeron, R. D., & Pickett, R. M. (1994). Test data sets for evaluating data visualization techniques. https://pdfs.semanticscholar.org/7959/fd04a4f0717426ce8a6512596a0de1b99d18.pdf.

  • Khan, M., & Khan, S. S. (2011). Data and information visualization methods and interactive mechanisms: A survey. International Journal of Computer Applications, 34(1), 1–14.

    Article  Google Scholar 

  • Kuhn, T., & Woolley, O. (2013). Modeling and simulating social systems with MATLAB; Lecture 4—Cellular automata. ETH Zürich.

    Google Scholar 

  • Leung, C. K., Kononov, V. V., Pazdor, A. G. M., Jiang, F. (2016). PyramidViz: Visual analytics and big data visualization of frequent patterns. In IEEE 14th International Conference on Dependable, Autonomic and Secure Computing, 14th International Conference on Pervasive Intelligence and Computing, 2nd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress.

    Google Scholar 

  • Lieberman, M. (2014). Visualizing big data: Social network analysis. In Digital Research Conference.

    Google Scholar 

  • Lu, C. -T., Sripada, L. N., Shekhar, S., & Liu, R. (2005). Transportation data visualisation and mining for emergency management. International Journal of Critical Infrastructures, 1(2/3), 170–194.

    Google Scholar 

  • Mamduh, S. M., Kamarudin, K., Shakaff, A. Y. M., Zakaria, A., & Abdullah, A.H. (2014). Comparison of Braitenberg vehicles with bio-inspired algorithms for odor tracking in laminar flow. NSI Journals Australian Journal of Basic and Applied Sciences, 8(4), 6–15.

    Google Scholar 

  • Marghescu, D. (2008). Evaluating multidimensional visualization techniques in data mining tasks. http://www.doria.fi/bitstream/handle/10024/69974/MarghescuDorina.pdf?sequence=3&isAllowed=y.

  • Mittelstaedt, H., & Mittelstaedt, M.-L. (1982). Homing by path integration. In F. Papi & H. G. Wallraff (Eds.), Avian navigation (pp. 290–297). New York: Springer.

    Chapter  Google Scholar 

  • Moere, A. V. (2004). Time-varying data visualization using information flocking boids. In IEEE Symposium on Information Visualization (p. 8).

    Google Scholar 

  • Moere, A. V., & Lau, A. (2007). Information flocking: An approach to data visualization using multi-agent formation behavior. In Proceedings of Australian Conference on Artificial Life (pp. 292–304). Springer.

    Google Scholar 

  • Moere, A. V., Clayden, J. J., & Dong, A. (2006). Data clustering and visualization using cellular automata ants. Berlin Heidelberg: Springer.

    Book  Google Scholar 

  • Risden, K., & Czerwinski, M. P. (2000). An initial examination of ease of use for 2D and 3D information visualizations of web content. International Journal of Human—Computer Studies, 53, 695–714.

    Article  Google Scholar 

  • Santos, B. S. (2008). Evaluating visualization techniques and tools: What are the main issues? http://www.dis.uniroma1.it/beliv08/pospap/santos.pdf.

  • SAS Institute Inc. (2013). Five big data challenges and how to overcome them with visual analytics. Available http://4instance.mobi/16thCongress/five-big-data-challenges-106263.pdf.

  • SAS Institute Inc. (2017). Data visualization techniques: From basics to big data with SAS visual analytics. sas.com/visual-analytics.

    Google Scholar 

  • Synocloud. (2013). Overview of big data and NoSQL technologies as of January 2013. Available at http://www.syoncloud.com/big_data_technology_overview. Accessed 22 Dec 2015.

  • Wang, L., Wang, G., & Alexander, C. A. (2015). Big data and visualization: Methods, challenges and technology progress. Digital Technologies, 1(1), 33–38. Science and Education Publishing Available online at http://pubs.sciepub.com/dt/1/1/7.

  • Ward, M., Grinstein, G., & Keim, D. (2010). Interactive data visualization: Foundations, techniques, and application, A K Peters.

    Google Scholar 

  • Wegman, E. J. (1990). Hyper dimensional data analysis using parallel coordinates. Journal of the American Statistical Association, 85(411), 664–675. Cited on pages 7, 8, 9, 18, 38, 39, and 101.

    Google Scholar 

  • Wits University. (2013). Dung beetles follow the milky way: Insects found to use stars for orientation. ScienceDaily. https://www.sciencedaily.com/releases/2013/01/130124123203.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Edem Agbehadji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agbehadji, I.E., Yang, H. (2021). Data Visualization Techniques and Algorithms. In: Fong, S., Millham, R. (eds) Bio-inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing. Springer Tracts in Nature-Inspired Computing. Springer, Singapore. https://doi.org/10.1007/978-981-15-6695-0_10

Download citation

Publish with us

Policies and ethics

Navigation