Copula and Markov Models

  • Chapter
  • First Online:
Copula-Based Markov Models for Time Series

Part of the book series: SpringerBriefs in Statistics ((JSSRES))

  • 812 Accesses

Abstract

This chapter introduces the basic concepts on copulas and Markov models. We review the formal definition of copulas with its fundamental properties. We then introduce Kendall’s tau as a measure of dependence structure for a pair of random variables, and its relationship with a copula. Examples of copulas are reviewed, such as the Clayton copula, the Gaussian copula, the Frank copula, and the Joe copula. Finally, we introduce the copula-based Markov chain time series models and their fundamental properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    *(3.7) should be read as (2.4) of our book.

References

  • Alqawba M, Diawara N, Chaganty NR (2019) Zero-inflated count time series models using Gaussian copula. Seq Analy 38(3):342–357

    Article  MathSciNet  Google Scholar 

  • Chen X, Fan Y (2006) Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification. J Econometr 135(1–2):125–154

    Article  MathSciNet  Google Scholar 

  • Clayton DG (1978) A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65(1):141–151

    Article  MathSciNet  Google Scholar 

  • Darsow WF, Nguyen B, Olsen ET (1992) Copulas and Markov processes. Illinois J Math 36(4):600–642

    Article  MathSciNet  Google Scholar 

  • Domma F, Giordano S, Francesco PP (2009) Statistical modeling of temporal dependence in financial data via a copula function. Commun Statist Simulat Comput 38:703–728

    Article  MathSciNet  Google Scholar 

  • Durante F, Sempi C (2016) Principles of copula theory: chapman and Hall/CRC

    Google Scholar 

  • Emura T, Wang W, Hung HN (2011) Semi-parametric inference for copula models for dependently truncated data. Statist Sinica 21:349–367

    MathSciNet  MATH  Google Scholar 

  • Emura T, Chen YH (2016) Gene selection for survival data under dependent censoring, a copula-based approach. Statist Methods Med Res 25(6):2840–2857

    Article  MathSciNet  Google Scholar 

  • Emura T, Long T-H, Sun L-H (2017a) Routines for performing estimation and statistical process control under copula-based time series models. Commun Statist Simulat Comput 46(4):3067–3087

    Article  MathSciNet  Google Scholar 

  • Emura T, Nakatochi M, Murotani K, Rondeau V (2017b) A joint frailty-copula model between tumour progression and death for meta-analysis. Statist Methods Med Res 26(6):2649–2666

    Article  MathSciNet  Google Scholar 

  • Emura T, Nakatochi M, Matsui S, Michimae H, Rondeau V (2018) Personalized dynamic prediction of death according to tumour progression and high-dimensional genetic factors: meta-analysis with a joint model. Statist Methods Med Res 27(9):2842–2858

    Article  MathSciNet  Google Scholar 

  • Emura T, Matsui S, Chen HY (2019a) Compound.Cox: univariate feature selection and compound covariate for predicting survival. Comput Methods Prog Biomed 168:21–37

    Article  Google Scholar 

  • Emura T, Matsui S, Rondeau V (2019b) Survival analysis with correlated endpoints, joint frailty-copula models, JSS research series in statistics, Springer

    Google Scholar 

  • Emura T, Shih JH, Ha ID, Wilke RA (2019c) Comparison of the marginal hazard model and the sub-distribution hazard model for competing risks under an assumed copula. Statist Methods Med Res. http://doi.org/10.1177/0962280219892295

  • Emura T, Chen YH (2018) Analysis of survival data with dependent censoring, copula-based approaches, JSS research series in statistics, Springer

    Google Scholar 

  • Fang HB, Fang KT, Kotz S (2002) The meta-elliptical distributions with given marginals. J Multi Analy 82(1):1–16

    Article  MathSciNet  Google Scholar 

  • Frank MJ (1979) On the simultaneous associativity of F(x, y) and x + y – F(x, y). Aequationes Math 19:194–226

    Article  MathSciNet  Google Scholar 

  • Genest C, MacKay RJ (1986) Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données. Canadian J Statist 14(2):145–159

    Article  MathSciNet  Google Scholar 

  • Huang X-W, Emura T (2019) Model diagnostic procedures for copula-based Markov chain models for statistical process control. Commun Statist Simulat Comput. https://doi.org/10.1080/03610918.2019.1602647

    Article  Google Scholar 

  • Huang X-W, Chen WR, Emura T (2020a) Likelihood-based inference for a copula-based Markov chain model with binomial time series, submitted

    Google Scholar 

  • Huang X.-W., Wang W, Emura T (2020b). A copula-based Markov chain model for serially dependent event times with a dependent terminal event, Japanese J Stat Data Sci, in revision

    Google Scholar 

  • Joe H (1993) Parametric families of multivariate distributions with given margins. J Multi Analy 46(2):262–282

    Article  MathSciNet  Google Scholar 

  • Joe H (2015) Dependence modeling with copulas. Chapman and Hall/CRC

    Google Scholar 

  • Kendall MG (1948) Rank correlation methods. Griffin, Oxford, England

    MATH  Google Scholar 

  • Kim JM, Baik J, Reller M (2019) Control charts of mean and variance using copula Markov SPC and conditional distribution by copula. Commun Statist Simul Comput. https://doi.org/10.1080/03610918.2018.1547404

    Article  Google Scholar 

  • Li F, Tang Y, Wang HJ (2019) Copula‐based semiparametric analysis for time series data with detection limits. Canadian J Statist 47(3):438–454

    Google Scholar 

  • Lin WC, Emura T, Sun LH (2019) Estimation under copula-based Markov normal mixture models for serially correlated data. Commun Statist Simulat Comput. https://doi.org/10.1080/03610918.2019.1652318

  • Long T-H, Emura T (2014) A control chart using copula-based Markov chain models. J Chinese Statist Assoc 52(4):466–496

    Google Scholar 

  • Mastrangelo CM, Montgomery DC (1995) SPC with correlated observations for the chemical and process industries. Qual Reliability Eng Int 11(2):79–89

    Article  Google Scholar 

  • Nelsen RB (1986) Properties of a one-parameter family of bivariate distributions with specified marginals. Commun Statist Theory Methods 15(11):3277–3285

    Article  MathSciNet  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas: Springer Science & Business Media

    Google Scholar 

  • Rotolo F, Legrand C, Van Keilegom I (2013) A simulation procedure based on copulas to generate clustered multi-state survival data. Comput Methods Prog Biomed 109(3):305–312

    Article  Google Scholar 

  • Rotolo F, Paoletti X, Michiels S (2018) surrosurv: an R package for the evaluation of failure time surrogate endpoints in individual patient data meta-analyses of randomized clinical trials. Comput Methods Prog Biomed 155:189–198

    Article  Google Scholar 

  • Stoeber J, Joe H, Czado C (2013) Simplified pair copula constructions—limitations and extensions. J Multi Analy 119:101–118

    Article  MathSciNet  Google Scholar 

  • Suresh K, Taylor JM, Tsodikov A (2019) A Gaussian copula approach for dynamic prediction of survival with a longitudinal biomarker. Biostatistics. https://doi.org/10.1093/biostatistics/kxz049

    Article  Google Scholar 

  • Sklar M (1959) Fonctions de repartition an dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris 8:229–231

    MathSciNet  MATH  Google Scholar 

  • Sonmez OE, Baray A (2019) On copula based serial dependence in statistical process control. In: Industrial engineering in the big data Era (pp 127–136). Springer, Cham

    Google Scholar 

  • Sun LH, Lee CS, Emura T (2018) A Bayesian inference for time series via copula-based Markov chain models. Commun Statist Simulat Comput. https://doi.org/10.1080/03610918.2018.1529241

    Article  Google Scholar 

  • Wu BH, Michimae H, Emura T (2020) Meta-analysis of individual patient data with semi-competing risks under the Weibull joint frailty-copula model. Comput Statist. https://doi.org/10.1007/s00180-020-00977-1

    Article  Google Scholar 

  • Zhang S, Zhou QM, Lin H (2020) Goodness-of-fit test of copula functions for semi-parametric univariate time series models. Statistical papers. https://doi.org/10.1007/s00362-019-01153-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Hsien Sun .

2.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

R codes for Figs. 2.1–2.5

Appendices

Appendix A: The Proof of \( \overline{C}\left({u,v} \right)\; = \;u\; + \;v\; - \;1\; + \;C\left({1\; - \;u,\;1\; - \;v} \right) \) being a Copula

We verify the conditions (C1) and (C2) for \( \bar{C}(u,v). \) Recall that \( C(u,v) \) is a copula by assumption. The condition (C1) holds since

$$ \bar{C}(u,0) = u + 0 - 1 + C(1 - u,1) = u - 1 + 1 - u = 0, $$
$$ \bar{C}(0,v) = 0 + v - 1 + C(1,1 - v) = v - 1 + 1 - v = 0, $$
$$ \bar{C}(u,1) = u + 1 - 1 + C(1 - u,0) = u + 0 = u, $$
$$ \bar{C}(1,v) = 1 + v - 1 + C(0,1 - v) = v + 0 = v. $$

The condition (C2) holds since

$$ \begin{aligned} & \bar{C}(u_{2},v_{2} ) - \bar{C}(u_{2},v_{1} ) - \bar{C}(u_{1},v_{2} ) + \bar{C}(u_{1},v_{1} ) \\ & = u_{2} + v_{2} - 1 + C(1 - u_{2},1 - v_{2} ) - [u_{2} + v_{1} - 1 + C(1 - u_{2},1 - v_{1} )] \\ & \,\,\,\,\,- [u_{1} + v_{2} - 1 + C(1 - u_{1},1 - v_{2} )] + u_{1} + v_{1} - 1 + C(1 - u_{1},1 - v_{1} ) \\ & = C(1 - u_{1},1 - v_{1} ) - C(1 - u_{2},1 - v_{1} ) - C(1 - u_{1},1 - v_{2} ) + C(1 - u_{2},1 - v_{2} ) \\ & = C(\bar{u}_{1},\bar{v}_{1} ) - C(\bar{u}_{2},\bar{v}_{1} ) - C(\bar{u}_{1},\bar{v}_{2} ) + C(\bar{u}_{2},\bar{v}_{2} ) \ge 0 \\ \end{aligned} $$

Here, \( \bar{u}_{i} \equiv 1 - u_{i} \) and \( \bar{v}_{i} \equiv 1 - v_{i} \) for \( i = \) 1 and 2. ∎

Appendix B: Proofs of Copulas Approaching to the Independence

We first consider the Clayton copula. As \( \alpha \to 0, \)

$$ \begin{aligned} \mathop {\lim }\limits_{{\alpha \to 0}} C_{\alpha } (u,\;v) = & \mathop {\lim }\limits_{{\alpha \to 0}} \exp \{\log (u^{{ - \alpha }} + v^{{ - \alpha }} - 1)^{{ - 1/\alpha }} \} \; \\ & = \exp [\mathop {\lim }\limits_{{\alpha \to 0}} \{ - \log (u^{{ - \alpha }} + v^{{ - \alpha }} - 1)/\alpha \} ]\; \\ & = \exp [\mathop {\lim }\limits_{{\alpha \to 0}} \{ - (u^{{ - \alpha }} \log u + v^{{ - \alpha }} \log v)/(u^{{ - \alpha }} + v^{{ - \alpha }} - 1)\} ]\;\;\;\;\;\;\;\;\;\;({\text{L'Hopital's rule}})\; \\ & = \exp [\log u + \log v]\; \\ & = uv. \\ \end{aligned} $$

The last expression is the independence copula. An alternative proof is to consider the generator \( \phi_{\alpha } (t) = (t^{ - \alpha } - 1)/\alpha \) for \( \alpha > 0. \) It follows that

$$ \mathop {\lim }\limits_{\alpha \to 0} \phi_{\alpha } (t) = \mathop {\lim }\limits_{\alpha \to 0} \frac{{t^{ - \alpha } - t^{ - 0} }}{\alpha } = \frac{d}{d\alpha }\left. {t^{ - \alpha } } \right|_{\alpha = 0} = - \log (t). $$

The last expression is the generator of the independence copula. Similarly, the Frank copula reduces to the independence copula because

$$ \mathop {\lim }\limits_{\alpha \to 0} \phi_{\alpha } (t) = \mathop {\lim }\limits_{\alpha \to 0} \left[ { - \log \left({\frac{{e^{ - \alpha t} - 1}}{{e^{ - \alpha } - 1}}} \right)} \right] = \mathop {\lim }\limits_{\alpha \to 0} \left[ { - \log \left({\frac{{te^{ - \alpha t} }}{{e^{ - \alpha } }}} \right)} \right] = - \log (t). $$

Appendix C: Derivations of Kendall’s Tau

Kendall’s tau for the Clayton copula:

$$ \begin{aligned} \tau_{\theta } \,=\, & 1 - 4\int_{0}^{\infty } {s\left\{ {\,\frac{d}{ds}\left({\,1 + \alpha s\,} \right)^{{ - \frac{1}{\alpha }}} \,} \right\}^{2} ds} = 1 - 4\int_{0}^{\infty } {s\left\{ {{\kern 1pt} - \left({{\kern 1pt} 1 + \alpha s} \right)^{{ - \frac{1}{\alpha } - 1}} {\kern 1pt} } \right\}^{2} ds} \\ = & 1 - 4\int_{0}^{\infty } {s\left({\,1 + \alpha s\,} \right)^{{ - \frac{2}{\alpha } - 2}} ds} = 1 - 4\frac{1}{{\alpha^{2} }}\int_{1}^{\infty } {\left({\,t - 1\,} \right)t^{{ - \frac{2}{\alpha } - 2}} dt} \\ = & 1 - 4\frac{1}{{\alpha^{2} }}\left\{ {{\kern 1pt} \left. { - \frac{\alpha }{2}t^{{ - \frac{2}{\theta }}} } \right|_{1}^{\infty } + \left. {\frac{\alpha }{2 + \alpha }t^{{ - \frac{2}{\theta } - 1}} } \right|_{1}^{\infty } {\kern 1pt} } \right\} \\ = & \frac{\alpha }{\alpha + 2} \\ \end{aligned} $$

Kendall’s tau for the Joe copula:

$$ \begin{aligned} \tau _{\alpha } \,=\, & 1 - 4\int_{0}^{\infty } {s\left[ {\frac{\partial }{{\partial s}}\left\{ {1 - (1 - e^{{ - s}} )^{{\frac{1}{\alpha }}} } \right\}} \right]^{2} ds} \\ = & 1 - 4\int_{0}^{\infty } {s\left\{ {{\kern 1pt} - \frac{1}{\alpha }\left({{\kern 1pt} 1 - e^{{ - s}} {\kern 1pt} } \right)^{{\frac{1}{\alpha } - 1}} e^{{ - s}} {\kern 1pt} } \right\}^{2} ds} \\ = & 1 - \frac{4}{{\alpha ^{2} }}\int_{0}^{\infty } {s(1 - e^{{ - s}} )^{{\frac{2}{\alpha } - 2}} e^{{ - 2s}} ds}. \\ \end{aligned} $$

Kendall’s tau for the Frank copula:

Kendall’s tau can be derived by

$$ \begin{aligned} \tau \,=\, & 4\int_{0}^{1} {\int_{0}^{1} {C(u,\;v)dC(u,\;v)} } - 1 \\ = \,& 4\int_{0}^{1} {\int_{0}^{1} {C(u,\;v)C^{[1,1]} (u,\;v)dudv} } - 1 \\ =\, & 4\int_{0}^{1} {\left\{ {C(u,\;v)\left. {C^{[0,1]} (u,\;v)} \right|_{u = 0}^{u = 1} - \int_{0}^{1} {C^{[1,0]} (u,\;v)C^{[0,1]} (u,\;v)du} } \right\}dv} - 1 \\ =\, & 4\int_{0}^{1} {\left\{ {v - \int_{0}^{1} {C^{[1,0]} (u,\;v)C^{[0,1]} (u,\;v)du} } \right\}dv} - 1 \\ =\, & 2 - 4\int_{0}^{1} {\int_{0}^{1} {C^{[1,0]} (u,\;v)C^{[0,1]} (u,\;v)dudv} } - 1 \\ =\, & 1 - 4\int_{0}^{1} {\int_{0}^{1} {C^{[1,0]} (u,\;v)C^{[0,1]} (u,\;v)dudv} } \\ \end{aligned} $$

after integration by parts. According to Nelsen (1986), under the Frank copula,

$$ C_{\alpha }^{[1,\;0]} (u,\;v) = \frac{{e^{ - \alpha u} (e^{ - \alpha v} - 1)}}{{e^{ - \alpha } - 1 + (e^{ - \alpha u} - 1)(e^{ - \alpha v} - 1)}} $$

and similarly

$$ C_{\alpha }^{[0,\;1]} (u,\;v) = \frac{{e^{ - \alpha v} (e^{ - \alpha u} - 1)}}{{e^{ - \alpha } - 1 + (e^{ - \alpha u} - 1)(e^{ - \alpha v} - 1)}}. $$

Thus,

$$ \begin{aligned} \tau & = 1 - 4\int_{0}^{1} {\int_{0}^{1} {\frac{{e^{ - \alpha u} e^{ - \alpha v} (e^{ - \alpha u} - 1)(e^{ - \alpha v} - 1)}}{{\{ e^{ - \alpha } - 1 + (e^{ - \alpha u} - 1)(e^{ - \alpha v} - 1)\}^{2} }}dudv} } \\ & = 1 - \frac{4}{\alpha }\left({1 - \frac{1}{\alpha }\int_{0}^{\alpha } {\frac{t}{{e^{t} - 1}}dt} } \right) \\ \end{aligned}. $$

Nelsen (1986) provided the above derivation, but the derivation of the last equality is unclear to us. To prove the last equality, we give a method of numerical verification by R codes.

figure a

No matter how we choose the value of “alpha,” the two numerical integrations give the identical value. ∎

Appendix D: Derivation of \( C_{\alpha }^{{\left[ {1,1} \right]}} \;\left({u,v} \right) \) Under the Frank Copula

$$ \Pr (V \le v|U = u) = C_{\alpha }^{[1,\;0]} (u,\;v) = \frac{{e^{ - \alpha u} (e^{ - \alpha v} - 1)}}{{e^{ - \alpha } - 1 + (e^{ - \alpha u} - 1)(e^{ - \alpha v} - 1)}} $$
$$ \begin{aligned} & C_{\alpha }^{{[1,1]}} (u,\,v)\, = \,\frac{\partial }{{\partial v}}C_{\alpha }^{{[1,0]}} (u,\,v) \\ & = \,\frac{{ \frac{\partial }{{\partial v}}\{ e^{{ - \alpha u}} (e^{{ - \alpha v}} \, - \,1)\} \{ e^{{ - \alpha }} \, - \,1\, + \,(e^{{ - \alpha u}} \, - \,1)\,e^{{ - \alpha v}} \, - \,1)\} }} {{\{ e^{{ - \alpha }} \, - \,1\, + \,(e^{{ - \alpha u}} \, - \,1)(e^{{ - \alpha v}} \, - \,1)\} ^{2} }} \\ & \quad\quad \, - \, \frac{{ \{ e^{{ - \alpha u}} (e^{{ - \alpha v}} \, - \,1)\} \frac{\partial }{{\partial v}}\{ e^{{ - \alpha }} \, - \,1\, + \,(e^{{ - \alpha u}} \, - \,1)(e^{{ - \alpha v}} \, - \,1)\} }} {{\{ e^{{ - \alpha }} \, - \,1\, + \,(e^{{ - \alpha u}} \, - \,1)(e^{{ - \alpha v}} \, - \,1)\} ^{2} }} \\ & = \,\frac{{ - \alpha e^{{ - \alpha u}} e^{{ - \alpha v}} \{ e^{{ - \alpha }} \, - \,1\, + \,(e^{{ - \alpha u}} \, - \,1)(e^{{ - \alpha v}} \, - \,1)\} \, + \,\alpha e^{{ - \alpha u}} e^{{ - \alpha v}} (e^{{ - \alpha u}} \, - \,1)(e^{{ - \alpha v}} \, - \,1)}}{{\{ e^{{ - \alpha }} \, - \,1\, + \,(e^{{ - \alpha u}} \, - \,1)(e^{{ - \alpha v}} \, - \,1)\} ^{2} }} \\ & = \,\frac{{\alpha (1\, - \,e^{{ - \alpha }} )e^{{ - \alpha u}} e^{{ - \alpha v}} }}{{\{ e^{{ - \alpha }} \, - \,1\, + \,(e^{{ - \alpha u}} \, - \,1)(e^{{ - \alpha v}} \, - \,1)\} ^{2} }} \\ \end{aligned} $$

Appendix E: Derivation of \( C_{\rho }^{{[1,0]}} \;(u,\;v) \) Under the Gaussian Copula

Let \( X \equiv \varPhi^{ - 1} (U) \) and \( Y \equiv \varPhi^{ - 1} (V). \) Then, \( X \) and \( Y \) jointly follow a bivariate normal distribution with \( E[X] = E[Y] = 0, \) \( Var[X] = Var[Y] = 1, \) and \( Cov(X,Y) = \rho \in (- 1,1). \) By the property of the bivariate normal distribution, \( Y|X = x\sim N(\rho x,\;1 - \rho^{2} ). \) Thus,

$$ \Pr (Y \le y|X = x) = \int\limits_{0}^{y} {\frac{1}{{\sqrt {2\pi (1 - \rho^{2} )} }}\exp \left[ { - \frac{{(t - \rho x)^{2} }}{{2(1 - \rho^{2} )}}} \right]} dt. $$

The expression can be re-expressed as

$$ \Pr (V \le v|U = u) = \int\limits_{0}^{{\frac{{\varPhi^{ - 1} (v) - \rho \varPhi^{ - 1} (u)}}{{\sqrt {1 - \rho^{2} } }}}} {\frac{1}{{\sqrt {2\pi } }}\exp \left[ { - \frac{{z^{2} }}{2}} \right]} dz = \varPhi \left[ {\frac{{\varPhi^{ - 1} (v) - \rho \varPhi^{ - 1} (u)}}{{\sqrt {1 - \rho^{2} } }}} \right], $$

where a transformation \( z = \frac{t - \rho x}{{\sqrt {1 - \rho^{2} } }} \) is applied.∎

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, LH., Huang, XW., Alqawba, M.S., Kim, JM., Emura, T. (2020). Copula and Markov Models. In: Copula-Based Markov Models for Time Series. SpringerBriefs in Statistics(). Springer, Singapore. https://doi.org/10.1007/978-981-15-4998-4_2

Download citation

Publish with us

Policies and ethics

Navigation