Chlorogenic, Caffeic, and Ferulic Acids and Their Derivatives in Foods

  • Reference work entry
  • First Online:
Handbook of Dietary Phytochemicals

Abstract

Chlorogenic (CGAs), caffeic (CA), and ferulic acids (FA) are ubiquitously exist in plant foods, especially in coffee which is the most consumed beverages with fascinating economic, botanical, and historical significances. In the recent 20 years, there was an increase of interest in the health benefits of coffee in which CGAs, CA, and FA are considered important contributors for the bioactivities. Numerous scientific evidences exhibit that these phenolic components render a number of diverse biological activities including antioxidant, antimicrobial, anti-inflammatory, antiviral, anti-carcinogenicity, and antiaging effects. They are used as functional component in foods and various commercial products. This chapter reviewed the bioactive constituents, bioavailability, and metabolism of CGAs, CA, and FA and their derivatives in food, especially in coffee. We also summarized the biological activities of these phenolic acids in animal and human studies along with their toxicity and side effects, application in food, marketing products, as well as related patents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adam A, Crespy V, Levrat-Verny MA, Leenhardt F, Leuillet M, Demigne C, Remesy C (2002) The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. J Nutr 132:1962–1968

    Article  CAS  PubMed  Google Scholar 

  • Alves MM, Goncalves MP, Rocha CMR (2017) Effect of ferulic acid on the performance of soy protein isolate-based edible coatings applied to fresh-cut apples. LWT Food Sci Technol 80:409–415

    Article  CAS  Google Scholar 

  • Andreasen MF, Kroon PA, Williamson G, Garcia-Conesa MT (2001) Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals. J Agric Food Chem 49:5679–5684

    Article  CAS  PubMed  Google Scholar 

  • Andres-Lacueva C, Medina-Remon A, Llorach R, Urpi-Sarda M, Khan N, Chiva-Blanch G, Zamora-Ros R, Rotches-Ribalta M, Lamuela-Raventos RM (2010) Phenolic compounds: chemistry and occurrence in fruits and vegetables. In: de la Rosa L. A. , Alvarez-Parrilla E and González-Aguilar G. A. (eds) Fruit and vegetable phytochemicals: Chemistry, nutritional value and stability, Wiley-Blackwell, Oxford, New Jersey, 53–80

    Google Scholar 

  • Azuma K, Ippoushi K, Nakayama M, Ito H, Higashio H, Terao J (2000) Absorption of chlorogenic acid and caffeic acid in rats after oral administration. J Agric Food Chem 48:5496–5500

    Article  CAS  PubMed  Google Scholar 

  • Bagchi D, Moriyama H, Swaroop A (2016) Green coffee bean extract in human health. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Bagdas D, Etoz BC, Gul Z, Ziyanok S, Inan S, Turacozen O, Gul NY, Topal A, Cinkilic N, Tas, S, Ozyigit MO (2015) In vivo systemic chlorogenic acid therapy under diabetic conditions: wound healing effects and cytotoxicity/genotoxicity profile. Food Chem. Toxicol 81:54–61

    Google Scholar 

  • Bao L, Li J, Zha D, Zhang L, Gao P, Yao T, Wu X (2018) Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-ĸB pathways. Int Immunopharmacol 54:245–253

    Article  CAS  PubMed  Google Scholar 

  • Barbieri R, Coppo E, Marchese A, Daglia M, Sobarzo-Sanchez E, Nabavi SF, Nabavi SM (2017) Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity. Microbiol Res 196:44–68

    Article  CAS  PubMed  Google Scholar 

  • Bobillo C, Finlayson G, Martínez A, Fischman D, Beneitez A, Ferrero AJ, Fernádez BE, Mayer MA (2016) Short-term effects of a green coffee extract, Garcinia cambogia, and L-carnitine-containing chewing gum on snack intake and appetite regulation. Eur J Nutr 57:607–615

    Article  PubMed  CAS  Google Scholar 

  • Bourne L, Paganga G, Baxter D, Hughes P, Rice-Evans C (2000) Absorption of ferulic acid from low-alcohol beer. Free Radic Res 32:273–280

    Article  CAS  PubMed  Google Scholar 

  • Butiuk AP, Martos MA, Adachi O, Hours RA (2016) Study of the chlorogenic acid content in yerba mate (Ilex paraguariensis St. Hil.): Effect of plant fraction, processing step and harvesting season. J Appl Res Med Aroma 3:27–33

    Google Scholar 

  • Butt MS, Sultan MT (2011) Coffee and its consumption: benefits and risks. Crit Rev Food Sci Nutr 51:363–373

    Article  CAS  PubMed  Google Scholar 

  • Cadona FC, Weis GCC, Assmann CE, de Oliveira AA, Bonadiman BDSR, Machado AK, Montano MAE, da Cruz IBM (2019) Functional and medicinal properties of caffeine-based common beverages. In: Caffeinated and cocoa based beverages. Woodhead Publishing, Sawston, Cambridge, UK, pp 1–46.

    Google Scholar 

  • Campa CL, Mondolot L, Rakotondravao A, Bidel LPR, Gargadennec A, Couturon E, La Fisca P, Rakotomalala JJ, Jay-Allemand C, Davis AP (2012) A survey of mangiferin and hydroxycinnamic acid ester accumulation in coffee (Coffea) leaves: biological implications and uses. Ann Bot 110:595–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao PC, Hsu CC, Yin MC (2009) Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice. Nutr Metab 6:33–41

    Article  CAS  Google Scholar 

  • Chauhan PS, Satti NK, Sharma P, Sharma VK, Suri KA, Bani S (2012) Differential effects of chlorogenic acid on various immunological parameters relevant to rheumatoid arthritis. Phytother Res 26:1156–1165

    Article  CAS  PubMed  Google Scholar 

  • Chaves-Ulate E, Esquivel-Rodríguez P (2019) Chlorogenic acids present in coffee: antioxidant and antimicrobial capacity. Agron Mesoam 30:299–311

    Article  Google Scholar 

  • Chen X (2019) A review on coffee leaves: phytochemicals, bioactivities and applications. Crit Rev Food Sci Nutr 59:1008–1025

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Becker T, Qian F, Ring J (2014) Beer and beer compounds: physiological effects on skin health. J Eur Acad Dermatol 28:142–150

    Article  CAS  Google Scholar 

  • Chen J, Li Y, Yu B, Chen D, Mao X, Zheng P, Luo J, He J (2018a) Dietary chlorogenic acid improves growth performance of weaned pigs through maintaining antioxidant capacity and intestinal digestion and absorption function. J Anim Sci 96:1108–1118

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Ma Z, Kitts DD (2018b) Effects of processing method and age of leaves on phytochemical profiles and bioactivity of coffee leaves. Food Chem 249:143–153

    Article  CAS  PubMed  Google Scholar 

  • Cheng CY, Su SY, Tang NY, Ho TY, Chiang SY, Hsieh CL (2008) Ferulic acid provides neuroprotection against oxidative stress-related apoptosis after cerebral ischemia/reperfusion injury by inhibiting ICAM-1 mRNA expression in rats. Brain Res 1209:136–150

    Google Scholar 

  • Cheng BA, Liu XR, Gong H, Huan K (2011) Coffee components inhibit amyloid formation of human islet amyloid polypeptide in vitro: possible link between coffee consumption and diabetes mellitus. J Agric Food Chem 59:13147–13155

    Article  CAS  PubMed  Google Scholar 

  • Cho AS, Jeon SM, Kim MJ, Yeo J, Seo KI, Choi MS, Lee MK (2010) Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol 48:937–943

    Article  CAS  PubMed  Google Scholar 

  • Choi BK, Park SB, Lee DR, Lee HJ, ** YY, Yang SH, Suh JW (2016) Green coffee bean extract improves obesity by decreasing body fat in high-fat diet-induced obese mice. Asian Pac J Trop Med 9:635–643

    Article  CAS  PubMed  Google Scholar 

  • Clifford MN (1999) Chlorogenic acids and other cinnamates–nature, occurrence and dietary burden. J Sci Food Agric 79(3):362–3723

    Article  CAS  Google Scholar 

  • Clifford MN (2004) Diet-derived phenols in plasma and tissues and their implications for health. Planta Med 70:1103–1114

    Article  CAS  PubMed  Google Scholar 

  • Clifford MN, Johnston KL, Knight S, Kuhnert N (2003) Hierarchical scheme for LC-MSn identification of chlorogenic acids. J Agric Food Chem 51:2900–2911

    Article  CAS  PubMed  Google Scholar 

  • Dariusz D, Urszula GD, Lukasz P, Renata R, Michal S, Andrzej K, Stanislaw R (2015) Ground green coffee beans as a functional food supplement – preliminary study. LWT Food Sci Technol 63:691–699

    Article  CAS  Google Scholar 

  • Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013) Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18:1818–1892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dellalibera O, Lemaire B, Lafay S (2006) Le Svetol®, un extrait de café vert décaféiné, induituneperte de poids et augmente le ratio masse maigre sur masse grasse chez des volontairesen surcharge ponderale. Phytothérapie 4:194

    Article  Google Scholar 

  • Dorea JG, da Costa THM (2005) Is coffee a functional food? Br J Nutr 93:773–782

    Article  CAS  PubMed  Google Scholar 

  • Espindola KMM, Ferreira RG, Narvaez LEM, Rosario ACRS, da Silva AHM, Silva AGB, Vieira APO, Monteiro MC (2019) Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front Oncol 9:541–551

    Article  PubMed  PubMed Central  Google Scholar 

  • Farah A, de Lima JP (2019) Consumption of chlorogenic acids through coffee and health implications. Beverages 5:11–40

    Article  CAS  Google Scholar 

  • Farah A, Donangelo CM (2006) Phenolic compounds in coffee. Braz J Plant Physiol 18:23–36

    Article  CAS  Google Scholar 

  • Farah A, Monteiro M, Donangelo CM, Lafay S (2008) Chlorogenic acids from green coffee extract are highly bioavailable in humans. J Nutr 138:2309–2315

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Mazza G, Isolation (1994) Quantitation and Distribution of Simple and Acylated Anthocyanins in Lowbush and Highbush Blueberries. J Food Sci 59:1057–1059

    Google Scholar 

  • Ghaisas MM, Kshirsagar SB, Sahane RS (2014) Evaluation of wound healing activity of ferulic acid in diabetic rats. Int Wound J 11:523–532

    Article  PubMed  Google Scholar 

  • Gohil KJ, Kshirsagar SB, Sahane RS (2012) Ferulic acid-comprehensive pharmacology of important bioflavonoid. Int J Pharm Sci Res 3:700–710

    CAS  Google Scholar 

  • Gokcen BB, Sanlier N (2019) Coffee consumption and disease correlations. Crit Rev Food Sci Nutr 59:336–348

    Article  CAS  PubMed  Google Scholar 

  • Gonthier MP, Remesy C, Scalbert A, Cheynier V, Souquet JM, Poutanen K, Aura AM (2006) Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Biomed Pharmacother 60:536–540

    Article  CAS  PubMed  Google Scholar 

  • Henry-Vitrac C, Ibarra A, Roller M, Merillon JM, Vitrac X (2010) Contribution of chlorogenic acids to the inhibition of human hepatic glucose-6-phosphatase activity in vitro by svetol, a standardized decaffeinated green coffee extract. J. Agric Food Chem 58:4141–4144

    Article  CAS  Google Scholar 

  • Hernandez T, Ausin N, Bartolome B, Bengoechea L, Estrella I, Gomez-Cordoves C (1997) Variations in the phenolic composition of fruit juices with different treatments. Z Lebensm Unters For 204:151–155

    Google Scholar 

  • Higdon JV, Frei B (2006) Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr 46:101–123

    Article  CAS  PubMed  Google Scholar 

  • Hoelzl C, Knasmuller S, Wagner KH, Elbling L, Huber W, Kager N, Ferk F, Ehrlich V, Nersesyan A, Neubauer O, Desmarchelier A, Marin-Kuan M, Delatour T, Verguet C, Bezencon C, Besson A, Grathwohl D, Simic T, Kundi M, Schilter B, Cavin C (2010) Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules. Mol Nutr Food Res 54:1722–1733

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Gonthier M, Manach C, Morand C, Mennen L, Remesy C, Scalbert A (2005) Polyphenol levels in human urine after intake of six different polyphenol-rich beverages. Br J Nutr 94:500–509

    Article  CAS  PubMed  Google Scholar 

  • Johnston KL, Clifford MN, Morgan LM (2003) Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr 78:728–733

    Article  CAS  PubMed  Google Scholar 

  • Karakaya S (2004) Bioavailability of phenolic compounds. Crit Rev Food Sci Nutr 44:453–464

    Article  CAS  PubMed  Google Scholar 

  • Karthikesan K, Pari L, Menon VP (2010) Protective effect of tetrahydrocurcumin and chlorogenic acid against streptozotocin-nicotinamide generated oxidative stress induced diabetes. J Funct Foods 2:134–142

    Article  CAS  Google Scholar 

  • Kim HY, Park J, Lee KH, Lee DU, Kwak JH, Kim YS, Lee SM (2011) Ferulic acid protects against carbon tetrachloride-induced liver injury in mice. Toxicology 282:104–111

    Article  CAS  PubMed  Google Scholar 

  • Kishida K, Matsumoto H (2019) Urinary excretion rate and bioavailability of chlorogenic acid, caffeic acid, p-coumaric acid, and ferulic acid in non-fasted rats maintained under physiological conditions. Heliyon, 5:e02708–e02712

    Google Scholar 

  • Koga M, Nakagawa S, Kato A, Kusumi I (2019) Caffeic acid reduces oxidative stress and microglial activation in the mouse hippocampus. Tissue and Cell 60:14–20

    Google Scholar 

  • Konishi Y, Hitomi Y, Yoshida M, Yoshioka E (2005) Pharmacokinetic study of caffeic and rosmarinic acids in rats after oral administration. J Agric Food Chem 53:4740–4746

    Article  CAS  PubMed  Google Scholar 

  • Konishi Y, Zhao Z, Shimizu M (2006) Phenolic acids are absorbed from the rat stomach with different absorption rates. J Agric Food Chem 54:7539–7543

    Article  CAS  PubMed  Google Scholar 

  • Koriem KMM, Soliman RE (2014) Chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine. J Toxicol 583494:1–10

    Article  CAS  Google Scholar 

  • Kozuma K, Tsuchiya S, Kohori J, Hase T, Tokimitsu I (2005) Antihypertensive effect of green coffee bean extract on mildly hypertensive subjects. Hypertens Res 28:711–718

    Article  CAS  PubMed  Google Scholar 

  • Lafay S, Gil-Izquierdo A (2008) Bioavailability of phenolic acids. Phytochem Rev 7:301–311

    Article  CAS  Google Scholar 

  • Leon D, Medina S, Londono-Londono J, Jimenez-Cartagena C, Ferreres F, Gil-Izquierdo A (2019) Anti-inflammatory activity of coffee. In: Coffee. RSC Publishing, Cambridge, UK, pp 57–74

    Google Scholar 

  • Li Y, Shen D, Tang X, Li X, Wo D, Yan H, Song R, Feng J, Li P, Zhang J, Li J (2014) Chlorogenic acid prevents isoproterenol-induced hypertrophy in neonatal rat myocytes. Toxicol Lett 226:257–263

    Article  CAS  PubMed  Google Scholar 

  • Liang N, Kitts DD (2016) Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 8:16–36

    Article  CAS  Google Scholar 

  • Liu Y, Qiu S, Wang L, Zhang N, Shi Y, Zhou H, Liu X, Shao L, Liu X, Chen J, Hou M (2019) Reproductive and developmental toxicity study of caffeic acid in mice. Food Chem Toxicol 123:106–112

    Article  CAS  PubMed  Google Scholar 

  • Lou Z, Wang H, Zhu S, Ma C, Wang Z (2011) Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci 76:M398–M403

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Gao M, Liu D (2015) Chlorogenic acid improves high fat diet-induced hepatic steatosis and insülin resistance in mice. Pharm Res 32:1200–1209

    Article  CAS  PubMed  Google Scholar 

  • Macheiner L, Schmidt A, Schreiner M, Mayer HK (2019) Green coffee infusion as a source of caffeine and chlorogenic acid. J Food Compos Anal 84:103307

    Article  CAS  Google Scholar 

  • Mancuso C, Santangelo R (2014) Ferulic acid: pharmacological and toxicological aspects. Food Chem Toxicol 65:185–195

    Article  CAS  PubMed  Google Scholar 

  • Marin L, Miguelez EM, Villar CJ, Lombo F (2015) Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int. Article ID 905215, 1–18

    Google Scholar 

  • Marks SC, Mullen W, Crozier A (2007) Flavonoid and chlorogenic acid profiles of English cider apples. J Sci Food Agric 87:719–728

    Google Scholar 

  • Martinez-Tome M, Jiménez-Monreal AM, Garcia-Jimenez L, Almela L, Garcia-Diz L, Mariscal-Arcas M, Murcia MA (2011) Assessment of antimicrobial activity of coffee brewed in three different ways from different origins. Eur Food Res Technol 233:497–505

    Article  CAS  Google Scholar 

  • Maruf AA, Lip HY, Wong H, O’Brien PJ (2015) Protective effects of ferulic acid and related polyphenols against glyoxal- or methylglyoxal-induced cytotoxicity and oxidative stress in isolated rat hepatocytes. Chem Biol Interact 234:96–104

    Article  PubMed  CAS  Google Scholar 

  • Matboli M, Eissa S, Ibrahim D, Hegazy MGA, Imam SS, Habib EK (2017) Caffeic acid attenuates diabetic kidney disease via modulation of autophagy in a high-fat diet/streptozotocin- induced diabetic rat. Sci Rep 7:2263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mattila P, Pihlava JM, Hellstrom J (2005) Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J Agr Food Chem 53:8290–8295

    Google Scholar 

  • Medina I, González MJ, Iglesias J, Hedges ND (2009) Effect of hydroxycinnamic acids on lipid oxidation and protein changes as well as water holding capacity in frozen minced horse mackerel white muscle. Food Chem 114:881–888

    Article  CAS  Google Scholar 

  • Micard V, Grabber JH, Ralph J, Renard, CMGC, Thibault JF (1997) Dehydrodiferulic acids from sugar-beet pulp. Phytochemistry 44:1365–1368

    Google Scholar 

  • Monteiro M, Farah A, Perrone D, Trugo LC, Donangelo C (2007) Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans. J Nutr 137:2196–2201

    Article  CAS  PubMed  Google Scholar 

  • Moridani MY, Scobie H, Jamshidzadeh A, Salehi P, O’Brien PJ (2001) Caffeic acid, chlorogenic acid, and dihydrocaffeic acid metabolism: glutathione conjugate formation. Drug Metab Dispos 29:1432–1439

    CAS  PubMed  Google Scholar 

  • Mu HN, Li Q, Pan CS, Liu YY, Yan L, Hu BH, Sun K, Chang X, Zhao XR, Fan JY, Han JY (2015) Caffeic acid attenuates rat liver reperfusion injury through sirtuin 3-dependent regulation of mitochondrial respiratory chain. Free Radical Bio Med 85:237–249

    Article  CAS  Google Scholar 

  • Nankar R, Prabhakar PK, Doble M (2017) Hybrid drug combination: combination of ferulic acid and metformin as anti-diabetic therapy. Phytomedicine 37:10–13

    Article  CAS  PubMed  Google Scholar 

  • Nakatani N, Kayano S, Kikuzaki H, Sumino K, Katagiri K, Mitani T (2000) Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in prune (Prunus domestica L.). J Agric Food Chem 48:5512–5516

    Google Scholar 

  • Narasimhan A, Chinnaiyan M, Karundevi B (2015) Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat. Appl Physiol Nutr Me 40:769–781

    Article  CAS  Google Scholar 

  • Narita Y, Inouye K (2015) Chlorogenic acids from coffee. In: Preedy V (ed) Coffee in health and disease prevention. Elsevier, Amsterdam, pp 189–199

    Chapter  Google Scholar 

  • Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M, Ahmad F, Babazadeh D, Fang Fang X, Modarresi-Ghazani F, WenHua L, **aoHui Z (2018) Chlorogenic acid (CGA): a pharmacological review and call for further research. Biomed Pharmacother 97:67–74

    Article  CAS  PubMed  Google Scholar 

  • Neelam AK, Sharma KK (2019) Phenylpropanoids and its derivatives: biological activities and its role in food, pharmaceutical and cosmetic industries. Crit Rev Food Sci Nutr 1–21. https://doi.org/10.1080/10408398.2019.1653822

  • Nile SH, Ko EY, Kim DH, Keum YS (2016) Screening of ferulic acid related compounds as inhibitors of xanthine oxidase and cyclooxygenase-2 with anti-inflammatory activity. Rev Bras Farm 26:50–55

    Article  CAS  Google Scholar 

  • Nishizawa C, Ohta T, Egashira Y, Sanada H (1998) Ferulic acid contents in typical cereals (in Japanese with abstract in English). Nippon Shokuhin Kaga 45:499–503

    Google Scholar 

  • Olthof MR, Hollman PC, Katan MB (2001) Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr 131:66–71

    Article  CAS  PubMed  Google Scholar 

  • Olthof MR, Hollman PC, Zock PL, Katan MB (2001b) Consumption of high doses of chlorogenic acid, present in coffee, or of black tea increases plasma total homocysteine concentrations in humans. Am J Clin Nutr 73:532–538

    Article  CAS  PubMed  Google Scholar 

  • Ong KW, Hsu A, Tan BKH (2013) Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Bio Chem Pharmacol 85:1341–1351

    Article  CAS  Google Scholar 

  • Pari L, Karthikesan K, Menon VP (2010) Comparative and combined effect of chlorogenic acid and tetrahydrocurcumin on antioxidant disparities in chemical induced experimental diabetes. Mol Cell Biochem 341:109–117

    Article  CAS  PubMed  Google Scholar 

  • Park B (2009) 5-Caffeoylquinic acid and caffeic acid orally administered suppress P-selectin expression on mouse platelets. J Nutr Biochem 20:800–805

    Article  CAS  PubMed  Google Scholar 

  • Rechner AR, Spencer JP, Kuhnle G, Hahn U, Rice-Evans CA (2001) Novel biomarkers of the metabolism of caffeic acid derivatives in vivo. Free Radic Biol Med 30:1213–1222

    Article  CAS  PubMed  Google Scholar 

  • Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L, Thakkar SK, da Silva PM (2013) Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br J Clin Pharmacol 75:588–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revuelta-Iniesta R, Al-Dujaili EA (2014) Consumption of green coffee reduces blood pressure and body composition by influencing 11β-HSD1 enzyme activity in healthy individuals: a pilot crossover study using green and black coffee. Biomed Res Int. Article ID 482704, 1–9

    Google Scholar 

  • Risch B, Herrmann K (1988) Hydroxycinnamic acid derivatives in citrus fruits. Z Lebensm Unters For 187:530–534

    Google Scholar 

  • Rohit U, Rao LJM (2013) An outlook on chlorogenic acids – occurrence, chemistry, technology, and biological activities. Crit Rev Food Sci Nutr 53:968–984

    Article  CAS  Google Scholar 

  • Saeed M, Alagawany M, Fazlani SA, Kalhoro SA, Naveed M, Ali N, Arain M, Chao S (2019) Health promoting and pharmaceutical potential of ferulic acid for the poultry industry. World Poultry Sci J75:83–92

    Article  Google Scholar 

  • Sakakibara H, Honda Y, Nakagawa S, Ashida H, Kanazawa K (2003) Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J Agr Food Chem 51:571–581

    Google Scholar 

  • Sanlier N, Atik A, Atik I (2019) Consumption of green coffee and the risk of chronic diseases. Crit Rev Food Sci Nutr 59:2573–2585

    Article  CAS  PubMed  Google Scholar 

  • Seczyk L, Swieca M, Gawlik-Dziki U (2017) Soymilk enriched with green coffee phenolics antioxidant and nutritional properties in the light of phenolics-food matrix interactions. Food Chem 223:1–7

    Article  CAS  PubMed  Google Scholar 

  • Slimestad R, Verheul M (2009) Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) cultivars. J Sci Food Agr 89:1255–1270

    Google Scholar 

  • Spanos GA, Wrolstad RE (1992) Phenolics of apple, pear, and white grape juices and their changes with processing and storage. A review. J Agric Food Chem 40:1478–1487

    Google Scholar 

  • Stalmach A, Mullen W, Barron D, Uchida K, Yokota T, Cavin C, Steiling H, Williamson G, Crozier A (2009) Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: identification of biomarkers of coffee consumption. Drug Metab Dispos 37:1749–1758

    Article  CAS  PubMed  Google Scholar 

  • Stefanello N, Schmatz R, Pereira LB, Schetinger MRC (2014) Effects of chlorogenic acid, caffeine, and coffee on behavioral and biochemical parameters of diabetic rats. Mol Cell Biochem 388:277–286

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Quiroz ML, Taillefer W, Lopez-Mendez EM, Gonzalez-Rios O, Villenueve P, Figuero-Espinoza MC (2013) Antibacterial activity and antifungal and anti-mycotoxigenic activities against Aspergillus flavus and A. ochraceus of green coffee chlorogenic acids and dodecyl chlorogenates. J Food Saf 33:360–368

    Article  CAS  Google Scholar 

  • Sultana R, Ravagna A, Mohmmad-Abdul H, Calabrese V, Butterfield DA (2005) Ferulic acid ethyl ester protects neurons against amyloid β-peptide (1–42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. J Neurochem 92:749–758

    Article  CAS  PubMed  Google Scholar 

  • Sun ZX, Liu S, Zhao ZQ, Su RQ (2014) Protective effect of chlorogenic acid against carbon tetrachloride-induced acute liver damage in rats. Chin Herb Med 6:36–41

    Article  CAS  Google Scholar 

  • Tajik N, Tajik M, Mack I, Enck P (2017) The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur J Nutr 56:2215–2244

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Kashimura M, Koiso H, Kuda T, Kimura B (2013) Use of ferulic acid as a novel candidate of growth inhibiting agent against Listeria monocytogenes in ready-to-eat food. Food Control 33:244–248

    Article  CAS  Google Scholar 

  • Tee-Ngam P, Nunant N, Rattanarat P, Siangproh W, Chailapakul O (2013) Simple and rapid determination of ferulic acid levels in food and cosmetic samples using paper-based platforms. Sensors 13:13039–13053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thom E (2007) The effect of chlorogenic acid enriched coffee on glucose absorption in healthy volunteers and its effect on body mass when used long term in overweight and obese people. J Int Med Res 35:900–908

    Article  CAS  PubMed  Google Scholar 

  • Tong P, Chen S, Gao J, Li X, Wu Z, Yang A, Yuan J, Chen H (2018) Caffeic acid-assisted cross-linking catalyzed by polyphenol oxidase decreases the allergenicity of ovalbumin in a Balb/c mouse model. Food Chem Toxicol 111:275–283

    Article  CAS  PubMed  Google Scholar 

  • Van Dam RM (2008) Coffee consumption and risk of type 2 diabetes, cardiovascular diseases, and cancer. Appl Physiol Nutr Metab 33:1269–1283

    Article  PubMed  CAS  Google Scholar 

  • van Dam RM, Hu FB (2005) Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA 294:97–104

    Article  PubMed  Google Scholar 

  • Wan CW, Wong CNY, Pin WK, Wong MHY, Kwok CY, Chan RYK, Yu PHF, Chan SW (2013) Chlorogenic acid exhibits cholesterol lowering and fatty liver attenuating properties by up-regulating the gene expression of PPAR-α in hypercholesterolemic rats induced with a high-cholesterol diet. Phytother Res 27:545–551

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Ouyang J, Liu Y, Yang J, Wei L, Li K, Yang H (2004) Sodium ferulate inhibits atherosclerogenesis in hyperlipidemia rabbits. J Cardiovasc Pharmacol 43:549–554

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Arai Y, Mitsui Y, Kusaura T, Okawa W, Kajihara Y, Saito I (2006) The blood pressure-lowering effect and safety of chlorogenic acid from green coffee bean extract in essential hypertension. Clin Exp Hypertens 28:439–449

    Article  CAS  PubMed  Google Scholar 

  • Wianowska D, Gil M (2019) Recent advances in extraction and analysis procedures of natural chlorogenic acids. Phytochem Rev 18:273–302

    Article  CAS  Google Scholar 

  • Wong RH, Garg ML, Wood LG, Howe PR (2014) Antihypertensive potential of combined extracts of olive leaf, green coffee bean and beetroot: a randomized, double-blind, placebo-controlled crossover trial. Nutrients, 6:4881–4894

    Google Scholar 

  • Xu D, Hu L, **a X, Song J, Li L, Song E, Song Y (2014) Tetrachlorobenzoquinone induces acute liver injury, up-regulates HO-1 and NQO1 expression in mice model: the protective role of chlorogenic acid. Environ Toxicol 37:1212–1220

    CAS  Google Scholar 

  • Yang C, Tian Y, Zhang Z, Xu F, Chen Y (2007) High-performance liquid chromatography–electrospray ionization mass spectrometry determination of sodium ferulate in human plasma. J Pharmaceut Biomed 43:945–950

    Article  CAS  Google Scholar 

  • Yu SH, Hsieh HY, Pang JC, Tang DW, Shih CM, Tsai ML, Tsai YC, Mi FL (2013) Active films from water-soluble chitosan/cellulose composites incorporating releasable caffeic acid for inhibition of lipid oxidation in fish oil emulsions. Food Hydrocoll 32:9–19

    Article  CAS  Google Scholar 

  • Zatorski H, Sałaga M, Zielinska M, Piechota-Polanczyk A, Owczarek K, Kordek R, Lewandowska U, Chen C, Fichna J (2015) Experimental colitis in mice is attenuated by topical administration of chlorogenic acid. Naunyn Schmiedeberg’s Arch Pharmacol 388:643–651

    Article  CAS  Google Scholar 

  • Zhao Z, Moghadasian MH (2008) Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem 109:691–702

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Egashira Y, Sanada H (2003) Ferulic acid sugar esters are recovered in rat plasma and urine mainly as the sulfoglucuronide of ferulic acid. J Nutr 133:1355–1361

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **umin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Manivel, P., Chen, X. (2021). Chlorogenic, Caffeic, and Ferulic Acids and Their Derivatives in Foods. In: **ao, J., Sarker, S.D., Asakawa, Y. (eds) Handbook of Dietary Phytochemicals. Springer, Singapore. https://doi.org/10.1007/978-981-15-4148-3_22

Download citation

Publish with us

Policies and ethics

Navigation