Control of Microbial Metabolism by Electrochemical Cultivation Method

  • Chapter
  • First Online:
Electron-Based Bioscience and Biotechnology
  • 469 Accesses

Abstract

Microbial metabolism, including various reactions, is supported by electron flow from electron donors to acceptors. Therefore, microbial metabolism may possibly be controlled by electrochemical approach. In this chapter, concepts of bioelectrochemical systems and their application in the control of microbial metabolism for the production of value-added chemicals from biomass or CO2 have been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Batlle-Vilanova P et al (2017) Microbial electrosynthesis of butyrate from carbon dioxide: production and extraction. Bioelectrochemistry 117:57–64

    Article  CAS  Google Scholar 

  • Cheng S, **ng D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43(10):3953–3958

    Article  CAS  Google Scholar 

  • Du C et al (2006) Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumoniae. Appl Microbiol Biotechnol 69(5):554–563

    Article  CAS  Google Scholar 

  • Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6(6):596–604

    Article  CAS  Google Scholar 

  • Guan J et al (2017) Development of reactor configurations for an electrofuels platform utilizing genetically modified iron oxidizing bacteria for the reduction of CO2 to biochemicals. J Biotechnol 245:21–27

    Article  CAS  Google Scholar 

  • Harnisch F, Schröder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 39(11):4433–4448

    Article  CAS  Google Scholar 

  • Hirano SI, Matsumoto N (2018) Analysis of a bio-electrochemical reactor containing carbon fiber textiles for the anaerobic digestion of tomato plant residues. Bioresour Technol 249:809–817

    Article  CAS  Google Scholar 

  • Hirano S, Matsumoto N, Ohmura N (2012) Development of novel biorefining technology with electrolysis (part III)—enhancement of butanol production by supply of reducing power. CRIEPI report V11047

    Google Scholar 

  • Hirano S et al (2013) Electrochemical control of redox potential affects methanogenesis of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus. Lett Appl Microbiol 56(5):315–321

    Article  CAS  Google Scholar 

  • Kernan T et al (2016) Engineering the iron-oxidizing chemolithoautotroph Acidithiobacillus ferrooxidans for biochemical production. Biotechnol Bioeng 113(1):189–197

    Article  CAS  Google Scholar 

  • Kim TS, Kim BH (1988) Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent. Biotechnol Lett 10:123–128

    Article  CAS  Google Scholar 

  • Li J et al (2010) Effect of redox potential regulation on succinic acid production by Actinobacillus succinogenes. Bioprocess Biosyst Eng 33(8):911–920

    Article  CAS  Google Scholar 

  • Li H et al (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335(6076):1596

    Article  CAS  Google Scholar 

  • Liu CG, Xue C, Lin YH, Bai FW (2013) Redox potential control and applications in microaerobic and anaerobic fermentations. Biotechnol Adv 31(2):257–265

    Article  CAS  Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7(5):375–381

    Article  CAS  Google Scholar 

  • Matsumoto N, Nakasono S, Ohmura N, Saiki H (1999) Extension of logarithmic growth of Thiobacillus ferrooxidans by potential controlled electrochemical reduction of Fe(III). Biotechnol Bioeng 64(6):716–721

    Article  CAS  Google Scholar 

  • Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1(2):e00103-10

    Article  Google Scholar 

  • Nevin KP et al (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77(9):2882–2886

    Article  CAS  Google Scholar 

  • PrĂ©voteau A, Carvajal-Arroyo JM, GaniguĂ© R, Rabaey K (2019) Microbial electrosynthesis from CO2: forever a promise? Curr Opin Biotechnol 62:48–57

    Article  Google Scholar 

  • Rabaey K, Rozendal RA (2010) Microbial electrosynthesis-revisiting the electrical route for microbial production. Nat Rev Microbiol 8(10):706–716

    Article  CAS  Google Scholar 

  • Rao G, Mutharasan R (1986) Alcohol production by Clostridium acetobutylicum induced by methyl viologen. Biotechnol Lett 8:893–896

    Article  CAS  Google Scholar 

  • Sasaki K et al (2010) Bioelectrochemical system stabilizes methane fermentation from garbage slurry. Bioresour Technol 101:3415–3422

    Article  CAS  Google Scholar 

  • Sasaki D et al (2013) Operation of a cylindrical bioelectrochemical reactor containing carbon fiber fabric for efficient methane fermentation from thickened sewage sludge. Bioresour Technol 129:366–373

    Article  CAS  Google Scholar 

  • Schievano A et al (2016) Electro-fermentation—merging electrochemistry with fermentation in industrial applications. Trends Biotechnol 34(11):866–878

    Article  CAS  Google Scholar 

  • Taheri A et al (2015) An iron electrocatalyst for selective reduction of CO2 to formate in water: including thermochemical insights. ACS Catal 5(12):7140–7151

    Article  CAS  Google Scholar 

  • Tashiro Y et al (2018) Electrical-biological hybrid system for CO2 reduction. Metab Eng 47:211–218

    Article  CAS  Google Scholar 

  • Wang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31(8):1796–1807

    Article  Google Scholar 

  • Wietzke M, Bahl H (2012) The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum. Appl Microbiol Biotechnol 96(3):749–761

    Article  CAS  Google Scholar 

  • Zhu Y et al (2014) Metabolic changes in Klebsiella oxytoca in response to low oxidoreduction potential, as revealed by comparative proteomic profiling integrated with flux balance analysis. Appl Environ Microbiol 80(9):2833–2841

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin–ichi Hirano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hirano, S. (2020). Control of Microbial Metabolism by Electrochemical Cultivation Method. In: Ishii, M., Wakai, S. (eds) Electron-Based Bioscience and Biotechnology . Springer, Singapore. https://doi.org/10.1007/978-981-15-4763-8_10

Download citation

Publish with us

Policies and ethics

Navigation