Quantum Machine Learning: A Review and Current Status

  • Conference paper
  • First Online:
Data Management, Analytics and Innovation

Abstract

Quantum machine learning is at the intersection of two of the most sought after research areas—quantum computing and classical machine learning. Quantum machine learning investigates how results from the quantum world can be used to solve problems from machine learning. The amount of data needed to reliably train a classical computation model is evergrowing and reaching the limits which normal computing devices can handle. In such a scenario, quantum computation can aid in continuing training with huge data. Quantum machine learning looks to devise learning algorithms faster than their classical counterparts. Classical machine learning is about trying to find patterns in data and using those patterns to predict further events. Quantum systems, on the other hand, produce atypical patterns which are not producible by classical systems, thereby postulating that quantum computers may overtake classical computers on machine learning tasks. Here, we review the previous literature on quantum machine learning and provide the current status of it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, Proceedings 35th Annual Symposium on Foundations of Computer Science (IEEE Comput. Soc. Press, 1994)

    Google Scholar 

  2. J. Bermejo-Vega, K.C. Zatloukal, Abelian Hypergroups and Quantum Computation (2015). ar**v:1509.05806

  3. R.D. Somma, Quantum simulations of one dimensional quantum systems. Quantum. Inf. Comput. 16, 1125 (2016)

    MathSciNet  Google Scholar 

  4. S.J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach (Pearson Education Limited, Malaysia, 2016)

    MATH  Google Scholar 

  5. O. Bousquet, U.V. Luxburg, G. Ratsch, (eds.), Advanced Lectures on Machine Learning: ML Summer Schools 2003 (Canberra, Australia, 2003; Tubingen, Germany, 2003). Revised Lectures (Springer, 2011), p. 3176

    Google Scholar 

  6. L.P. Kaelbling, M.L. Littman, A.W. Moore, Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)

    Article  Google Scholar 

  7. P. Rebentrost, M. Mohseni, S. Lloyd, Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)

    Article  Google Scholar 

  8. H. Abdi, L.J. Williams, Principal component analysis. Wil. Inter. Rev.: Comput. Stat. 2, 433 (2010)

    Google Scholar 

  9. R. Orus, S. Mugel, E. Lizaso, Quantum computing for finance: overview and prospects. Rev. Phys. 4, 100028 (2019)

    Article  Google Scholar 

  10. M.S. Palsson, M. Gu, J. Ho, H.M. Wiseman, G.J. Pryde, Experimentally modeling stochastic processes with less memory by the use of a quantum processor. Sci. Adv. 3 (2017)

    Google Scholar 

  11. J. Li, S. Kais, Entanglement classifier in chemical reactions. Sci. Adv. 5, eaax5283 (2019)

    Google Scholar 

  12. C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, Experimental quantum cryptography. J. Crypt. 5, 3 (1992)

    Article  MATH  Google Scholar 

  13. A. Pathak, Elements of Quantum Computation and Quantum Communication (CRC Press, 2018)

    Google Scholar 

  14. S. Shahane, S. Shendye, A. Shaikh, Implementation of artificial neural network learning methods on embedded platform. Int. J. Electric. Electron. Comput. Syst. 2, 2347 (2014)

    Google Scholar 

  15. T.M. Mitchell, Machine Learning (McGraw-Hill, 2006)

    Google Scholar 

  16. D. Angluin, Computational learning theory: Survey and selected bibliography, in Proceedings of 24th Annual ACM Symposium on Theory of Computing (1992), pp. 351–369

    Google Scholar 

  17. L. Valiant, Commun. ACM 27(11), 1134–1142 (1984)

    Google Scholar 

  18. V.N. Vapnik, A. Chervonenkis, On uniform convergence of relative frequencies of events to their probabilities. Theor. Prob. Appl. 16, 264 (1971)

    Article  MATH  Google Scholar 

  19. M. Schuld, I. Sinayskiy, F. Petruccione, An introduction to quantum machine learning. ar**v:1409.3097v1

  20. S. Lloyd, M. Mohseni, P. Rebentrost, Quantum algorithms for supervised and unsupervised machine learning. ar**v:1307.0411

  21. E. Farhi, H. Neven, Classification with quantum neural networks on near term processors. ar**v:1802.06002v2

  22. S. Lu, S.L. Braunstein, Quantum decision tree classifier. Quantum. Inf. Process (2013)

    Google Scholar 

  23. S. Lloyd, Quantum algorithm for solving linear systems of equations. APS March Meeting Abstracts (2010)

    Google Scholar 

  24. S. Aaronson, Read the fine print. Nat. Phys. 11(4), 291 (2015)

    Article  Google Scholar 

  25. A.M. Childs, R. Kothari, R.D. Somma, SIAM J. Comput. 46, 1920 (2017)

    Google Scholar 

  26. B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Phys. Rev. Lett. 110.25, 250504 (2013)

    Google Scholar 

  27. D. Dervovic et al., Quantum Linear Systems Algorithms: A Primer (2018). ar**v:1802.08227

  28. S. Dutta et al., Demonstration of a Quantum Circuit Design Methodology for Multiple Regression (2018). ar**v:1811.01726

  29. E. Tang, A quantum-inspired classical algorithm for recommendation systems, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (ACM, 2019)

    Google Scholar 

  30. E. Tang, Quantum-inspired classical algorithms for principal component analysis and supervised clustering (2018). ar**v:1811.00414

  31. A. Gilyén, S. Lloyd, E. Tang, Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension (2018). ar**v:1811.04909

  32. N.-H. Chia, H.-H. Lin, C. Wang C, Quantum-inspired sublinear classical algorithms for solving low-rank linear systems (2018). ar**v:1811.04852

  33. E. Tang, An overview of quantum-inspired classical sampling (2019). https://ewintang.com/blog/2019/01/28/an-overview-of-quantum-inspired-sampling/

  34. E. Tang, Some settings supporting efficient state preparation (2019). https://ewintang.com/blog/2019/06/13/some-settings-supporting-efficient-state-preparation/

  35. S. Nowozin, C.H. Lampert, Structured learning and prediction in computer vision. Found. Trends Comput. Graph. Vis. 6, 185–365 (2011)

    Article  MATH  Google Scholar 

  36. M.N. Wernick, Y. Yang, J.G. Brankov et al., Machine learning in medical imaging. IEEE 27, 25–38 (2010)

    Google Scholar 

  37. B.J. Erickson, P. Korfiatis, Z. Akkus, T.L. Kline, Machine learning for medical imaging. Rad. Graph. 37, 505–515 (2017)

    Google Scholar 

  38. A. Lavecchia, Machine-learning approaches in drug discovey: methods 5nd applications. Sci. Dir. 20, 318–331 (2015)

    Google Scholar 

  39. C. Bahlmann, B. Haasdonk, H. Burkhardt, Online handwriting recognition with support vector machines—a kernel approach, in Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition (2002)

    Google Scholar 

  40. L. Chen, C. Ren, L. Li et al., A comparative assessment of geostatistical, machine learning, and hybrid approaches for map** topsoil organic carbon content. Int. J. Geo-Inf. 8(4), 174 (2019)

    Article  Google Scholar 

  41. Z. Li, X. Lui, N. Xu, J. Du, Experimental realization of a quantum support vector machine. Phys. Rev. Lett. 114, 140504 (2015)

    Article  Google Scholar 

  42. I. Kerenidis, A. Prakash, D. Szilágyi, Quantum algorithms for second-order cone programming and support vector machines (2019). ar**v:1908.06720

  43. A.K. Bishwas, A. Mani, V. Palade, Big data quantum support vector clustering (2018). ar**v:1804.10905

  44. Arodz, T., Saeedi, S. Quantum sparse support vector machines (2019). ar**v:1902.01879

  45. C. Ding, T. Bao, H. Huang, Quantum-inspired support vector machine (2019). ar**v:1906.08902

  46. D. Anguita, S. Ridella, F. Rivieccio, R. Zunino, Quantum optimization for training support vector machines. Neural Netw. 16, 763–770 (2003)

    Article  MATH  Google Scholar 

  47. B.J. Chelliah, S. Shreyasi, A. Pandey, K. Singh, Experimental comparison of quantum and classical support vector machines. IJITEE 8, 208–211 (2019)

    Google Scholar 

  48. M. Schuld, A. Bacharov, K. Svore, N. Wiebe (2018). ar**v:1804.00633v1

  49. E. Farhi, H. Neven (2018). ar**v:1802.06002v2

  50. M. Schuld, I. Sinayskiy, F. Petruccione, An introduction to quantum machine learning. Cont. Phys. 56, 172–185 (2015)

    Article  MATH  Google Scholar 

  51. E. Grant, M. Benedetti, S. Cao, A. Hallam, J. Lockhart, V. Stojevic, A. Green, S. Severini, npj Quantum Inf. 4, 65 (2018)

    Google Scholar 

  52. Y.-Y. Shi, Y.-Y., Duan, L.-M., and Vidal,G., Classical simulation of quantum many-body systems with a tree tensor network, Phys. Rev. A 74, 022320 (2006)

    Google Scholar 

  53. G. Vidal, Class of quantum many-body states that can be efficiently simulated. Phys. Rev. Lett. 101, 110501 (2008)

    Article  Google Scholar 

  54. L. Cincio, J. Dziarmaga, M.M. Rams, Multiscale entanglement renormalization ansatz in two dimensions: quantum ising model. Phys. Rev. Lett. 100, 240603 (2008)

    Google Scholar 

  55. G. Evenbly, G. Vidal, Entanglement renormalization in noninteracting fermionic systems. Phys. Rev. B 81, 235102 (2010)

    Article  Google Scholar 

  56. D. Turkpençe et al., A Steady state quantum classifier. Phys. Lett. A 383, 1410 (2019)

    Article  Google Scholar 

  57. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007)

    Book  MATH  Google Scholar 

  58. W.O. Krawec, M.G. Nelson, E.P. Geiss, Automatic generation of optimal quantum key distribution protocols, in Proceedings of Genetic and Evolutionary Computation (New York, ACM, 2017), p. 1153

    Google Scholar 

  59. P.B. Wigley, P.J. Everitt, A. van den Hengel, J.W. Bastian, M.A. Sooriyabandara, N.P. McDonald, G.D. Hardman, K.S. Quinlivan, C.D. Manju, P. Kuhn, C.C.N. Petersen, I.R. Luiten, A.N. Hope, J.J. Robins, M.R. Hush, Fast machine-learning online optimization of ultra-cold-atom experiments. Sci. Rep. 6, 25890 (2016)

    Google Scholar 

  60. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  MATH  Google Scholar 

  61. G. Cristian Romero. https://www.qutisgroup.com/wp-content/uploads/2014/10/TFG-Cristian-Romero.pdf

  62. X.D. Cai, D. Wu, Z.-E. Su, M.C. Chen, X.L. Wang, L. Li, N.L. Liu, C.Y. Lu, J.W. Pan, Entanglement-based machine learning on a quantum computer. Phys. Rev. Lett. 114, 110504 (2015)

    Google Scholar 

  63. Y. Liu, X. Zhang, M. Lewenstein, S.J. Ran, Entanglement-guided architectures of machine learning by quantum tensor network (2018). ar**v:1803.09111

  64. Y. Levine, O. Sharir, N. Cohen, A. Shashua, Quantum entanglement in deep learning architectures. Phys. Rev. Lett. 122, 065301 (2019)

    Google Scholar 

  65. B. Farley, W. Clark, Simulation of self-organizing systems by digital computer. Trans. IRE Profess. Gr. on Inf. Theor. 4, 76 (1954)

    Article  MathSciNet  Google Scholar 

  66. P. Smolensky, Chapter 6: information processing in dynamical systems: foundations of harmony theory, in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1

    Google Scholar 

  67. D.L. Deng, X. Li, S.D. Sarma, Quantum entanglement in neural network states. Phy. Rev. X 7, 021021 (2017)

    Google Scholar 

  68. L. Susskind, J. Lindesay, An introduction to black holes, information and the string theory revolution: the holographic universe. World Sci. 200 (2004)

    Google Scholar 

  69. Q. Zhuang, Z. Zhang, Supervised learning enhanced by an entangled sensor network (2019). ar**v:1901.09566

  70. I. Goodfellow, Y. Bengio, A. Courville, Deep learning. Gen. Program. Evolv. Machin. 19, 305 (2018)

    Article  MATH  Google Scholar 

  71. S.C. Kak, Quantum neural computing. Adv. Imag. Elect. Phys. 94, 259 (1995)

    Article  Google Scholar 

  72. T. Menneer, A. Narayanan, Quantum-inspired neural networks. Tech. Rep. R329 (1995)

    Google Scholar 

  73. M. Perus, Neuro-quantum parallelism in brain-mind and computers. Informatica 20, 173 (1996)

    Google Scholar 

  74. T. Menneer, Quantum artificial neural networks, Ph.D. thesis, University of Exeter (1998)

    Google Scholar 

  75. Faber, J., and Giraldi, G. A., Quantum Models for Artificial Neural Networks, LNCC–National Laboratory for Scientific Computing

    Google Scholar 

  76. M. Schuld, I. Sinayskiy, F. Petruccione, The quest for a quantum neural network. Quantum Inf. Process. 13, 2567 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  77. N. Wiebe, A. Kapoor, K.M. Svore, Quantum deep learning (2014). ar**v:1412.3489

  78. M.V. Altaisky, Quantum neural network (2000) arxiv:quant-ph/0107012

  79. S. Gupta, R.K.P. Zia, Quantum neural networks. J. Comput. Sys. Sci. 63, 355 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  80. M. Zidan, A.-H. Abdel-Aty, M. El-shafei, M. Feraig, Y. Al-Sbou, H. Eleuch, M. Abdel-Aty, Quantum classification algorithm based on competitive learning neural network and entanglement measure. Appl. Sci. 9, 1277 (2019)

    Google Scholar 

  81. A. Sagheer, M. Zidan, M.M. Abdelsamea, A novel autonomous perceptron model for pattern classification applications. Entropy 21, 763 (2019)

    Google Scholar 

  82. S. Lloyd, C. Weedbrook, Quantum generative adversarial learning. Phys. Rev. Lett. 121, 040502 (2018)

    Article  MathSciNet  Google Scholar 

  83. S. Kak, On quantum neural computing. Inf. Sci. 83, 143 (1995)

    Article  Google Scholar 

  84. M. Zak, C.P. Williams, Quantum neural nets. Int. J. Theor. Phys. 37, 651 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  85. Y. Cao, G.G. Guerreschi, A. Aspuru-Guzik, Quantum neuron: an elementary building block for machine learning on quantum computers (2017). ar**v:1711.11240

  86. S. Hayou, A. Doucet, J. Rousseau, On the impact of the activation function on deep neural networks training (2019). ar**v:1902.06853

  87. F. Agostinelli, M. Hoffman, P. Sadowski, P. Baldi, Learning activation functions to improve deep neural networks (2015). ar**v:1412.6830

  88. I. Daubechies, R. DeVore, S. Foucart, B. Hanin, G. Petrova, Nonlinear approximation and (Deep) ReLU networks (2019). ar**v:1905.02199

  89. F. Neukart, S.A. Moraru, On quantum computers and artificial neural networks. Sig. Process. Res. 2, 1 (2013)

    Google Scholar 

  90. M. Schuld, I. Sinayskiy, F. Petruccione, Simulating a perceptron on a quantum computer. Phys. Lett. A 7, 660 (2015)

    Article  MATH  Google Scholar 

  91. U. Alvarez-Rodriguez, L. Lamata, P.E. Montero, J.D. Martín-Guerrero, E. Solano, Supervised quantum learning without measurements. Sci. Rep. 7, 13645 (2017)

    Article  Google Scholar 

  92. K.H. Wan, O. Dahlsten, H. Kristjánsson, R. Gardner, M.S. Kim, Quantum generalisation of feedforward neural networks. npj Quantum Inf. 3, 36 (2017)

    Google Scholar 

  93. P. Rebentrost, T.R. Bromley, C. Weedbrook, S. Lloyd, Quantum Hopfield neural network. Phys. Rev. A 98, 042308 (2018)

    Google Scholar 

  94. J.S. Otterbach, et al., Unsupervised machine learning on a hybrid quantum computer (2017). ar**v:1712.05771

  95. L. Lamata, Basic protocols in quantum reinforcement learning with superconducting circuits. Sci. Rep. 7, 1609 (2017)

    Article  Google Scholar 

  96. F. Tacchino, C. Macchiavello, D. Gerace, D. Bajoni, An artificial neuron implemented on an actual quantum processor. npj Quantum Inf. 5, 26 (2019)

    Google Scholar 

  97. D.H. Hubel, T.N. Wiesel, Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (1968)

    Google Scholar 

  98. J. Fan, W. Xu, Y. Wu, Y. Gong, Human tracking using convolutional neural networks. IEEE Trans. Neural Netw. 21, 1610 (2010)

    Article  Google Scholar 

  99. M. Jaderberg, A. Vedaldi, A. Zisserman, Deep features for text spotting, in European Conference on Computer Visions (2014)

    Google Scholar 

  100. A. Toshev, C. Szegedy, Deep-pose: human pose estimation via deepneural networks. CVPR (2014)

    Google Scholar 

  101. J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, Decaf: a deep convolutional activation feature for generic (2014)

    Google Scholar 

  102. C. Farabet, C. Couprie, L. Najman, Y. LeCun, Learning hierarchical features for scene labeling. PAMI (2013)

    Google Scholar 

  103. R. Zhao, W. Ouyang, H. Li, X. Wang, Saliency detection by multicontext deep learning, in CVPR (2015)

    Google Scholar 

  104. N. Aloysius, M.A. Geetha, Review on deep convolutional neural networks, in International Conference on Communication and Signal Processing (India, 2017)

    Google Scholar 

  105. G. Carleo, M. Troyer, Solving the quantum many-body problem with artificial neural networks. Science 355, 602 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  106. E.P. Van Nieuwenburg, Y.H. Liu, S.D. Huber, Learning phase transitions by confusion. Nat. Phys. 13, 435–439 (2017)

    Google Scholar 

  107. N. Maskara, A. Kubica, T. Jochym-O’Connor, Advantages of versatile neural-network decoding for topological codes. Phys. Rev. A 99, 052351 (2019)

    Article  Google Scholar 

  108. Y. Zhang, E.A. Kim, Quantum loop topography for machine learning. Phys. Rev. Lett. 118, 216401 (2017)

    Article  MathSciNet  Google Scholar 

  109. J. Carrasquilla, R.G. Melko, Machine learning phases of matter. Nat. Phys. 13, 431–434 (2017)

    Article  Google Scholar 

  110. L. Wang, Discovering phase transitions with supervised learning. Phys. Rev. B 94, 195105 (2016)

    Article  Google Scholar 

  111. Y. Levine, N. Cohen, A. Shashua, Quantum entanglement in deep learning architectures. Phys. Rev. Lett. 122, 065301 (2019)

    Article  MathSciNet  Google Scholar 

  112. J. Biamonte et al., Quantum machine learning. Nature 549, 195–202 (2017)

    Article  Google Scholar 

  113. V. Dunjko, J.M. Taylor, H.J. Briegel, Quantum-enhanced machine learning. Phys. Rev. Lett. 117, 130501 (2016)

    Article  MathSciNet  Google Scholar 

  114. E. Farhi, H. Neven, Classification with quantum neural networks on near term processors (2018). ar**v: 1802.06002

  115. W. Huggins, P. Patil, B. Mitchell, K.B. Whaley, E.M. Stoudenmire, Towards quantum machine learning with tensor networks. Quantum Sci. Tech. 4, 024001 (2018)

    Article  Google Scholar 

  116. I. Cong, S. Choi, M.D. Lukin, Quantum convolutional neural networks. Nat. Phys. 15, 1273 (2019)

    Article  Google Scholar 

  117. Z.A. Jia, B. Yi, R. Zhai, Y.-C. Wu, G.-C. Guo, G.-P. Guo, Quantum neural network states: a brief review of methods and applications. Adv. Quantum Tech. 1800077 (2019)

    Google Scholar 

  118. C. Monterola, C. Saloma, Solving the nonlinear schrodinger equation with an unsupervised neural net-work. Opts. Exp. 9, 72 (2001)

    Google Scholar 

  119. C. Caetano, J. Reis Jr., J. Amorim, M.R. Lemes, A.D. Pino Jr., Using neural networks to solve nonlinear differential equations in atomic and molecular physics. Int. J. Quantum Chem. 111, 2732 (2011)

    Article  Google Scholar 

  120. X. Gao, L.-M. Duan, Efficient representation of quantum many-body states with deep neural networks. Nat. Comm. 8, 662 (2017)

    Article  Google Scholar 

  121. A.P. Dash, S. Sahu, S. Kar, B.K. Behera, P.K. Panigrahi, Explicit demonstration of initial state construction in artificial neural networks usingNetKet and IBM Q experience platform. ResearchGate- (2019). https://doi.org/10.13140/RG.2.2.30229.17129

    Article  Google Scholar 

  122. B. Gardas, M.M. Rams, J. Dziarmaga, Quantum neural networks to simulate many-body quantum systems. Phys. Rev. B 98, 184304 (2018)

    Article  Google Scholar 

  123. J. Bjarni, B. Bela, G. Carleo, Neural-network states for the classical simulation of quantum computing (2018). ar**v:1808.05232v1

  124. H. Liu, C. Yu, S. Pan, S. Qin, F. Gao, Q. Wen (2019). ar**v:1906.03834v2 [quant-ph]

  125. P. Rebetrost, T.R. Bromley, C. Weedbrook, S. Lloyd, Quantum hopfield neural network. Phy. Rev. A 98, 042308 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

A.P.D. acknowledges the support of KVPY fellowship. S.R. and S.C. acknowledge the support of DST Inspire fellowship. B.K.B acknowledges the support of IISER-K Institute fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash K. Behera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mishra, N. et al. (2021). Quantum Machine Learning: A Review and Current Status. In: Sharma, N., Chakrabarti, A., Balas, V.E., Martinovic, J. (eds) Data Management, Analytics and Innovation. Advances in Intelligent Systems and Computing, vol 1175. Springer, Singapore. https://doi.org/10.1007/978-981-15-5619-7_8

Download citation

Publish with us

Policies and ethics

Navigation