Pharmacogenomics of Anti-Infective Agents

  • Chapter
  • First Online:
Pharmacogenomics in Precision Medicine
  • 596 Accesses

Abstract

Ever since we know that the dissimilarities of medications are influenced by the in vivo process of the body, including absorption, distribution, metabolization, and excretion, great attentions have been paid on pharmacogenomic issues, trying to figure out the underlying mechanisms of drug response deviations. Personalized regimens based on pharmacogenomic testing increased the efficacy and decreased the toxicity of certain drugs; therefore, correct understandings and utilizations of gene screening are of great benefits in rational medication usages. This chapter mainly introduced the pharmacogenetic information of some anti-infective agents, ho** to provide some tips for clinicians and other medical care providers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lucena MI, Molokhia M, Shen Y, Urban TJ, Aithal GP, Andrade RJ, Day CP, Ruiz-Cabello F, Donaldson PT, Stephens C, Pirmohamed M, Romero-Gomez M, Navarro JM, Fontana RJ, Miller M, Groome M, Bondon-Guitton E, Conforti A, Stricker BHC, Carvajal A, Ibanez L, Yue Q-Y, Eichelbaum M, Floratos A, Pe'er I, Daly MJ, Goldstein DB, Dillon JF, Nelson MR, Watkins PB, Daly AK, Spanish DR, Spanish DILI Registry, EUDRAGENE, DILIN, DILIGEN, International SAEC (2011) Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology 141(1):338–347. https://doi.org/10.1053/j.gastro.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  2. Yanni SB, Annaert PP, Augustijns P, Bridges A, Gao Y, Benjamin DK Jr, Thakker DR (2008) Role of flavin-containing monooxygenase in oxidative metabolism of voriconazole by human liver microsomes. Drug Metab Dispos 36(6):1119–1125. https://doi.org/10.1124/dmd.107.019646

    Article  CAS  PubMed  Google Scholar 

  3. Caudle KE, Dunnenberger HM, Freimuth RR, Peterson JF, Burlison JD, Whirl-Carrillo M, Scott SA, Rehm HL, Williams MS, Klein TE, Relling MV, Hoffman JM (2017) Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet Med 19(2):215–223. https://doi.org/10.1038/gim.2016.87

    Article  PubMed  Google Scholar 

  4. Wang G, Lei HP, Li Z, Tan ZR, Guo D, Fan L, Chen Y, Hu DL, Wang D, Zhou HH (2009) The CYP2C19 ultra-rapid metabolizer genotype influences the pharmacokinetics of voriconazole in healthy male volunteers. Eur J Clin Pharmacol 65(3):281–285. https://doi.org/10.1007/s00228-008-0574-7

    Article  CAS  PubMed  Google Scholar 

  5. Weiss J, Ten Hoevel MM, Burhenne J, Walter-Sack I, Hoffmann MM, Rengelshausen J, Haefeli WE, Mikus G (2009) CYP2C19 genotype is a major factor contributing to the highly variable pharmacokinetics of voriconazole. J Clin Pharmacol 49(2):196–204. https://doi.org/10.1177/0091270008327537

    Article  CAS  PubMed  Google Scholar 

  6. He HR, Sun JY, Ren XD, Wang TT, Zhai YJ, Chen SY, Dong YL, Lu J (2015) Effects of CYP3A4 polymorphisms on the plasma concentration of voriconazole. Eur J Clin Microbiol Infect Dis 34(4):811–819. https://doi.org/10.1007/s10096-014-2294-5

    Article  CAS  PubMed  Google Scholar 

  7. Moriyama B, Obeng AO, Barbarino J, Penzak SR, Henning SA, Scott SA, Agundez J, Wingard JR, McLeod HL, Klein TE, Cross SJ, Caudle KE, Walsh TJ (2017) Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP2C19 and voriconazole therapy. Clin Pharmacol Ther 102(1):45–51. https://doi.org/10.1002/cpt.583

    Article  CAS  PubMed  Google Scholar 

  8. Akiyoshi T, Saito T, Murase S, Miyazaki M, Murayama N, Yamazaki H, Guengerich FP, Nakamura K, Yamamoto K, Ohtani H (2011) Comparison of the inhibitory profiles of itraconazole and cimetidine in cytochrome P450 3A4 genetic variants. Drug Metab Dispos 39(4):724–728. https://doi.org/10.1124/dmd.110.036780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ghosal A, Hapangama N, Yuan Y, Achanfuo-Yeboah J, Iannucci R, Chowdhury S, Alton K, Patrick JE, Zbaida S (2004) Identification of human UDP-glucuronosyltransferase enzyme(s) responsible for the glucuronidation of posaconazole (Noxafil). Drug Metab Dispos 32(2):267–271. https://doi.org/10.1124/dmd.32.2.267

    Article  CAS  PubMed  Google Scholar 

  10. Suh HJ, Yoon SH, Yu KS, Cho JY, Park SI, Lee E, Lee JO, Koh Y, Song KH, Choe PG, Kim ES, Bang SM, Kim HB, Kim I, Kim NJ, Song SH, Park WB, Oh MD (2018) The genetic polymorphism UGT1A4∗3 is associated with low posaconazole plasma concentrations in hematological malignancy patients receiving the oral suspension. Antimicrob Agents Chemother 62(7):e02230. https://doi.org/10.1128/aac.02230-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ellard GA (1976) Variations between individuals and populations in the acetylation of isoniazid and its significance for the treatment of pulmonary tuberculosis. Clin Pharmacol Ther 19(5 Pt 2):610–625. https://doi.org/10.1002/cpt1976195part2610

    Article  CAS  PubMed  Google Scholar 

  12. Parkin DP, Vandenplas S, Botha FJ, Vandenplas ML, Seifart HI, van Helden PD, van der Walt BJ, Donald PR, van Jaarsveld PP (1997) Trimodality of isoniazid elimination: phenotype and genotype in patients with tuberculosis. Am J Respir Crit Care Med 155(5):1717–1722. https://doi.org/10.1164/ajrccm.155.5.9154882

    Article  CAS  PubMed  Google Scholar 

  13. Azuma J, Ohno M, Kubota R, Yokota S, Nagai T, Tsuyuguchi K, Okuda Y, Takashima T, Kamimura S, Fujio Y, Kawase I (2013) NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics-based therapy. Eur J Clin Pharmacol 69(5):1091–1101. https://doi.org/10.1007/s00228-012-1429-9

    Article  CAS  PubMed  Google Scholar 

  14. **e HG, Xu ZH, Ou-Yang DS, Shu Y, Yang DL, Wang JS, Yan XD, Huang SL, Wang W, Zhou HH (1997) Meta-analysis of phenotype and genotype of NAT2 deficiency in Chinese populations. Pharmacogenetics 7(6):503–514

    Article  CAS  PubMed  Google Scholar 

  15. Chen B, Zhang WX, Cai WM (2006) The influence of various genotypes on the metabolic activity of NAT2 in a Chinese population. Eur J Clin Pharmacol 62(5):355–359. https://doi.org/10.1007/s00228-006-0110-6

    Article  CAS  PubMed  Google Scholar 

  16. Motta I, Calcagno A, Bonora S (2018) Pharmacokinetics and pharmacogenetics of anti-tubercular drugs: a tool for treatment optimization? Expert Opin Drug Metab Toxicol 14(1):59–82. https://doi.org/10.1080/17425255.2018.1416093

    Article  CAS  PubMed  Google Scholar 

  17. Chigutsa E, Visser ME, Swart EC, Denti P, Pushpakom S, Egan D, Holford NH, Smith PJ, Maartens G, Owen A, McIlleron H (2011) The SLCO1B1 rs4149032 polymorphism is highly prevalent in South Africans and is associated with reduced rifampin concentrations: dosing implications. Antimicrob Agents Chemother 55(9):4122–4127. https://doi.org/10.1128/aac.01833-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu S, Chen RX, Li J, Liu XM, Huang HB, Fu Q, Wang CX, Huang M, Li JL (2016) [Associations of SLCO1B1 polymorphisms with tacrolimus concentrations in Chinese renal transplant recipients]. Yao Xue Xue Bao 51(8):1240–1244

    Google Scholar 

  19. Sun Q, H-p L, Zheng R-j, Wang P, Z-b L, Sha W, H-p X (2017) Genetic polymorphisms of SLCO1B1, CYP2E1 and UGT1A1 and susceptibility to anti-tuberculosis drug-induced hepatotoxicity: a Chinese population-based prospective case–control study. Clin Drug Investig 37(3):1–12

    CAS  Google Scholar 

  20. Zhang Y, Chen LM, He M (2017) Hepatitis C virus in mainland China with an emphasis on genotype and subtype distribution. Virol J 14(1):41. https://doi.org/10.1186/s12985-017-0710-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peng J, Lu Y, Liu W, Zhu Y, Yan X, Xu J, Wang X, Wang Y, Liu W, Sun Z (2015) Genotype distribution and molecular epidemiology of hepatitis C virus in Hubei, Central China. PLoS One 10(9):e0137059. https://doi.org/10.1371/journal.pone.0137059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fu Y, Qin W, Cao H, Xu R, Tan Y, Lu T, Wang H, Tong W, Rong X, Li G, Yuan M, Li C, Abe K, Lu L, Chen G (2012) HCV 6a prevalence in Guangdong province had the origin from Vietnam and recent dissemination to other regions of China: phylogeographic analyses. PLoS One 7(1):e28006. https://doi.org/10.1371/journal.pone.0028006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, Heinzen EL, Qiu P, Bertelsen AH, Muir AJ, Sulkowski M, McHutchison JG, Goldstein DB (2009) Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461(7262):399–401. https://doi.org/10.1038/nature08309

    Article  CAS  PubMed  Google Scholar 

  24. Rallon NI, Soriano V, Naggie S, Restrepo C, Goldstein D, Vispo E, McHutchison J, Benito JM (2011) IL28B gene polymorphisms and viral kinetics in HIV/hepatitis C virus-coinfected patients treated with pegylated interferon and ribavirin. AIDS (London, England) 25(8):1025–1033. https://doi.org/10.1097/QAD.0b013e3283471cae

    Article  CAS  Google Scholar 

  25. Dong ZX, Zhou HJ, **ang XG, Guo SM, Zhuang Y, Zhao GD, **e Q (2015) IL28B genetic variations are associated with treatment response of patients with chronic hepatitis C in a Chinese Han population. J Dig Dis 16(2):90–97. https://doi.org/10.1111/1751-2980.12202

    Article  CAS  PubMed  Google Scholar 

  26. Muir AJ, Gong L, Johnson SG, Lee MT, Williams MS, Klein TE, Caudle KE, Nelson DR (2014) Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for IFNL3 (IL28B) genotype and PEG interferon-alpha-based regimens. Clin Pharmacol Ther 95(2):141–146. https://doi.org/10.1038/clpt.2013.203

    Article  CAS  PubMed  Google Scholar 

  27. Kohler JJ, Hosseini SH, Hoying-Brandt A, Green E, Johnson DM, Russ R, Tran D, Raper CM, Santoianni R, Lewis W (2009) Tenofovir renal toxicity targets mitochondria of renal proximal tubules. Lab Invest 89(5):513–519. https://doi.org/10.1038/labinvest.2009.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coca S, Perazella MA (2002) Rapid communication: acute renal failure associated with tenofovir: evidence of drug-induced nephrotoxicity. Am J Med Sci 324(6):342–344

    Article  PubMed  Google Scholar 

  29. Malik N (2005) Acute renal failure and Fanconi syndrome in an AIDS patient on tenofovir treatment—case report and review of literature. J Infect 51(2):E61–E65

    Article  PubMed  Google Scholar 

  30. Murphy MD, O'Hearn M, Chou S (2003) Fatal lactic acidosis and acute renal failure after addition of tenofovir to an antiretroviral regimen containing didanosine. Clin Infect Dis 36(8):1082–1085

    Article  PubMed  Google Scholar 

  31. Kapitsinou PP, Naheed A (2008) Acute renal failure in an AIDS patient on tenofovir: a case report. J Med Case Rep 2(1):94–94

    Article  PubMed  PubMed Central  Google Scholar 

  32. Imaoka T, Kusuhara H, Adachi M, Schuetz J, Takeuchi K, Sugiyama Y (2007) Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. Mol Pharmacol 71(2):619

    Article  CAS  PubMed  Google Scholar 

  33. Kanokrat R, Anchalee A, Narukjaporn T, Siwaporn M, Burger DM, Kiat R, Baralee P, Thitima P (2015) Influence of ABCC2 and ABCC4 polymorphisms on tenofovir plasma concentrations in Thai HIV-infected patients. Antimicrob Agents Chemother 59(6):3240–3245

    Article  CAS  Google Scholar 

  34. Rodrígueznóvoa S, Labarga P, Soriano V, Egan D, Albalater M, Morello J, Cuenca L, Gonzálezpardo G, Khoo S, Back D (2009) Predictors of kidney tubular dysfunction in HIV-infected patients treated with tenofovir: a pharmacogenetic study. Clin Infect Dis 48(11):e108

    Article  CAS  Google Scholar 

  35. Pushpakom SP, Liptrott NJ, Sonia RN, Pablo L, Vincent S, Marta A, Elizabeth HB, Stefano B, Giovanni DP, Back DJ (2011) Genetic variants of ABCC10, a novel tenofovir transporter, are associated with kidney tubular dysfunction. J Infect Dis 204(1):145–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Seth Hetherington M, Mcguirk S, Gwendolyn Powell M, Amy Cutrell M, Naderer O, Spreen B, Lafon S, Pearce G, Helen Steel M (2001) Hypersensitivity reactions during therapy with the nucleoside reverse transcriptase inhibitor abacavir ☆. Clin Ther 23(10):1603–1614

    Article  Google Scholar 

  37. Mallal S, Nolan D, Witt C, Masel G, Martin AM, Moore C, Sayer D, Castley A, Mamotte C, Maxwell D (2002) Association between presence of HLA-B∗5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359(9308):727–732

    Article  CAS  PubMed  Google Scholar 

  38. Martin AM, David N, Silvana G, Coral Ann A, Richard N, Ian J, Filipa C, Elizabeth P, Christiansen FT, Purcell AW (2004) Predisposition to abacavir hypersensitivity conferred by HLA-B∗5701 and a haplotypic Hsp70-Hom variant. PRO 101(12):4180–4185

    CAS  Google Scholar 

  39. Park WB, Choe PG, Song KH, Lee S, Jang HC, Jeon JH, Park SW, Park MH, Oh MD, Choe KW (2009) Should HLA-B∗5701 screening be performed in every ethnic group before starting abacavir? Clin Infect Dis 48(3):365–367. https://doi.org/10.1086/595890

    Article  PubMed  Google Scholar 

  40. Desta Z, Gammal RS, Gong L, Whirl-Carrillo M, Gaur AH, Sukasem C, Hockings J, Myers A, Swart M, Tyndale RF, Masimirembwa C, Iwuchukwu OF, Chirwa S, Lennox J, Gaedigk A, Klein TE, Haas DW (2019) Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2B6 and efavirenz-containing antiretroviral therapy. Clin Pharmacol Ther 106(4):726–733. https://doi.org/10.1002/cpt.1477

    Article  PubMed  Google Scholar 

  41. To KW, Liu ST, Cheung SW, Chan DP, Chan RC, Lee SS (2009) Pharmacokinetics of plasma efavirenz and CYP2B6 polymorphism in southern Chinese. Ther Drug Monit 31(4):527

    Article  CAS  PubMed  Google Scholar 

  42. Chen J, Sun J, Ma Q, Yao Y, Wang Z, Zhang L, Li L, Sun F, Lu H (2010) CYP2B6 polymorphism and nonnucleoside reverse transcriptase inhibitor plasma concentrations in Chinese HIV-infected patients. Ther Drug Monit 32(5):573–578. https://doi.org/10.1097/FTD.0b013e3181ea953c

    Article  CAS  PubMed  Google Scholar 

  43. Meng X, Yin K, Wang J, Dong P, Liu L, Shen Y, Shen L, Ma Q, Lu H, Cai W (2015) Effect of CYP2B6 gene polymorphisms on efavirenz plasma concentrations in Chinese patients with HIV infection. PLoS One 10(6):e0130583. https://doi.org/10.1371/journal.pone.0130583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Holzinger ER, Benjamin G, Ritchie MD, Ribaudo HJ, Acosta EP, Morse GD, Gulick RM, Robbins GK, Clifford DB, Daar ES (2012) Genome-wide association study of plasma efavirenz pharmacokinetics in AIDS Clinical Trials Group protocols implicates several CYP2B6 variants. Pharmacogenet Genomics 22(12):858–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Julie B, Monidarin C, Richardson DM, Céline V, Leger PD, France M, Anne-Marie T, Haas DW (2012) Multiple genetic variants predict steady-state nevirapine clearance in HIV-infected Cambodians. Pharmacogenet Genomics 22(12):868–876

    Article  CAS  Google Scholar 

  46. Saran V, Acosta EP, Ribaudo HJ, Patrice S, Umesh L, Nagalingeshwaran K, Frank T, Joseph K, Olola O, Prudence I (2013) Clinical and genetic determinants of plasma nevirapine exposure following an intrapartum dose to prevent mother-to-child HIV transmission. J Infect Dis 208(4):662–671

    Article  CAS  Google Scholar 

  47. Carr DF, Chaponda M, Castro EMC, Jorgensen AL, Khoo S, Oosterhout JJV, Dandara C, Kampira E, Ssali F, Munderi P (2014) CYP2B6 c.983T>C polymorphism is associated with nevirapine hypersensitivity in Malawian and Ugandan HIV populations. J Antimicrob Chemother 69(12):3329–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Martin AM, Nolan D, James I, Cameron P, Keller J, Moore C, Phillips E, Christiansen FT, Mallal S (2005) Predisposition to nevirapine hypersensitivity associated with HLA-DRB1∗0101 and abrogated by low CD4 T-cell counts. AIDS (London, England) 19(1):97–99

    Article  CAS  Google Scholar 

  49. Keane NM, Pavlos RK, Elizabeth MK, Andrew L, Craig R, Blyth CC, David D, Michaela L, Simon M, Elizabeth P (2014) HLA Class I restricted CD8+ and Class II restricted CD4+ T cells are implicated in the pathogenesis of nevirapine hypersensitivity. AIDS (London, England) 28(13):1891–1901

    Article  CAS  Google Scholar 

  50. Phillips E, Bartlett JA, Sanne I, Lederman MM, Hinkle J, Rousseau F, Dunn D, Pavlos R, James I, Mallal SA (2013) Associations between HLA-DRB1∗0102, HLA-B∗5801, and hepatotoxicity during initiation of nevirapine-containing regimens in South Africa. J Acquir Immune Defic Syndr 62(2):E55–E57

    Article  PubMed  PubMed Central  Google Scholar 

  51. **g Y, Sheng G, David H, Cammett AM, Supriya J, Manuel D, Stephen S, Zimei H, Piroon M, Kiat R (2011) Toxicogenomics of nevirapine-associated cutaneous and hepatic adverse events among populations of African, Asian, and European descent. AIDS (London, England) 25(10):1271–1280

    Article  CAS  Google Scholar 

  52. Carr DF, Mas C, Jorgensen AL, Elena Cornejo C, Van Oosterhout JJ, Khoo SH, Lalloo DG, Heyderman RS, Ana A, Munir P (2013) Association of human leukocyte antigen alleles and nevirapine hypersensitivity in a Malawian HIV-infected population. Clin Infect Dis 56(9):1330–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pavlos R, McKinnon EJ, Ostrov DA, Peters B, Buus S, Koelle D, Chopra A, Schutte R, Rive C, Redwood A, Restrepo S, Bracey A, Kaever T, Myers P, Speers E, Malaker SA, Shabanowitz J, **g Y, Gaudieri S, Hunt DF, Carrington M, Haas DW, Mallal S, Phillips EJ (2017) Shared peptide binding of HLA Class I and II alleles associate with cutaneous nevirapine hypersensitivity and identify novel risk alleles. Sci Rep 7(1):8653. https://doi.org/10.1038/s41598-017-08876-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gao S, Gui XE, Liang K, Liu Z, Hu J, Dong B (2012) HLA-dependent hypersensitivity reaction to nevirapine in Chinese Han HIV-infected patients. AIDS Res Hum Retroviruses 28(6):540

    Article  CAS  PubMed  Google Scholar 

  55. Olagunju A, Schipani A, Siccardi M, Egan D, Khoo S, Back D, Owen A (2014) CYP3A4∗22 (c.522-191 C>T; rs35599367) is associated with lopinavir pharmacokinetics in HIV-positive adults. Pharmacogenet Genomics 24(9):459–463. https://doi.org/10.1097/fpc.0000000000000073

    Article  CAS  PubMed  Google Scholar 

  56. Berno G, Zaccarelli M, Gori C, Tempestilli M, Pucci L, Antinori A, Perno CF, Pucillo LP, D'Arrigo R (2014) Potential implications of CYP3A4, CYP3A5 and MDR-1 genetic variants on the efficacy of Lopinavir/Ritonavir (LPV/r) monotherapy in HIV-1 patients. J Int AIDS Soc 17(4 Suppl 3):19589. https://doi.org/10.7448/ias.17.4.19589

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kohlrausch FB, de Cassia Estrela R, Barroso PF, Suarez-Kurtz G (2010) The impact of SLCO1B1 polymorphisms on the plasma concentration of lopinavir and ritonavir in HIV-infected men. Br J Clin Pharmacol 69(1):95–98. https://doi.org/10.1111/j.1365-2125.2009.03551.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rakhmanina NY, Neely MN, Van Schaik RHN, Gordish-Dressman HA, Williams KD, Soldin SJ, Van Den Anker JN (2011) CYP3A5, ABCB1, and SLCO1B1 polymorphisms and pharmacokinetics and virologic outcome of lopinavir/ritonavir in HIV-infected children. Ther Drug Monit 33(4):417–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pybus BS, Marcsisin SR, ** X, Deye G, Sousa JC, Li Q, Caridha D, Zeng Q, Reichard GA, Ockenhouse C (2013) The metabolism of primaquine to its active metabolite is dependent on CYP 2D6. Malar J 12(1):1–7

    Article  CAS  Google Scholar 

  60. Pett H, Bradley J, Okebe J, Dicko A, Tiono AB, Gonçalves BP, Stone W, Chen I, Lanke K, Neuvonen M, Mustaniemi A-L, Eziefula AC, Gosling R, D'Alessandro U, Drakeley C, Niemi M, Bousema T (2019) CYP2D6 polymorphisms and the safety and gametocytocidal activity of single-dose primaquine for Plasmodium falciparum. Antimicrob Agents Chemother 63(10):e00538–e00519. https://doi.org/10.1128/AAC.00538-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meng, X., Zhang, Q., Dong, P. (2020). Pharmacogenomics of Anti-Infective Agents. In: Cai, W., Liu, Z., Miao, L., **ang, X. (eds) Pharmacogenomics in Precision Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-3895-7_7

Download citation

Publish with us

Policies and ethics

Navigation