Electrochemical Interactions Between Microorganisms and Conductive Particles

  • Chapter
  • First Online:
Electron-Based Bioscience and Biotechnology

Abstract

Electrochemically active microorganisms can interact with nano- and micro-scale conductive particles in addition to macroscopic electrode materials. In this chapter, recent progresses in research on electrochemical interactions between microorganisms and conductive particles are introduced. The topics include facilitated long-range electron transfer in artificial conductive biofilm, electric syntrophy (interspecies electron transfer via conductive particles), and microbial photo-electrosynthesis with semiconductive nano-particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 99.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 99.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aulenta F, Rossetti S, Amalfitano S, Majone M, Tandoi V (2013) Conductive magnetite nanoparticles accelerate the microbial reductive dechlorination of trichloroethene by promoting interspecies electron transfer processes. ChemSusChem 6:433–436

    CAS  PubMed  Google Scholar 

  • Baek G, Kim J, Lee C (2016) A long-term study on the effect of magnetite supplementation in continuous methane fermentation of dairy effluent—enhancement in process performance and stability. Bioresour Technol 222:344–354

    CAS  PubMed  Google Scholar 

  • Barua S, Dhar BR (2017) Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion. Bioresour Technol 244:698–707

    CAS  PubMed  Google Scholar 

  • Chen S, Rotaru AE, Liu F, Philips J, Woodard TL, Nevin KP, Lovley DR (2014a) Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresour Technol 173:82–86

    CAS  PubMed  Google Scholar 

  • Chen S, Rotaru AE, Shrestha PM, Malvankar NS, Liu F, Fan W, Nevin KP, Lovley DR (2014b) Promoting interspecies electron transfer with biochar. Sci Rep 4:5019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Zhou X, Liu X, Zeng RJ, Zhang F, Ye J, Zhou S (2018) Facilitated extracellular electron transfer of Geobacter sulfurreducens biofilm with in situ formed gold nanoparticles. Biosens Bioelectron 108:20–26

    CAS  PubMed  Google Scholar 

  • Cruz Viggi C, Rossetti S, Fazi S, Paiano P, Majone M, Aulenta F (2014) Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ Sci Technol 48:7536–7543

    CAS  PubMed  Google Scholar 

  • Cruz Viggi C, Presta E, Bellagamba M, Kaciulis S, Balijepalli SK, Zanaroli G, Petrangeli Papini M, Rossetti S, Aulenta F (2015) The “Oil-Spill Snorkel”: an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments. Front Microbiol 6:881

    PubMed  PubMed Central  Google Scholar 

  • Dang Y, Holmes DE, Zhao Z, Woodard TL, Zhang Y, Sun D, Wang LY, Nevin KP, Lovley DR (2016) Enhancing methane fermentation of complex organic waste with carbon-based conductive materials. Bioresour Technol 220:516–522

    CAS  PubMed  Google Scholar 

  • Hochella MF Jr, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals, mineral nanoparticles, and Earth systems. Science 319:1631–1635

    CAS  PubMed  Google Scholar 

  • Holmes DE, Ueki T, Tang HY, Zhou J, Smith JA, Chaput G, Lovley DR (2019) A membrane-bound cytochrome enables Methanosarcina acetivorans to conserve energy from extracellular electron transfer. MBio 10:e00789-19

    PubMed  PubMed Central  Google Scholar 

  • Igarashi K, Kato S (2017) Extracellular electron transfer in acetogenic bacteria and its application for conversion of carbon dioxide into organic compounds. Appl Microbiol Biotechnol 101:6301–6307

    CAS  PubMed  Google Scholar 

  • Jiang X, Hu J, Lieber AM, Jackan CS, Biffinger JC, Fitzgerald LA, Ringeisen BR, Lieber CM (2014) Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano Lett 14:6737–6742

    CAS  PubMed  Google Scholar 

  • Kato S (2015) Biotechnological aspects of microbial extracellular electron transfer. Microbes Environ 30:133–139

    PubMed  PubMed Central  Google Scholar 

  • Kato S (2017) Influence of anode potentials on current generation and extracellular electron transfer paths of Geobacter species. Int J Mol Sci 18:E108

    PubMed  Google Scholar 

  • Kato S, Igarashi K (2019) Enhancement of methanogenesis by electric syntrophy with biogenic iron-sulfide minerals. Microbiology 8:e00647

    Google Scholar 

  • Kato S, Watanabe K (2010) Ecological and evolutionary interactions in syntrophic methanogenic consortia. Microbes Environ 25:145–151

    PubMed  Google Scholar 

  • Kato S, Nakamura R, Kai F, Watanabe K, Hashimoto K (2010) Respiratory interactions of soil bacteria with (semi)conductive iron-oxide minerals. Environ Microbiol 12:3114–3123

    CAS  PubMed  Google Scholar 

  • Kato S, Hashimoto K, Watanabe K (2012a) Microbial interspecies electron transfer via electric currents through conductive minerals. Proc Natl Acad Sci U S A 109:10042–10046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kato S, Hashimoto K, Watanabe K (2012b) Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environ. Microbiol. 14:1646–1654

    CAS  PubMed  Google Scholar 

  • Kato S, Hashimoto K, Watanabe K (2013) Iron-oxide minerals affect extracellular electron-transfer paths of Geobacter spp. Microbes Environ 28:141–148

    PubMed  PubMed Central  Google Scholar 

  • Kouzuma A, Kato S, Watanabe K (2015) Microbial interspecies interactions: recent findings in syntrophic consortia. Front Microbiol 6:477

    PubMed  PubMed Central  Google Scholar 

  • Lin R, Cheng J, Zhang J, Zhou J, Cen K, Murphy JD (2017) Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion. Bioresour Technol 239:345–352

    CAS  PubMed  Google Scholar 

  • Liu F, Rotaru AE, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR (2012) Promoting direct interspecies electron transfer with activated carbon. Energy Environ Sci 5:8982–8989

    CAS  Google Scholar 

  • Liu C, Colón BC, Ziesack M, Silver PA, Nocera DG (2016) Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352:1210–1213

    CAS  PubMed  Google Scholar 

  • Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690

    CAS  PubMed  Google Scholar 

  • Lovley DR (2017) Syntrophy goes electric: Direct interspecies electron transfer. Annu Rev Microbiol 71:643–664

    CAS  PubMed  Google Scholar 

  • Martins G, Salvador AF, Pereira L, Alves MM (2018) Methane production and conductive materials: a critical review. Environ Sci Technol 52:10241–10253

    CAS  PubMed  Google Scholar 

  • McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ (2015) Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526:531–535

    CAS  PubMed  Google Scholar 

  • Morita M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C, Lovley DR (2011) Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. MBio 2:e00159-11

    PubMed  PubMed Central  Google Scholar 

  • Nakamura R, Kai F, Okamoto A, Newton GJ, Hashimoto K (2009) Self-constructed electrically conductive bacterial networks. Angew Chem Int Ed 48:508–511

    CAS  Google Scholar 

  • Nakamura R, Okamoto A, Tajima N, Newton GJ, Kai F, Takashima T, Hashimoto K (2010) Biological iron-monosulfide production for efficient electricity harvesting from a deep-sea metal-reducing bacterium. ChemBioChem 11:643–645

    CAS  PubMed  Google Scholar 

  • Okamoto A, Hashimoto K, Nakamura R (2012) Long-range electron conduction of Shewanella biofilms mediated by outer membrane c-type cytochromes. Bioelectrochemistry 85:61–65

    CAS  PubMed  Google Scholar 

  • Peng X, Yu H, Ai L, Li N, Wang X (2013) Time behavior and capacitance analysis of nano-Fe3O4 added microbial fuel cells. Bioresour Technol 144:689–692

    CAS  PubMed  Google Scholar 

  • Prévoteau A, Carvajal-Arroyo JM, Ganigué R, Rabaey K (2019) Microbial electrosynthesis from CO2: forever a promise? Curr Opin Biotechnol 62:48–57

    PubMed  Google Scholar 

  • Reguera G (2018) Microbial nanowires and electroactive biofilms. FEMS Microbiol Ecol 94:086

    Google Scholar 

  • Rotaru AE, Shrestha PM, Liu F, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin KP, Lovley DR (2014a) A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci 7:408–415

    CAS  Google Scholar 

  • Rotaru AE, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR (2014b) Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol 80:4599–4605

    PubMed  PubMed Central  Google Scholar 

  • Rotaru AE, Woodard TL, Nevin KP, Lovley DR (2015) Link between capacity for current production and syntrophic growth in Geobacter species. Front Microbiol 6:744

    PubMed  PubMed Central  Google Scholar 

  • Sakimoto KK, Wong AB, Yang P (2016a) Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351:74–77

    CAS  PubMed  Google Scholar 

  • Sakimoto KK, Zhang SJ, Yang P (2016b) Cysteine-cystine photoregeneration for oxygenic photosynthesis of acetic acid from CO2 by a tandem inorganic-biological hybrid system. Nano Lett 16:5883–5887

    CAS  PubMed  Google Scholar 

  • Sasaki K, Sasaki D, Kamiya K, Nakanishi S, Kondo A, Kato S (2018) Electrochemical biotechnologies minimizing the required electrode assemblies. Curr Opin Biotechnol 50:182–188

    CAS  PubMed  Google Scholar 

  • Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413–1415

    CAS  PubMed  Google Scholar 

  • Tian T, Qiao S, Li X, Zhang M, Zhou J (2017) Nano-graphene induced positive effects on methanogenesis in anaerobic digestion. Bioresour Technol 224:41–47

    CAS  PubMed  Google Scholar 

  • Torres CI, Marcus AK, Lee HS, Parameswaran P, Krajmalnik-Brown R, Rittmann BE (2010) A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev 34:3–17

    CAS  PubMed  Google Scholar 

  • Ueki T, Nevin KP, Rotaru AE, Wang LY, Ward JE, Woodard TL, Lovley DR (2018) Geobacter strains expressing poorly conductive pili reveal constraints on direct interspecies electron transfer mechanisms. MBio 9:e01273-18

    PubMed  PubMed Central  Google Scholar 

  • Wang C, Ye L, ** J, Chen H, Xu X, Zhu L (2017) Magnetite nanoparticles enhance the performance of a combined bioelectrode-UASB reactor for reductive transformation of 2,4-dichloronitrobenzene. Sci Rep 7:10319

    PubMed  PubMed Central  Google Scholar 

  • Watanabe K (2008) Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng 106:528–536

    CAS  PubMed  Google Scholar 

  • Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pum** iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764

    CAS  PubMed  Google Scholar 

  • Yamada C, Kato S, Ueno Y, Ishii M, Igarashi Y (2015) Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate. J Biosci Bioeng 119:678–682

    CAS  PubMed  Google Scholar 

  • Yong YC, Yu YY, Zhang X, Song H (2014) Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm. Angew Chem Int Ed 53:4480–4483

    CAS  Google Scholar 

  • Yoshida N, Miyata Y, Doi K, Goto Y, Nagao Y, Tero R, Hiraishi A (2016) Graphene oxide-dependent growth and self-aggregation into a hydrogel complex of exoelectrogenic bacteria. Sci Rep 6:21867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu YY, Chen HL, Yong YC, Kim DH, Song H (2011) Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells. Chem Commun 47:12825–12827

    CAS  Google Scholar 

  • Zhang X, Liu H, Wang J, Ren G, **e B, Liu H, Zhu Y, Jiang L (2015) Facilitated extracellular electron transfer of Shewanella loihica PV-4 by antimony-doped tin oxide nanoparticles as active microelectrodes. Nanoscale 7:18763–18769

    CAS  PubMed  Google Scholar 

  • Zhao Z, Zhang Y, Holmes DE, Dang Y, Woodard TL, Nevin KP, Lovley DR (2016) Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors. Bioresour Technol 209:148–156

    CAS  PubMed  Google Scholar 

  • Zhuang L, Yuan Y, Yang G, Zhou S (2012) In situ formation of graphene/biofilm composites for enhanced oxygen reduction in biocathode microbial fuel cells. Electrochem Commun 21:69–72

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souichiro Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kato, S. (2020). Electrochemical Interactions Between Microorganisms and Conductive Particles. In: Ishii, M., Wakai, S. (eds) Electron-Based Bioscience and Biotechnology . Springer, Singapore. https://doi.org/10.1007/978-981-15-4763-8_6

Download citation

Publish with us

Policies and ethics

Navigation