Cystic Fibrosis: Biology and Therapeutics

  • Chapter
  • First Online:
Chronic Lung Diseases

Abstract

Cystic fibrosis could be a common life-bound autosomal recessive hereditary condition, with highest occurrence in Europe, North America, and Australia. The root of illness is mutation of a gene that encodes a chloride-conducting transmembrane channel known as the cystic fibrosis transmembrane conductance regulator (CFTR) that regulates anion transfer and mucociliary clearance within the airways. Operational failure of CFTR ends up in mucus withholding and chronic contagion, followed by local airway swelling that is harmful to the lungs. CFTR operational impairment principally affects epithelial cells, though there is proof of a function in immune cells. Cystic fibrosis influences numerous body systems, and morbidity and mortality are typically due to bronchiectasis, tiny airways obstacle, and progressive respiratory abnormality. Necessary comorbidities due to epithelial cell operational impairment occur within the pancreas (malassimilation), liver (biliary cirrhosis), sweat glands (heat shock), and vas deferens (sterility). The progress and delivery of medication that recover the clearance of mucus from the lungs and treat the ensuing infection, together with rectification of pancreatic insufficiency and malnutrition via multidisciplinary requisites, have resulted in noteworthy enhancements of life and clinical conclusion in patients with cystic fibrosis. Inventive and transformational treatments that aim on the fundamental defect in cystic fibrosis have currently been grown and are useful in lung surgery and drop** pulmonary exacerbations. Advance petite molecule and gene-based treatment are being developed to revive CFTR operation; these remedies pledge to transform illness and enhance the lives of individuals with cystic fibrosis disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Meyerholz DK, Stoltz DA, Namati E, Ramachandran S, Pezzulo AA, Smith AR, Rector MV, Suter MJ, Kao S, McLennan G, Tearney GJ, Zabner J, McCray PB Jr, Welsh MJ (2010) Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children. Am J Respir Crit Care Med 182(10):1251–1261

    PubMed  PubMed Central  Google Scholar 

  2. Stoltz DA, Meyerholz DK, Pezzulo AA, Ramachandran S, Rogan MP, Davis GJ, Hanfland RA, Wohlford-Lenane C, Dohrn CL, Bartlett JA, Nelson GA IV, Chang EH, Taft PJ, Ludwig PS, Estin M, Hornick EE, Launspach JL, Samuel M, Rokhlina T, Karp PH, Ostedgaard LS, Uc A, Starner TD, Horswill AR, Brogden KA, Prather RS, Richter SS, Shilyansky J, McCray PB Jr, Zabner J, Welsh MJ (2010) Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med 2(29):29ra31

    PubMed  PubMed Central  Google Scholar 

  3. Accurso FJ, Rowe SM, Clancy JP, Boyle MP, Dunitz JM, Durie PR, Sagel SD, Hornick DB, Konstan MW, Donaldson SH, Moss RB, Pilewski JM, Rubenstein RC, Uluer AZ, Aitken ML, Freedman SD, Rose LM, Mayer-Hamblett N, Dong Q, Zha J, Stone AJ, Olson ER, Ordoñez CL, Campbell PW, Ashlock MA, Ramsey BW (2010) Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med 363(21):1991–2003

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Muhlebach MS, Stewart PW, Leigh MW, Noah TL (1999) Quantitation of inflammatory responses to bacteria in young cystic fibrosis and control patients. Am J Respir Crit Care Med 160(1):186–191

    PubMed  CAS  Google Scholar 

  5. Sly PD (2013) Risk factors for bronchiectasis in children with cystic fibrosis. N Engl J Med 368(21):1963–1970

    PubMed  CAS  Google Scholar 

  6. Tiringer K, Treis A, Fucik P, Gona M, Gruber S, Renner S, Dehlink E, Nachbaur E, Horak F, Jaksch P, Döring G, Crameri R, Jung A, Rochat MK, Hörmann M, Spittler A, Klepetko W, Akdis CA, Szépfalusi Z, Frischer T, Eiwegger T (2013) A Th17-and Th2-skewed cytokine profile in cystic fibrosis lungs represents a potential risk factor for Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 187(6):621–629

    PubMed  CAS  Google Scholar 

  7. Lloyd-Still JD (1994) Crohn’s disease and cystic fibrosis. Dig Dis Sci 39(4):880–885

    PubMed  CAS  Google Scholar 

  8. Kumar S, Tana A, Shankar A (2014) Cystic fibrosis-what are the prospects for a cure? Eur J Intern Med 25(9):803–807

    PubMed  Google Scholar 

  9. WHO (2018) Genes human disease-cystic fibrosis. WHO, Geneva, Switzerland

    Google Scholar 

  10. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245(4922):1066–1073

    PubMed  CAS  Google Scholar 

  11. Pezzulo AA, Tang XX, Hoegger MJ, Abou Alaiwa MH, Ramachandran S, Moninger TO, Karp PH, Wohlford-Lenane CL, Haagsman HP, van Eijk M, Bánfi B, Horswill AR, Stoltz DA, McCray PB Jr, Welsh MJ, Zabner J (2012) Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487(7405):109

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Vonberg RP, Gastmeier P (2005) Isolation of infectious cystic fibrosis patients: results of a systematic review. Infect Cont Hosp Epidemiol 26(4):401–409

    Google Scholar 

  13. Liou TG, Adler FR, Fitzsimmons SC, Cahill BC, Hibbs JR, Marshall BC (2001) Predictive 5-year survivorship model of cystic fibrosis. Am J Epidemiol 153(4):345–352

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Hart N, Polkey MI, Clément A, Boulé M, Moxham J, Lofaso F, Fauroux B (2002) Changes in pulmonary mechanics with increasing disease severity in children and young adults with cystic fibrosis. Am J Respir Crit Care Med 166(1):61–66

    PubMed  Google Scholar 

  15. Saadane A, Soltys J, Berger M (2005) Role of IL-10 deficiency in excessive nuclear factor-κB activation and lung inflammation in cystic fibrosis transmembrane conductance regulator knockout mice. J Allergy Clin Immunol 115(2):405–411

    PubMed  CAS  Google Scholar 

  16. Antonelli M, Midulla F, Tancredi G, Salvatori FM, Bonci E, Cimino G, Flaishman I (2002) Bronchial artery embolization for the management of nonmassive hemoptysis in cystic fibrosis. Chest 121(3):796–801

    PubMed  Google Scholar 

  17. Orenstein DM, Winnie GB, Altman H (2002) Cystic fibrosis: a 2002 update. J Pediatr 140(2):156–164

    PubMed  CAS  Google Scholar 

  18. Marchand E et al (2001) Frequency of cystic fibrosis transmembrane conductance regulator gene mutations and 5T allele in patients with allergic bronchopulmonary aspergillosis. Chest 119(3):762–767

    PubMed  CAS  Google Scholar 

  19. Venarske DL, de Shazo RD (2002) Sinobronchial allergic mycosis: the SAM syndrome. Chest 121(5):1670–1676

    PubMed  Google Scholar 

  20. Elphick HE, Southern KW (2016) Antifungal therapies for allergic bronchopulmonary aspergillosis in people with cystic fibrosis. Cochrane Database Syst Rev (11):CD002204

    Google Scholar 

  21. Mange EJ, Mange AP (1999) Basic human genetics. Sinauer Associates, Sunderland, MA

    Google Scholar 

  22. Stites SW, Plautz MW, Bailey K, O’Brien-Ladner AR, Wesselius LJ (1999) Increased concentrations of iron and isoferritins in the lower respiratory tract of patients with stable cystic fibrosis. Am J Respir Crit Care Med 160(3):796–801

    PubMed  CAS  Google Scholar 

  23. Taussig L (1999) Pediatric respiratory medicine. Mosby, St Louis, MO

    Google Scholar 

  24. Brunzell C, Schwarzenberg SJ (2002) Cystic fibrosis-related diabetes and abnormal glucose tolerance: overview and medical nutrition therapy. Diabet Spect 15(2):124–127

    Google Scholar 

  25. Moran A, Hardin D, Rodman D, Allen HF, Beall RJ, Borowitz D, Brunzell C, Campbell PW III, Chesrown SE, Duchow C, Fink RJ, Fitzsimmons SC, Hamilton N, Hirsch I, Howenstine MS, Klein DJ, Madhun Z, Pencharz PB, Quittner AL, Robbins MK, Schindler T, Schissel K, Schwarzenberg SJ, Stallings VA, Zipf WB (1999) Diagnosis, screening and management of cystic fibrosis related diabetes mellitus: a consensus conference report. Diabetes Res Clin Pract 45(1):61–73

    PubMed  CAS  Google Scholar 

  26. Moss RB (2002) Long-term benefits of inhaled tobramycin in adolescent patients with cystic fibrosis. Chest 121(1):55–63

    PubMed  CAS  Google Scholar 

  27. Konstan MW, Flume PA, Kappler M, Chiron R, Higgins M, Brockhaus F, Zhang J, Angyalosi G, He E, Geller DE (2011) Safety, efficacy and convenience of tobramycin inhalation powder in cystic fibrosis patients: the EAGER trial. J Cyst Fibros 10(1):54–61

    PubMed  CAS  Google Scholar 

  28. Flume PA, O’Sullivan BP, Robinson KA, Goss CH, Mogayzel PJ Jr, Willey-Courand DB, Bujan J, Finder J, Lester M, Quittell L, Rosenblatt R, Vender RL, Hazle L, Sabadosa K, Marshall B, Cystic Fibrosis Foundation, Pulmonary Therapies Committee (2007) Cystic fibrosis pulmonary guidelines: chronic medications for maintenance of lung health. Am J Respir Crit Care Med 176(10):957–969

    PubMed  CAS  Google Scholar 

  29. Salvatore D, D’Andria M (2002) Effects of salmeterol on arterial oxyhemoglobin saturations in patients with cystic fibrosis. Pediatr Pulmonol 34(1):11–15

    PubMed  Google Scholar 

  30. Robinson M, Regnis JA, Bailey DL, King M, Bautovich GJ, Bye PT (1996) Effect of hypertonic saline, amiloride, and cough on mucociliary clearance in patients with cystic fibrosis. Am J Respir Crit Care Med 153(5):1503–1509

    PubMed  CAS  Google Scholar 

  31. Quan JM, Tiddens HA, Sy JP, McKenzie SG, Montgomery MD, Robinson PJ, Wohl ME, Konstan MW, Pulmozyme Early Intervention Trial Study Group (2001) A two-year randomized, placebo-controlled trial of dornase alfa in young patients with cystic fibrosis with mild lung function abnormalities. J Pediatr 139(6):813–820

    PubMed  CAS  Google Scholar 

  32. McIlwaine MP, Alarie N, Davidson GF, Lands LC, Ratjen F, Milner R, Owen B, Agnew JL (2013) Long-term multicentre randomised controlled study of high frequency chest wall oscillation versus positive expiratory pressure mask in cystic fibrosis. Thorax 68(8):746–751

    PubMed  Google Scholar 

  33. Colombo C, Ellemunter H, Houwen R, Munck A, Taylor C, Wilschanski M, ECFS (2011) Guidelines for the diagnosis and management of distal intestinal obstruction syndrome in cystic fibrosis patients. J Cyst Fibros 10:S24–S28

    PubMed  Google Scholar 

  34. Stern RC, Eisenberg JD, Wagener JS, Ahrens R, Rock M, do Pico G, Orenstein DM (2000) A comparison of the efficacy and tolerance of pancrelipase and placebo in the treatment of steatorrhea in cystic fibrosis patients with clinical exocrine pancreatic insufficiency. Am J Gastroenterol 95(8):1932

    PubMed  CAS  Google Scholar 

  35. Borowitz D, Borowitz D, Robinson KA, Rosenfeld M, Davis SD, Sabadosa KA, Spear SL, Michel SH, Parad RB, White TB, Farrell PM, Marshall BC, Accurso FJ (2009) Cystic Fibrosis Foundation evidence-based guidelines for management of infants with cystic fibrosis. J Pediatr 155(6):S73–S93

    PubMed  PubMed Central  Google Scholar 

  36. Vertex Pharmaceuticals Inc (2012) Kalydeco™ (ivacaftor). Product Information. Cambridge

    Google Scholar 

  37. Ramsey BW (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365(18):1663–1672

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Davies JC (2013) Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am J Respir Crit Care Med 187(11):1219–1225

    PubMed  PubMed Central  CAS  Google Scholar 

  39.  Davies JC, Cunningham S, Harris WT, Lapey A, Regelmann WE, Sawicki GS, Southern KW, Robertson S, Green Y, Cooke J, Rosenfeld M, KIWI Study Group (2016) Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2-5 years with cystic fibrosis and a CFTR gating mutation (KIWI): an open-label, single-arm study. Lancet Respir Med 4(2):107–115

    Google Scholar 

  40. Rowe SM, Heltshe SL, Gonska T, Donaldson SH, Borowitz D, Gelfond D, Sagel SD, Khan U, Mayer-Hamblett N, Van Dalfsen JM, Joseloff E, Ramsey BW, GOAL Investigators of the Cystic Fibrosis Foundation Therapeutics Development Network (2014) Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am J Respir Crit Care Med 190(2):175–184

    PubMed  PubMed Central  CAS  Google Scholar 

  41. (2016) http://www.who.int/genomics/publications/en/HGN_WB_04.02_report.pdf

  42. Whiting P, Burgers L, Westwood M, Ryder S, Hoogendoorn M, Armstrong N, Allen A, Severens H, Kleijnen J (2014) Ivacaftor for the treatment of patients with cystic fibrosis and the G551D mutation: a systematic review and cost-effectiveness analysis. Health Technol Assess 18(18):1–106

    PubMed  PubMed Central  Google Scholar 

  43. Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, Decker CJ, Miller M, McCartney J, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu PA (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci 108(46):18843–18848

    PubMed  Google Scholar 

  44. Kopeikin Z, Yuksek Z, Yang HY, Bompadre SG (2014) Combined effects of VX-770 and VX-809 on several functional abnormalities of F508del-CFTR channels. J Cyst Fibros 13(5):508–514

    PubMed  CAS  Google Scholar 

  45. Clancy J, Rowe SM, Accurso FJ, Aitken ML, Amin RS, Ashlock MA, Ballmann M, Boyle MP, Bronsveld I, Campbell PW, De Boeck K, Donaldson SH, Dorkin HL, Dunitz JM, Durie PR, Jain M, Leonard A, McCoy KS, Moss RB, Pilewski JM, Rosenbluth DB, Rubenstein RC, Schechter MS, Botfield M, Ordoñez CL, Spencer-Green GT, Vernillet L, Wisseh S, Yen K, Konstan MW (2012) Results of a phase IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation. Thorax 67(1):12–18

    PubMed  CAS  Google Scholar 

  46. Ramsey B, Elborn S (2014) Effect of lumacaftor in combination with ivacaftor in patients with cystic fibrosis who are homozygous for F508del-CFTR: pooled results from the phase 3 TRAFFIC and TRANSPORT studies. In: The 28th Annual North American Conference of the Cystic Fibrosis Foundation, Atlanta, GA

    Google Scholar 

  47. Wainwright CE (2015) Lumacaftor–ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med 373(3):220–231

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Rafeeq MM, Murad HAS (2017) Cystic fibrosis: current therapeutic targets and future approaches. J Transl Med 15(1):84

    PubMed  PubMed Central  Google Scholar 

  49. Gilead Sciences (2018) A phase 2b, dose-ranging study of the effect of GS-5745 on FEV1 in adult subjects with cystic fibrosis

    Google Scholar 

  50. Steven Rowe M, Stuart Elborn MD (2019) A phase 2, multicenter, randomized, double-blind, placebo-controlled, parallel-group study to evaluate the efficacy, safety, and tolerability of CTX-4430 administered orally once-daily for 48 weeks in adult patients with cystic fibrosis

    Google Scholar 

  51. Tacjana Pressler PM (2017) A double-blind, randomized, placebo-controlled cross over study of inhaled alginate oligosaccharide (OligoG) administered for 28 days in subjects with cystic fibrosis

    Google Scholar 

  52. Vertex Pharmaceuticals Inc (2017) A phase 2a, randomized, double-blind, placebo-controlled, incomplete block, crossover study to evaluate the safety and efficacy of VX-371 in subjects aged 12 years or older with cystic fibrosis, homozygous for the F508del-CFTR mutation, and being treated with Orkambi

    Google Scholar 

  53. Anthera Pharmaceuticals (2018) A phase 3, open-label study evaluating the efficacy and safety of liprotamase in subjects with cystic fibrosis-related exocrine pancreatic insufficiency

    Google Scholar 

  54. Sarah J, Schwarzenberg M, Sarah J Schwarzenberg MD (2018) A multi center placebo controlled double blind randomized study evaluating the role of oral glutathione on growth parameters in children with cystic fibrosis

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritt Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, P., Vishwakarma, V.K., Paswan, S.K., Rao, C.V., Srivastava, S. (2020). Cystic Fibrosis: Biology and Therapeutics. In: Rayees, S., Din, I., Singh, G., Malik, F. (eds) Chronic Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-15-3734-9_3

Download citation

Publish with us

Policies and ethics

Navigation