Threat Imposed by O3-Induced ROS on Defense, Nitrogen Fixation, Physiology, Biomass Allocation, and Yield of Legumes

  • Chapter
  • First Online:
The Plant Family Fabaceae

Abstract

Fabaceae is the third largest family of flowering plants. Tropospheric O3 is one of the most important secondary pollutants causing threat to agriculture productivity. The projected levels to which O3 will increase are critically alarming and have caused a significant effect of productivity of legumes. The present chapter highlights about the effect of tropospheric O3 on growth, development, and functioning of legumes. Tropospheric O3 causes significant leaf injury, reductions in root biomass, and root nodule number. It causes reduction in photosynthesis and nitrogen-fixing enzymes. Changes in allocation of photosynthates between above and belowground due to O3 also affect nitrogen fixation in legumes. Potential shortfalls in N-fixation will have severe economic and environmental consequences and it has not yet been considered on anagroecosystem basis. There is an utmost need for further investigation of tropospheric O3 impacts of legume crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrawal M, Agrawal SB (1990) Effects of ozone exposure on enzymes and metabolites of nitrogen-metabolism. Sci Hortic 43:169–177

    CAS  Google Scholar 

  • Alscher RG, Hess JL (1993) Antioxidants in higher plants. CRC, Boca Raton

    Google Scholar 

  • Amthor JS (1988) Growth and maintenance respiration in leaves of bean (Phaseolus vulgaris L.) exposed to ozone in open-top chambers in the field. New Phytol 110:319–325

    CAS  Google Scholar 

  • Andersen CP (2003) Source–sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol 157:213–228

    CAS  PubMed  Google Scholar 

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant, Cell Environ 29:949–964

    Google Scholar 

  • Ashraf MY, Ashraf M, Arshad M (2010) Major nutrients supply in legume crops under stress environments. In: Yadav SS, McNeil DL, Redden R, Patil SA (eds) Climate Change and Management of Cool Season Grain Legume Crops. Springer, Dordrecht, pp 155–170

    Google Scholar 

  • Biswas DK, Xu H, Li YG, Ma BL, Jiang GM (2013) Modification of photosynthesis and growth responses to elevated CO2 by ozone in two cultivars of winter wheat with different years of release. J Exp Bot 64(6):1485–1496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygendeprivation stress: a review. Ann Bot 91:179–1943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blum U, Tingey DT (1977) A study of the potential ways in which ozone could reduce root growth and nodulation of soybean. Atmos Environ 11:737–739

    Google Scholar 

  • Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol 43:83–116

    CAS  Google Scholar 

  • Bowler C, Van Camp W, Van Montagu M, Inze D (1994) Superoxide dismutase in plants. Crit Rev Plant Sci 13:199–218

    CAS  Google Scholar 

  • Brugie`re N, Dubois F, Masclaux C, Sangwan RS, Hirel B (2000) Immunolocalization of glutamine synthetase in senescing tobacco (Nicotiana tabacum L.) leaves suggests that ammonia assimilation is progressively shifted to the mesophyll cytosol. Planta 211: 519–527

    Google Scholar 

  • Burkey KO, Carter TE (2014) Foliar resistance to ozone injury in the genetic base of U.S. and Canadian soybean and prediction of resistance in descendent cultivars using coefficient of parentage. Field Crop Res 111:207–217

    Google Scholar 

  • Calatayud A, Barreno E (2004) Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation. Plant PhysiolBiochem 42:549–555

    CAS  Google Scholar 

  • Castillo FJ, Greppin H (1988) Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L. leaves after ozone exposure. Environ Exp Bot 28:231–238

    CAS  Google Scholar 

  • Chaudhary N, Agrawal SB (2015) The role of elevated ozone on growth, yield and seed quality amongst six cultivars of mung bean. Ecotoxicol Environ Safety 111:286–294

    CAS  PubMed  Google Scholar 

  • Cheng L, Booker FL, Burkey KO, Tu C, Shew HD, Rufty TW, Fiscus EL, Deforest JL, Hu SJ (2011) Soil microbial responses to elevated CO2 and O3 in a nitrogen-aggrading agroecosystem. PloS One 6

    Google Scholar 

  • Cong T, Booker FL, Burkey KO, Hu S (2009) Elevated atmospheric carbon dioxide and O3 differentially alter nitrogen acquisition in peanut. Crop Sci 49:1827–1836

    Google Scholar 

  • Diara C, Castagna A, Baldan B, MensualiSodi A, Sahr T, Langebartels C, Sebastiani L, Ranieri A (2005) Differences in the kinetics and scale of signaling molecule production modulate the ozone sensitivity of hybrid poplar clones: the roles of H O, ethylene and salicylic acid. New Phytol 168:351–364

    CAS  PubMed  Google Scholar 

  • Dita MA, Rispail N, Prats E, Rubiales D, Singh KB (2006) Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147:1–24

    Google Scholar 

  • Dizengremel P (2001) Effects of ozone on the carbon metabolism of forest trees. Plant Physiol Biochem 39:729–742

    Google Scholar 

  • Dizengremel P, Le Thiec D, Bagard M, Jolivet Y (2008) Ozone risk assessment for plants: central role of metabolism-dependant changes in reducing power. Environ Pollut 156:11–15

    CAS  PubMed  Google Scholar 

  • Doyle JJ (2001). Leguminosae. Encylopedia Genetics 1642:1081–1085

    Google Scholar 

  • Dupont L, Alloing G, Pierre O, El Msehli S, Hopkins J, Herouart D, Frendo P (2012) The legume root nodule: from symbiotic nitrogen fixation to senescence. In: Nagata T (Ed) Senescence. Intechopen, Croatia, pp 137–68

    Google Scholar 

  • El-Enany AE, Al-Anazi AD, Dief N, Al-Taisan WA (2013) Role of antioxidant enzymes in amelioration of water deficit and waterlogging stresses on vigna sinensis plants. J Biol Earth Sci 3:B144–B153

    Google Scholar 

  • Flagler RB, Patterson RP, Hcagle AS, Heck WW (1987) Ozone and soil moisture deficit effects on nitrogen metabolism of soybean. Crop Sci 27:1177–1184

    Google Scholar 

  • Galant A, Koester RP, Ainsworth EA, Hicks LM, Jex JM (2012) From climate change to molecular response: redox proteomics of ozone-induced responses insoybean. New Phytol 194:220–229

    CAS  PubMed  Google Scholar 

  • Guderian R (1985) Effects of pollutans combination. In: Guderian R (ed) Air pollution photochemical oxidants. Springer, Berlin, p 246

    Google Scholar 

  • GuidiL., Degl’InnocentiE. F. Martinelli, M. Piras (2009) Ozone effects on carbonmetabolism in sensitive and insensitive phaseolus cultivars. Environ Exp Bot 66 117–125

    Google Scholar 

  • Hassan IA, Anttonen S (1999) Changes in nitrogen metabolism in leaves of Bean (Phaseolus vulgaris L. cv. Giza 6) in response to Ozone. Pak J Biol Sci 2:327–331

    Google Scholar 

  • Hassan IA, Haiba NS, Badr RH, Basahi JM, Almeelbi T, Ismail IM, Taia WK (2017) Effects of ambient ozone on reactive oxygen species and antioxidant metabolites in leaves of pea (Pisum sativum L.) plants. Pak J Bot 49:47–55

    CAS  Google Scholar 

  • Havelka UD, Boyle MG, Hardy RWF (1982). Biological nitrogen fixation. In: Stevenson FJ (Ed), Nitrogen in Agricultural Soils ASA. Madison, Wisconsin USA, pp 365–422

    Google Scholar 

  • Heath RL (1987) The biochemistry of ozone attack on the plasma membrane of plant cells. Rec Adv Phytochem 21:29–54

    Google Scholar 

  • Hewitt DKL, Mills G, Hayes F, Wilkinson S, Davies W (2014) Highlighting the threat from current and near-future ozone pollution to clover in pasture. Environ Pollut 189:111–117

    CAS  PubMed  Google Scholar 

  • Hirsch AM (1992) Developmental biology of legume nodulation. New Phytol 122:211–237

    PubMed  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2013) Working Group I contribution to the IPCC fifth assessment report “Climate change 2013: the physical science basis”. Final Draft Underlying Scientific-Technical Assessment

    Google Scholar 

  • Iqbal M, Abdin M, Mahmooduzzafar Z, Yunus M, Agrawal M (1996) Resistance mechanisms in plants against air pollution. In: Iqbal M, Yunus M (eds) Plant response to air pollution. Wiley, New York, pp 195–240

    Google Scholar 

  • Jimenez A, Hernandez JA, del Rio LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114(1):275–284

    Google Scholar 

  • Kudapa H, Ramalingam A, Nayakoti S (2013) Functional genomics to study stress responses in crop legumes: progress and prospects. Funct Plant Biol 40:1221–1233

    CAS  PubMed  Google Scholar 

  • King BJ, Layzell DB, Canvin DT (1986) The role of dark carbon dioxide fixation in root nodules of soybean. Plant Physiol 81:200–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Google Scholar 

  • Layzell DB, Rainbird RM, Atkins CA, Pate JS (1979) Economy of photosynthate use in nitrogen-fixing legume nodules: observations on two contrasting symbioses. Plant Physiol 64:888–891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzini G, Saitanis C (2003) Ozone: a novel plant “pathogen”. In: Toppi LSD, Pawlik-Skowronska B (eds) Abiotic stress in plants, Springer Science + Business Media, Dordrecht pp 205–229

    Google Scholar 

  • Mantri N, Basker N, Ford R, Pang E, Pardeshi V (2013) The role of miRNAs in legumes with a focus on abiotic stress response. The Plant Genome. https://doi.org/10.3835/plantgenome2013.05.0013

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Climate change 2007: The physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change Global Climate Projections. Cambridge University Press, Cambridge, UK/New York, pp 747–846

    Google Scholar 

  • Miller PR, McConkey BG, Clyton GW (2002) Pulse crop adaptation in Northern Great Plains. Agron J 94:261–272

    Google Scholar 

  • Mishra AK, Agrawal SB (2015) Biochemical and physiological characteristics of tropical mung bean (Vigna radiata L.) cultivars against chronic ozone stress: an insight to cultivar-specific response. Protoplasma 252:797–811

    CAS  PubMed  Google Scholar 

  • Minchin FR, Pate JS (1973) The carbon balance of a legume and the functional economy of its root nodules. J. Exp. Bot. 24: 259–271.Noctor G, Foyer CH (1998) Ascorbate and glutathione: kee** active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Google Scholar 

  • Morgan PB, Ainsworth EA, Long SP (2003) How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ 26:1317–1328

    Google Scholar 

  • Nakamura H, Saka H (1978) Photochemical oxidants injury in rice plants. III. Effect of ozone on physiological activities in rice plants. Jpn J Crop Sci 47:704–714

    Google Scholar 

  • Noctor G, Foyer C (1998) Ascorbate and glutathione: kee** active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49(1):249–279

    Google Scholar 

  • Park JI, Grant CM, Davies MJ, Dawes IW (1998) The cytoplasmic Cu, Zn superoxide dismutase of Saccharomyces cerevisiae is required for resistance to freeze-thaw stress generation of free radicals during freezing and thawing. J Biol Chem 273:22921–22928

    CAS  PubMed  Google Scholar 

  • Pausch RC, Mulchi CL, Lee EH, Meisinger JJ (1996) Use of 13C and 15N isotopes to investigate O3 eff ects on C and N metabolism in soybeans: Part II. Nitrogen uptake, fi xation, and partitioning. Agric Ecosyst Environ 60(1):61–69

    Google Scholar 

  • Pellegrini E, Francini A, Lorenzini G, Nali C (2011) PSII photochemistry and carboxylation efficiency in Liriodendron tulipifera under ozone exposure. Environ Exp Bot 70(2–3):217–226

    Google Scholar 

  • Polle A, Wieser G, Havranek WM (1995) Quantification of ozone influx and apoplastic ascorbate content in needles of Norway spruce trees (Piceaabies L., Karst.) at high altitude. Plant. Cell Environ 18:681–688

    CAS  Google Scholar 

  • Pinto E, Sigaud-Kutner TCS, Leitão MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018

    CAS  Google Scholar 

  • Rai R, Agrawal M, Choudhary KK, Agrawal SB, Lisa Emberson, Büker P (2015) Application of ethylene diurea (EDU) in assessing the response of a tropical soybean cultivar to ambient O3: nitrogen metabolism, antioxidants, reproductive development and yield. Ecotoxicol Environ Safety 112:29–38

    CAS  PubMed  Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in arabidopsis: the role of salicylic acid. Plant J 17:603–614

    CAS  PubMed  Google Scholar 

  • Rees DC, Tezcan FA, Haynes CA, Walton MY, Andrade S, Einsle O, Howard JB (2005) Structural basis of biological nitrogen fixation. Philos Trans R Soc A 363(1829):971–984

    Google Scholar 

  • Reid CD, Fiscus EL, Burkey KO (1998) Combined effects of chronic ozone and elevated CO2 on Rubisco activity and leaf components in soybean (Glycine max). J Exp Botany 49:1999–2011

    CAS  Google Scholar 

  • Reid CD, Fiscus EL (1998) Effects of elevated CO2 and/or ozone on limitations to CO2 assimilation in soybean (Glycine max). J Exp Botany 49:885

    CAS  Google Scholar 

  • Sandermann H Jr, Ernst D, Heller W, Langebartels C (1998) Ozone: an abiotic elicitor of plant defense reactions. Trends Plant Sci 3(2):47–50

    Google Scholar 

  • Samuel MA, Miles GP, Ellis BE (2000) Ozone treatment rapidly activates MAP kinase signalling in plants. Plant J 22(4):367–376

    Google Scholar 

  • Singh S, Agrawal SB (2011) Ambient ozone and two black gram cultivars: an assessment of amelioration by the use of ethylenediurea. Acta Physiologia Plantarum 33:2399–2411

    Google Scholar 

  • Singh S, Agrawal SB, Agrawal M (2015) Responses of pea plants to elevated UV-B radiation at varying nutrient levels: N-metabolism, carbohydrate pool, total phenolics and yield. Funct Plant Biol 42(11):1045–1056

    Google Scholar 

  • Swanson ES, Thomson WW, Mudd JB (1973) The effect of ozone on leaf cell membranes. Can J Bot 51(6):1213–1219

    Google Scholar 

  • The Royal Society (2008) Ground-level Ozone in the 21st century: Future trends, impacts and policy implications. Royal society policy document 15/08, RS1276

    Google Scholar 

  • Scandalios JG, Guan L, Polidoros AN (1997) Catalase in plants: gene structure, properties, regulation and expression. In: Scandalios JG (ed) Oxidative stress and molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 343–406

    Google Scholar 

  • Serbinova EA, Packer L (1994) Antioxidant properties of α-tocopherol and α tocotrienol. Methods Enzymol 234:354–366

    CAS  PubMed  Google Scholar 

  • Smirnoff N (2000) Ascorbate biosynthesis and function in photoprotection. Philos Trans R Soc Lond B Biol Sci 355:1455–1464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun JD, Feng ZZ, Ort DR (2014) Impacts of rising tropospheric ozone on photosynthesis and metabolite levels on field grown soybean. Plant Sci 226:147–161

    CAS  PubMed  Google Scholar 

  • Taylor GE Jr, Tingey DT, Ratsch HC (1982) Ozone Flux In Glycine Max (L.) Merr. Sites of regulation and relationship to leave injury. Oecologia 53:179–186

    PubMed  Google Scholar 

  • Tetteh R, Yamaguchi M, Wada Y, Funada R, Izuta T (2015) Effects of ozone on growth, net photosynthesis and yield of two African varieties of Vigna unguiculata. Environ Pollut 196:230–238

    CAS  PubMed  Google Scholar 

  • Tingey DT, Hogsett WE, Rodecap KD, Lee EH, Moser TJ (1994) The impact of O3 on leaf construction cost and carbon isotope discrimination. Essener Ökologische Schriften 4:195–206

    Google Scholar 

  • Toker C, Yadav SS (2010) Legume cultivars for stress environments. In: Yadav SS, McNeil DL, Redden R, Patil SA (eds) Climate change and management of cool season grain legume crops. Springer, Dordrecht, pp 351–376

    Google Scholar 

  • Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64(1):781–805. https://doi.og/10.1146/annurev-arplant-050312-120235http://doi.og/10.1146/annurev-arplant-050312-120235

  • Umponstira C, Kawayaskul S, Chuchaung S, Homhaul W (2009) Effect of ozone on nitrogen fixation, nitrogenase activity and rhizobium of cowpea (Vigna unguiculata (L.) Walp). Naresuan Univ J 17:213–220

    Google Scholar 

  • Varshney RK, Roorkiwal M, Nguyen HN (2013) Legume genomics: from genomic resources to molecular breeding. Plant Genome 6:1–7

    Google Scholar 

  • Welfare K, Yeo AR, Flowers TJ (2002) Effects of salinity and ozone, individually and in combination on the growth and ion contents of two chick pea (Cicer arietinum L.) varieties. Environ Pollut 120:397–403

    Google Scholar 

  • White J, Prell J, Euan KJ, Philip P (2007) Nutrient sharing between symbionts. Plant Physiol 144:604–614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winner EW, Coleman JS, Gillespie C, Mooney HA, Pell EJ (1991) Consequences of evolving resistance to air pollution. In: Taylor GE, Pitelka LF, Clegg MT (eds) Ecological genetics and air pollution. Springer, New York, pp 177–202

    Google Scholar 

  • Yadav DS, Rai R, Mishra AK, Nivedita Chaudhary, Mukherjee Arideep Agrawal SB, Madhoolika Agrawal (2019) ROS production and its detoxification in early and late sown cultivars of wheat under future O3 concentration. Sci Total Environ 659:200–210

    CAS  PubMed  Google Scholar 

  • Young PJ et al (2013) Pre-industrial to end 21st century projections of tropospheric ozone from the atmospheric chemistry and climate model intercomparison project (ACCMIP). Atmos Chem Phys 13:2063–2090

    Google Scholar 

  • Zahran HH (1999) Rhizobium-Legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Molecular Biol Rev 63:968–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Wang G, **aobing L, Feng Z (2014) Effects of elevated O3 exposure on seed yield, N concentration and photosynthesis of nine soybean cultivars (Glycine max (L.) Merr.) in Northeast China. Plant Sci 226:147–161

    Google Scholar 

  • Zhao TH, Cao YH, Wang Y, Dai Z, Liu YO, Liu B (2012) Effects of ozone stress on root morphology and reactive oxygen species metabolism in soybean roots. Soybean Sci 12:1

    Google Scholar 

  • Zhu H, Choi H, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author is thankful to funding agencies SERB, New Delhi, and CSIR, New Delhi, for providing research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, R. (2020). Threat Imposed by O3-Induced ROS on Defense, Nitrogen Fixation, Physiology, Biomass Allocation, and Yield of Legumes. In: Hasanuzzaman, M., Araújo, S., Gill, S. (eds) The Plant Family Fabaceae. Springer, Singapore. https://doi.org/10.1007/978-981-15-4752-2_19

Download citation

Publish with us

Policies and ethics

Navigation