‘Cu-Chi-Tri’, a New Generation Combination for Knowledge-Based Management of Oomycete Pathogen, Phytophthora infestans

  • Chapter
  • First Online:
Emerging Trends in Plant Pathology

Abstract

Globally, an estimated 35% of the potential crop is lost annually to diseases, pest and weeds, while decreases in arable land and increases in world population, global climate change and increased production of energy crops continue to enhance the pressure. Chemical plant protection is too expensive for resource poor farmers, and it is potentially unsafe to both environment and consumer. However, as an alternative to chemical plant protection, biological plant protection is less consistently reliable. Nevertheless, a combination of different strategies could make biological plant protection more reliable. The present chapter focuses on develo** a novel combination product for economically viable and ecologically safe plant protection, with emphasis on devastating diseases caused by oomycete plant pathogens, particularly Phytophthora infestans, the dreaded late blight causative in potato. Late blight disease management has largely relied on the use of chemical fungicides, with the above-mentioned problems and the added threat of the development of chemical resistant strains of the pathogen. Therefore, the need of alternative approaches for late blight management without compromising benefits as attained by the use of chemicals has been variously flagged. To this end, a new generation fungicide involving a low-dose fungicide (Cu(OH)2), a biocontrol agent (Trichoderma) and a plant defence activator (chitosan) has been developed and tested under field conditions for the management of potato late blight. The ‘triple combination’ evokes newer avenues of application of biocontrol agents for safer and sustainable management of oomycete plant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abboud M, Alawlaki M (2011) Biouptake of copper and their impact on fungal fatty acids. Aust J Basic Appl Sci 5:283–290

    Google Scholar 

  • Alfonso C, Martinez MJ, Reyes F (1992) Purification and properties of two endochitosanases from Mucor rouxii implicated in its cell wall degradation. FEMS Microbiol Lett 95:187–194

    Article  CAS  Google Scholar 

  • Altomare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65:2926–2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand P, Isar J, Saran S, Saxena RK (2006) Bioaccumulation of copper by Trichoderma viride. Bioresour Technol 97:1018–1025

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (2008) Commission Regulation (EC) No 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labellingandcontrol (http://ec.europa.eu/agriculture/organic/organicfarming/what-organic en, 09.01.2010)

  • Anonymous (2009)Commission Directive 2009/37/EC.(http://eurlex.europa.eu/LexUriServ/LexUriServ.do? uri = OJ:L:2009:104:0023:0032:EN:PDF, 09.01.2010)

  • Avery SV, Howlett NG, Radice S (1996) Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Appl Environ Microb 62:3960–3966

    Article  CAS  Google Scholar 

  • Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll 29:48–56

    Article  CAS  Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbil 7:249–260

    Google Scholar 

  • Bhardwaj NR (2016) Elucidating the role of Trichoderma in the triple combination ‘Copper-Chitosan-Trichoderma’ for the management of late blight disease of potato (Solanum tuberosum L.). Ph.D. Thesis, G.B Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India)

    Google Scholar 

  • Bishnoi NR, Garima A (2005) Fungus an alternative for bioremediation of heavy metal containing waste water, a review. J Sci Ind Res. 64:93

    Google Scholar 

  • Blaeser P, Steiner U, Dehne H-W (1998) Fungizide Wirkstoffeaus Pflanzenextrakten Mitteilungen der Biologischen Bundesanstaltfu¨r Land- und Forstwirtschaft Berlin-Dahlem, 357:99

    Google Scholar 

  • Bohra Y (2018) Elucidating cu-Trichoderma interaction and Trichoderma-chitosan interaction in “Cu-Chi-Tri”, a novel consortium for potato late blight management. Ph.D Thesis, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India)

    Google Scholar 

  • Borel S (1996) Biogenesis of polytopic membrane proteins: membrane segments assemble within translocation channels prior to membrane integration. Cell 185:379–389

    Article  Google Scholar 

  • Carmen-Limon M, Lora JM, Garcia I, de la Cruz J, Llobell A, Benitez T, Pintor-Toro JA (1995) Primary structure and expression pattern of the 33-kDa chitinase gene from the mycoparasitic fungus Trichoderma harzianum. Curr Genet 28:478–483

    Article  Google Scholar 

  • Cervantes C, Gutierrez-Corona F (1994) Copper resistance mechanisms in bacteria and fungi. Microbiol Rev 14:121–137

    CAS  Google Scholar 

  • Clark JM, Yamaguchi I. (2002) Scope and status of pesticide resistance. In. Agrochemical resistance. ACS Symposium Series; American Chemical Society: Washington, DC, 2001. See https://pubs.acs.org/sharingguidelines for options Downloaded via 117.254.37.95 on March 30, 2020

  • Cossins AR (1994) Homo viscous adaptation and its functional significance. In: Cossins AR (ed) Temperature adaptation of biological membranes. Portland Press, London, pp 63–75

    Google Scholar 

  • Cornejo P, Pérez-Tienda J, Meier S, Valderas A, Borie F, Azcón-Aguilar C, Ferrol N (2013) Copper compartmentalization in spores as a survival strategy of mycorrhizal fungi in cupolluted environments. Soil Biol Biochem 57:925–928. https://doi.org/10.1016/j.soilbio.2012.10.031

    Article  CAS  Google Scholar 

  • Dorn B, Musa T, Krebs H, Fried PM, Forrer HR (2007a) Control of late blight in organic potato production: evaluation of copper-free preparations under field, growth chamber and laboratory conditions. Eur J Plant Pathol 119:217–240

    Article  Google Scholar 

  • Dorn B, Nusa-Steenblock T, Forrer H (2007b) Control of late blight in organic potato production. Evaluation of copper free preparations under field, growth chamber and laboratory conditions. Eur J Plant Path 119:217–240

    Article  Google Scholar 

  • Droby S, Wisniewski M, El-Ghaouth A, Wilson C (2003) Influence of food additives on the control of postharvest rots of apple and peach and efficacy of the yeast based biocontrol product Aspire. Postharvest Biol Technol 27:127–135

    Article  CAS  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Microbiol Rev 16:749–759

    Article  CAS  Google Scholar 

  • EC (2018) COMMISSION IMPLEMENTING REGULATION (EU) 2018/1981 of 13 December 2018 renewing the approval of the active substances copper compounds, as candidates for substitution, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011 https://eur-lex.europa.eu/eli/reg_impl/2018/1981/oj

  • El-Mohamedy RSR, Abdel-Kareem F, Jabnoun-Khiareddine H, Daami-Remadi M (2014) Chitosan and Trichoderma harzianum as fungicide alternatives for controlling Fusarium crown and root rot of tomato. Tunis J Plant Prot 9:31–43

    Google Scholar 

  • Erayya (2014) Designing a triple combination of copper, Trichoderma and chitosan and its evaluation against late blight of potato caused by Phytophthora infestans (Mont.) de Bary. Ph.D Thesis, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India)

    Google Scholar 

  • Erayya SN, Bohra Y, Tiwari AK, Kumar J (2020) Copper tolerant Trichoderma asperellum increases bio-efficacy of copper against Phytophthora infestans in dual combination. Phyparasitica, (In Press)

    Google Scholar 

  • EU (2018). European Parliamentary Research Service of 6 November 2017 on Directive 2009/128/EC on the sustainable use of pesticides, QA-06-18-079-EN-N http://www.europarl.europa.eu/thinktank

  • Flood J (2010) The importance of plant health to food security. Food Secur 2:215–231

    Article  Google Scholar 

  • Garcia I, Lora JM, De la Cruz J, Benitez T, Llobell A, Pintor-Toro JA (1994) Cloning and characterization of a chitinase (CHIT42)cDNA from the mycoparasitic fungus Trichoderma harzianum. Curr Genet 27:83–89

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani R, Wilcockson SJ, Glotis C, Leifert C (2004) Potato late blight management in organic agriculture. Outlooks Pest Manag 15:176–280

    Article  Google Scholar 

  • Ghorbani R, Wilcockson S, Leifert C (2005) Alternative treatments for late blight control in organic potato: antagonistic micro-organisms and compost extracts for activity against Phytophthora infestans. Potato Res 48:181–189

    Article  Google Scholar 

  • Grenville-Briggs LJ, Anderson VA, Fugelstad J, Avrova AO, Bouzenzana J, Williams A, Wawra S, Whisson SC, Birch PRJ, Bulone V, van Westa P (2008) Cellulose synthesis in Phytophthora infestans is required for normal appressorium formation and successful infection of potato. Plant Cell 20:720–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadwiger LA (2008) Pea–Fusarium solani interactions contributions of a system toward understanding disease resistance. Phytopathology 98:372–379

    Article  CAS  PubMed  Google Scholar 

  • Hadwiger LA, Beckman JM (1980) Chitosan as a component of Pea-Fusarium solani interactions. Plant Physiol 66:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadwiger LA, Kendra DF, Fristensky BW, Wagoner W (1986) Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. In: Muzzarelli R, Jeuniaux C, Gooday GW (eds) Chitin in nature and Technol. Springer, Boston

    Google Scholar 

  • Harbige LS, Sharief MK (2007) Polyunsaturated fatty acids in the pathogenesis and treatment of multiple sclerosis. Br J Nutr 1:S46–S53

    Article  CAS  Google Scholar 

  • Harman GE, Hayes CK, Lorito M, Broadway RM, Di Pietro A, Peterbauer CK, Tronsmo A (1993) Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinase. Phytopathology 83:313–318

    Article  CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hartney S, Carson J, Hadwiger LA (2007) The use of chemical genomics to detect functional systems affecting the non-host disease resistance of pea to Fusarium solani f. sp. phaseoli. Plant Sci 172:45–56

    Article  CAS  Google Scholar 

  • Hermosa R, Botella L, Keck M, Jimenez JA, Montero Barrientos M, Arbona V, Gomez Cadenas A, Monte E, Nicolas C (2011) The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses. J Plant Physiol 168:1295–1302

    Article  CAS  PubMed  Google Scholar 

  • Homa J, Niklinska M, Plytycz B (2003) Effect of heavy metals on coelomocytes of the earthworm Allolobophora chlorotica. Pedobiologia 47:640–645

    CAS  Google Scholar 

  • Iriti M, Faoro F (2009) Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. Int J Mol Sci 10:3371–3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaime MD, Lopez-Llorca LV, Conesa A, Lee AY, Proctor M, Heisler LE, Gebbia M, Giaever G, Westwood JT, Nislow C (2012) Identification of yeast genes that confer resistance to chitosan oligosaccharide (COS) using chemogenomics. BMC Genomics 22(13):267. https://doi.org/10.1186/1471-2164-13-267

    Article  CAS  Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  • **dal KK, Singh H, Meeta M (1988) Biological control of Phytophthora infestans on potato. Indian J Plant Pathol 6:59–62

    Google Scholar 

  • John RP, Tyagi RD, Bra SK, Surampalli RY, Prévost D (2011) Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31:211–226

    Article  CAS  PubMed  Google Scholar 

  • Keenan MHJ, Rose AH, Silverman BW (1982) Effect of plasma membrane phospholipid unsaturation on solute transport into Saccharomyces cerevisiae NCYC366. J Gen Microbiol 128:2547–2556

    CAS  Google Scholar 

  • Krebs H, Vogelsang S & Forrer HR (2013) Phosphonat zur Bekämpfung der Phytophthora infestans bei Kartoffeln – eine mögliche Alternative zu Kupfer? In: Neuhoff D, Stumm C, Ziegler G, Rahmann G, Hamm U, Köpke U (Eds.), Ideal und Wirklichkeit Perspektiven ökologischer Landbewirtschaftung. Beiträge zur 12. Wissenschaftstagung kologischen Landbau, 5–8 March 2013, Bonn, Germany. Verlag Dr. Köster, Berlin. 270–273

    Google Scholar 

  • Laflamme P, Benhamou N, Bussiéres G, Dessureault M (1998) Differential effect of chitosan on root rot fungal pathogens in forest nurseries. Can J Bot 77:1460–1468

    Google Scholar 

  • Li JX, Chen GH, Webster JM, Czyzewska E (1995) Antimicrobial metabolites from a bacterial symbiont. J Nat Products 58:1081–1086

    Article  CAS  Google Scholar 

  • Lin W, Hu X, Zhang W, Rogers WJ, Cai W (2005) Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. J Plant Physiol 162:937–944

    Article  CAS  PubMed  Google Scholar 

  • Lorito M, Woo SL. (2015) Chapter 36: Trichoderma: a multipurpose tool for IPM. In: B. Lugtenberg (ed.) Principles of Plant Microbe Interactions. pp. 345–353

    Google Scholar 

  • Loschke DC, Hadwiger LA, Wagoner W (1983) Comparison of mRNA populations coding for phenylalanine ammonia lyase and other peptides from pea tissue treated with biotic and abiotic phytoalexin inducers. Physiol Mol Plant Pathol 23:163–173

    Article  CAS  Google Scholar 

  • Lowe A, Rafferty-McArdle SM, Cassells AC (2012) Effects of AMF- and PGPR-root inoculation and a foliar chitosan spray in single and combined treatments on powdery mildew disease in strawberry. Agric Food Sci 21:28–38

    Article  CAS  Google Scholar 

  • Leung M (2004) Bioremediation: techniques for cleaning up a mess. J Biotechnol 2:18–22

    Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Madden LV (1983) Measuring and modelling crop losses at the field level. Phytopathology 73:1591–1596. 2

    Article  Google Scholar 

  • Maksimov IV, Abizgildin RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl Biochem Microbiol 47:333–345

    Article  CAS  Google Scholar 

  • Marko V, Nenad J, Snježana TP, Edyta Đ, Marija B, Slaven J (2016) Encapsulation of biological and chemical agents for plant nutrition and protection: chitosan/alginate microcapsules loaded with copper cations and Trichoderma viride. J Agric Food Chem 64:8073–8083

    Article  CAS  Google Scholar 

  • Marrone P (2002) An effective biofungicide with novel mode of action. Pestic Outlook 1:193–194

    Article  CAS  Google Scholar 

  • Malerba M, Cerana R (2016) Chitosan effects on plant systems. Int J Mol Sci 23:17. pii: E996. https://doi.org/10.3390/ijms17070996

    Article  CAS  Google Scholar 

  • Medeiros FHV, Pomella AWV, de Souza JT, Niella GR, Valle R, Bateman RP, Fravel D, Vinyard B, Hebbar PK (2010) A novel, integrated method for management of witches' broom disease in Cacao in Bahia, Brazil. Crop Pro 29:704–711

    Article  CAS  Google Scholar 

  • Mélida H, Sandoval-Sierra JV, Diéguez-Uribeondo J, Bulonea V (2013) Analyses of extracellular carbohydrates in Oomycetes unveil the existence of three different cell wall types. Eukaryot Cell 12:194–203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Menden B, Kohlhoff M, Moerschbacher BM (2007) Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response. Phytochemistry 68:513–520

    Article  CAS  PubMed  Google Scholar 

  • Meng XH, Qin GZ, Tian SP (2010) Influences of preharvest spraying Cryptococcus laurentii combined with postharvest chitosan coating on postharvest diseases and quality of table grapes in storage. LWT – Food Sci Technol 43:596–601

    Article  CAS  Google Scholar 

  • Mizubuti ESG, Junior VL, Forbes GA (2007) Management of late blight of potato with alternative products. Pest Technol 1:106–116

    Google Scholar 

  • Monte E (2001) Understanding trichoderma: between biotechnology and microbial ecology. Int Microbiol 4(1):1–4. https://doi.org/10.1007/s101230100001

    Article  CAS  PubMed  Google Scholar 

  • Moerschbacher BM, Noll U, Gorrichon L, Reisener HJ (1990) Specific inhibition of lignification breaks hypersensitive resistance of wheat to stem rust. Plant Physiol 93:465–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales –Barrera L, Cristiani Urbina E (2008) Hexavalent chromium removal by a Trichoderma inhamatum fungal strain isolated from tannery effluent. Water Air Soil Pollut 187:327–336

    Article  CAS  Google Scholar 

  • Muzzarelli RAA, Tarsi R, Filippini O, Giovanetti E, Biagini G, Varaldo PE (1990) Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob Agents Chemother 34:2019–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuhoff D, Tadesse M, Köpke U. (2006). Nutzung von Braunalgenextrakten (Ascophyllumnodosum) zur Kontrolle der Krautfäule (Phytophthorainfestans) im ökologischen Kartoffel-und Tomatenanbau. Landwirtschaftliche Fakultät der Universität Bonn, Schriftenreihe des

    Google Scholar 

  • Njoroge A (2019) Population structure and pathogenicity evolution of Phytophthora infestans affects epidemiology and management of late blight disease. Diss. (sammanfattning/summary) Uppsala: Sverigeslantbruksuniv. Acta Universitatis Agric Sueciae 14:1652–6880

    Google Scholar 

  • Nischwitz C, Gitaitis R, Sanders H, Langston D, Mullinix B, Torrance R (2007) Use of fatty acid methyl ester profiles to compare copper tolerant and copper-sensitive strains of Pantoea ananatis. Phytopathology 97:1298–1304

    Article  CAS  PubMed  Google Scholar 

  • No HK, Meyers SP (1997) Preparation of chitin and chitosan. In: Muzzarelli RAA, Peter MG (eds) Chitin Handbook, pp 475–489

    Google Scholar 

  • Nowicki M, Follad MR, Nowakowska M, Kozik EU (2012) Potato and tomato late blight caused by Phytophthora infestans: an overview of pathology and resistance breeding. Plant Dis 96:4–17

    Article  PubMed  Google Scholar 

  • O’Herlihy EA, Duffy EM, Cassells AC (2003) The effects of arbuscular mycorrhizal fungi and chitosan sprays on yield and late blight resistance in potato crops from microplants. Folia Geobot 38:201–207. https://doi.org/10.1007/BF02803152

    Article  Google Scholar 

  • Oliveira Junior, E.N., , Gueddari, N.E., Moerschbacher, B.M., and Franco, T.T. (2012). Growth rate inhibition of phytopathogenic fungi by characterized chitosans. Braz J Microbiol 43:800–809. doi: https://doi.org/10.1590/S1517-83822012000200046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SK, Cho D, Yu SH (1998) Development of integrated pest management techniques using biomass for organic farming (I). Suppression of late blight and Fusarium wilt of tomato by chitosan involving both antifungal and plant activating activities. Korean J Plant Pathol 14:278–285

    Google Scholar 

  • Paulert R, Ebbinghaus D, Urlass C, Moerschbacher BM (2010) Priming of the oxidative burst in rice and wheat cell cultures by ulvan a polysaccharide from green macroalgae and enhanced resistance against powdery mildew in wheat and barley plants. Plant Pathol 59:634–642

    Article  CAS  Google Scholar 

  • Povero G, Loreti E, Pucciariello C, Santaniello A, Di Tommaso D, Di Tommaso G, Kapetis D, Zolezzi F, Piaggesi A, Perata P (2011) Transcript profiling of chitosan-treated Arabidopsis seedlings. J Plant Res 124:619–629

    Article  CAS  PubMed  Google Scholar 

  • Peberdy JF (1990) Fungal Cell Walls — A Review. In: Kuhn PJ, Trinci APJ, Jung MJ, Goosey MW, Cop** LG (eds) Biochemistry of Cell Walls and Membranes in Fungi. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-74215-6_2

    Chapter  Google Scholar 

  • Peterbauer C, Lorito M, Hayes C et al (1996) Molecular cloning and expression of the nag1 gene (N-acetyl-β-D-glucosaminidase-encoding gene) from Trichoderma harzianum P1. Curr Genet 30:325–331. https://doi.org/10.1007/s002940050140

    Article  CAS  PubMed  Google Scholar 

  • Pascale A, Proietti S, Pantelides IS, Stringlis IA (2019) Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. Front Plant Sci 10:1741

    Article  PubMed  Google Scholar 

  • Verma AJ, Deshpande SD, Knnedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55:77–93

    Article  CAS  Google Scholar 

  • Rabea EI, El Badawy MT, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    Article  CAS  PubMed  Google Scholar 

  • Ragunathan V, Divakar BJ (1996) Integrated pest management strategies. In: Gunasekaran M, Weber DJ (eds) Molecular biology of the biological control of pests and disease of plants. CRC Press, Florida, pp 191–194

    Google Scholar 

  • Rahman MH, Shovan LR, Hjeljord LG, Aam BB, Eijsink VGH, Sørlie M et al (2014) Inhibition of fungal plant pathogens by synergistic action of chito-oligosaccharides and commercially available fungicides. PLoS One 9:e93192. https://doi.org/10.1371/journal.pone.0093192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rautela A, Shukla N, Ghatak A, Tewari AK, Kumar J (2018) Field evaluation of different copper sources in a consortium of ‘Copper-Chitosan-Trichoderma’ for management of late blight disease of tomato. J Pharmacogn Phytochem 7:1260–1266

    CAS  Google Scholar 

  • Sakai K, Katsumi R, Isobe A, Nanjo F (1991) Purification and hydrolytic action of a chitosanase from Nocardia orientals. Biochem Biophys Acta 1079:65–72

    CAS  PubMed  Google Scholar 

  • Scheck JH (1996) Effect of copper bactericides on copper resistant and -sensitive strains of Pseudomonas syringae pv. syringae. Phytopathol 82:397–406

    Google Scholar 

  • Shimosaka M, Nogawa M, Ohno Y, Okazaki M (1993) Chitosanase from the plant pathogenic fungus Fusarium solani f. sp. phaseoli—purification and some properties. Biosci Biotechnol Biochem 57:231–235

    Article  CAS  PubMed  Google Scholar 

  • Schumann GL, D’Arcy CJ (2000) Late blight of potato and tomato. The Plant Health Instructor https://doi.org/10.1094/PHI-I-2000-0724-01. Updated 2018

  • Singh A, Erayya KJ (2018) Mechanism of copper tolerance in Trichoderma asperellum (MH593785): a key component in the consortium of Copper-Chitosan- Trichoderma. In J Chem Stud 6:2285–2293

    CAS  Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    Article  CAS  PubMed  Google Scholar 

  • Yu T, Chen Y, Fangxia C, Kuang S, Tao Z, Mahbuba Z et al (2012) Integrated control of blue mold in pear fruit by combined application of chitosan, a biocontrol yeast and calcium chloride. Postharvest Biol Technol 69:49–53

    Article  CAS  Google Scholar 

  • Tamm L et al (2004) Assessment of the socio-economic impact of late blight and state of the art of management in European organic potato production systems. In: FiBl Report, vol 106. Research Institute of Organic Agriculture FiBL, Frick, pp 5–8

    Google Scholar 

  • Teixido N, Vinas I, Usall J, Magan N (1998) Control of blue mold of apples by preharvest application of Candida sake grown in media with different water activity. Phytopathology 88:960–964

    Article  CAS  PubMed  Google Scholar 

  • Thompson IP, Bailey MJ, Ellis JR, Purdy KJ (1993) Subgrou** of bacterial populations by cellular fatty acid composition. FEMS Microbiol Lett 102:75–84

    Article  CAS  Google Scholar 

  • Tripathi P, Singh PC, Mishra A et al (2013) Trichoderma: a potential bioremediator for environmental clean up. Clean Techn Environ Policy 15:541–550. https://doi.org/10.1007/s10098-012-0553-7

    Article  CAS  Google Scholar 

  • Vander P, Varum KM, Domard A, El Gueddari N, Moerschbacher BM (1998) Comparison of the ability of partially N-Acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol 118:1353–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasyukova NI, Chalenko GI, Gerasimova NG, Perekhod EA, Ozeretskovskaya OL, Irina AV, Varlamov VP, Albulov AI (2005) Chitin and chitosan derivatives as elicitors of potato resistance to late blight. Appl Biochem Microbiol 372–376:36. (translated from Prik. Biokhim. Mikrobiol. 36: 433–438)

    Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Wo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Xu J, Zhao X, Han X, Du Y (2007) Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pesticide Biochem Physiol 87:220–228

    Article  CAS  Google Scholar 

  • Zapotoczny S, Jurkiewicz A, Tylko G, Anielska T, Turnau K (2007) Accumulation of copper by Acremonium pinkertoniae, a fungus isolated from industrial wastes. Microbiol Res 26:198–298

    Google Scholar 

  • Zarb J, Ghorbani R, Juntharathep P, Shotton P, Santos J, Wilcockson S, Leifert C. (2002) Control strategies for late blight in organic potato production. In: Powell J (Ed.) UK organic research 2002: proceedings of the COR conference, 26–28 March 2002, Aberystwyth, UK, 221–222. Zellner M, 2004. Zur Epidemiologie und Bekämpfung

    Google Scholar 

  • Zuppini A, Baldan B, Millioni R, Favaron F, Navazio L, Mariani P (2003) Chitosan induces Ca2+-mediated programmed cell death in soybean cells. New Phytol 161:557–568

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The information given on the ‘triple combination’ was generated through an Indo-German ‘2 + 2’ grant funded by the Department of Biotechnology, Govt. of India, and the Federal Ministry of Education and Research, Germany, with contributions of the project partners.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, N., Lemke, P., Moerschbacher, B.M., Kumar, J. (2021). ‘Cu-Chi-Tri’, a New Generation Combination for Knowledge-Based Management of Oomycete Pathogen, Phytophthora infestans. In: Singh, K.P., Jahagirdar, S., Sarma, B.K. (eds) Emerging Trends in Plant Pathology . Springer, Singapore. https://doi.org/10.1007/978-981-15-6275-4_13

Download citation

Publish with us

Policies and ethics

Navigation