The Role of Microorganisms in Removal of Sulfates from Artistic Stonework

  • Chapter
  • First Online:
Microbial Biotechnology Approaches to Monuments of Cultural Heritage
  • 492 Accesses

Abstract

The presence of organic matter on artistic stonework can be credited to inadequate historical renovations, lysis of microbial cells, primary surface colonization, and manifestation of hydrocarbons from oil combustion. The conservation of the artwork itself can be seriously dangerous. To date, surfactants and solubilizing agents have been used to remove pollutants and residual substances from artwork by chemical and physical procedures. For biological removal of sulfates, nitrates, and organic matter present on artistic stonework, multiple bioremediation systems have now been developed, exploiting prudently selected microbial cultures grown on an appropriate support. The development of this process involves screening and selection of a suitable microbial culture with the capability to biodegrade organic matter, denitrify, and reduce sulfates; setting up of simulated laboratory tests with stone samples artificially enriched with nitrates, sulfates, and organic matter; testing of appropriate inert matrices on which to immobilize the selected bacterial strains; and testing of sulfate, nitrate, and organic matter removal from artificially enriched stone, as well as from naturally degraded artwork. Bacterial biofilms using sepiolite with a high active biomass per cm3 were developed. Pseudomonas aeruginosa and Pseudomonas stutzeri were selected for nitrate removal because of their high denitrifying activity. Desulfovibrio vulgaris and Desulfovibrio desulfuricans were selected and tested for sulfate removal in liquid cultures, on stone specimens artificially enriched with sulfates, and on real marble samples. The results confirmed the potential for development of bioremediation as a soft, innovative technology based on the use of microorganisms and their metabolic activity in recovery of degraded artworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abola AP, Willits MG, Wang RC, Long SR (1999) Reduction of adenosine-5′-phosphosulfate instead of 3′-phosphoadenosine-5′-phosphosulfate in cysteine biosynthesis by Rhizobium meliloti and other members of the family Rhizobiaceae. J Bacteriol 181:5280–5287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agostino V, Rosenbaum MA (2018) Sulfate-reducing electroautotrophs and their applications in bioelectrochemical systems. Front Energy Res 6:55

    Google Scholar 

  • Aherne M, Lyons JA, Caffrey M (2012) A fast, simple and robust protocol for growing crystals in the lipidic cubic phase. J Appl Crystallogr 45:1330–1333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akagi JM (1995) Respiratory sulfate reduction. In: Sulfate-reducing bacteria. Springer, Boston, pp 89–111

    Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Electron-transport chains and their proton pumps. Mol Biol Cell 91:401

    Google Scholar 

  • Alfano G, Lustrato G, Belli C, Zanardini E, Cappitelli F, Mello E, Ranalli G (2011) The bioremoval of nitrate and sulfate alterations on artistic stonework: the case-study of Matera Cathedral after six years from the treatment. Int Biodeterior Biodegrad 65:1004–1011

    CAS  Google Scholar 

  • Al-Thawadi SM (2011) Ureolytic bacteria and calcium carbonate formation as a mechanism of strength enhancement of sand. J Adv Sci Eng Res 1:98–114

    CAS  Google Scholar 

  • Anbu P, Kang CH, Shin YJ, So JS (2016) Formations of calcium carbonate minerals by bacteria and its multiple applications. Springer Plus 5:1–26

    CAS  Google Scholar 

  • Arendsen AF, Verhagen MF, Wolbert RB, Pierik AJ, Stams AJ, Jetten MS, Hagen WR (1993) The dissimilatory sulfite reductase from Desulfosarcina variabilis is a desulforubidin containing uncoupled metalated sirohemes and S = 9/2 iron–sulfur clusters. Biochemist 32:10323–10330

    CAS  Google Scholar 

  • Atlas RM, Chowdhury AN, Gauri KL (1988) Microbial calcification of gypsum-rock and sulfated marble. Stud Conserv 33:149–153

    Google Scholar 

  • Ayangbenro AS, Olanrewaju OS, Babalola OO (2018) Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Front Microbiol 9:1–15

    Google Scholar 

  • Badziong W, Thauer RK, Zeikus JG (1978) Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch Microbiol 116:41–49

    CAS  PubMed  Google Scholar 

  • Baklanov A, Molina LT, Gauss M (2016) Megacities, air quality and climate. Atmos Environ 126:235–249

    CAS  Google Scholar 

  • Balakrishnan L, Venter H, Shilling RA, van Veen HW (2004) Reversible transport by the ATP-binding cassette multidrug export pump LMRA ATP synthesis at the expense of downhill ethidium uptake. J Biol Chem 279:11273–11280

    CAS  PubMed  Google Scholar 

  • Balashova VV (1985) Use of molecular sulfur as an agent oxidizing H2 by a facultative anaerobic Pseudomonas strain. Mikrobiologiia 54:324–326

    CAS  PubMed  Google Scholar 

  • Balci N, Brunner B, Turchyn AV (2017) Tetrathionate and elemental sulfur shape the isotope composition of sulfate in acid mine drainage. Front Microbiol 8:1564

    PubMed  PubMed Central  Google Scholar 

  • Balloi A, Lombardi E, Troiano F, Polo A, Capitelli F, Gulotta D, Daffonchio D (2017) Sulfate reducing bacteria as bio-cleaning agents: development of new methodologies and study cases. Conserv Sci Cultural Herit 15:109–119

    Google Scholar 

  • Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421

    CAS  PubMed  Google Scholar 

  • Barrett EL, Clark MA (1987) Tetrathionate reduction and production of hydrogen sulfide from thiosulfate. Microbiol Rev 51:192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barton LL, Hamilton WA (eds) (2007) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, New York

    Google Scholar 

  • Basen M, Krüger M, Milucka J, Kuever J, Kahnt J, Grundmann O, Shima S (2011) Bacterial enzymes for dissimilatory sulfate reduction in a marine microbial mat (Black Sea) mediating anaerobic oxidation of methane. Environ Microbiol 13:1370–1379

    CAS  PubMed  Google Scholar 

  • Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447

    CAS  PubMed  Google Scholar 

  • Bertran E, Leavitt WD, Pellerin A, Zane GM, Wall JD, Halevy I, Johnston DT (2018) Deconstructing the dissimilatory sulfate reduction pathway: isotope fractionation of a mutant unable of growth on sulfate. Front Microbiol 9:3110

    PubMed  PubMed Central  Google Scholar 

  • Bhave DP, Hong JA, Lee M, Jiang W, Krebs C, Carroll KS (2011) Spectroscopic studies on the [4Fe–4S] cluster in adenosine 5′-phosphosulfate reductase from Mycobacterium tuberculosis. J Biol Chem 286:1216–1226

    CAS  PubMed  Google Scholar 

  • Biondi V, Iraldo F, Meredith S (2002) Achieving sustainability through environmental innovation: the role of SMEs. Int J Technol Manag 24:612–626

    Google Scholar 

  • Bonazza A, Messina P, Sabbioni C, Grossi CM, Brimblecombe P (2009) Map** the impact of climate change on surface recession of carbonate buildings in Europe. Sci Total Environ 407:2039–2050

    CAS  PubMed  Google Scholar 

  • Bonch-Osmolovskaya EA, Sokolova TG, Kostrikina NA, Zavarzin GA (1990) Desulfurella acetivorans gen. nov. and sp. nov. a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153:151–155

    Google Scholar 

  • Boon T (1993) Tumor antigens recognized by cytolytic T lymphocytes: present perspectives for specific immunotherapy. Int J Cancer 54:177–180

    CAS  PubMed  Google Scholar 

  • Bosch-Roig P, Ranalli G (2014) The safety of biocleaning technologies for cultural heritage. Front Microbiol 5:155

    PubMed  PubMed Central  Google Scholar 

  • Brady NC, Weil RR (1999) Nitrogen and sulfur economy of soils. Nat Prop Soil:491–523

    Google Scholar 

  • Brierley CL, Brierley JA (1982) Anaerobic reduction of molybdenum by Sulfolobus species. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I. Abt. Originale C: Allgemeine, angewandte und ökologische Mikrobiologie 3:289–294

    CAS  Google Scholar 

  • Brock A, Raja PKS, Vise JB (1972) The palaeomagnetism of the Kisii Series, western Kenya. Geophys J Int 28:129–137

    Google Scholar 

  • Bryant MP, Campbell LL, Reddy CA, Crabill MR (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33:1162–1169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buckman HO, Brady NC (1960) The nature and properties of soils. Soil Sci 90:212

    Google Scholar 

  • Burggraf S, Fricke H, Neuner A, Kristjansson J, Rouvier P, Mandelco L, Stetter KO (1990a) Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst Appl Microbiol 13:263–269

    CAS  PubMed  Google Scholar 

  • Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990b) Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing archaebacteria. Syst App. Microbiology 13:24–28

    Google Scholar 

  • Burini RC, Kano HT, Yu YM (2018) The life evolution on the sulfur cycle: from ancient elemental sulfur reduction and sulfide oxidation to the contemporary thiol-redox challenges. Glutathione in health and disease. Pinar Erkekoglu and Belma Kocer-Gumusel, IntechOpen, Hyattsville. https://doi.org/10.5772/intechopen.76749

  • Butlin KR, Adams ME, Thomas M (1949) The isolation and cultivation of sulphate-reducing bacteria. Microbiology 3:46–59

    CAS  Google Scholar 

  • Caccavo F Jr, Coates JD, Rossello-Mora RA, Ludwig W, Schleifer KH, Lovley DR, McInerne MJ (1996) Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch Microbiol 165:370–376

    CAS  PubMed  Google Scholar 

  • Cacchio P, Ercole C, Cappuccio G, Lepidi A (2003) Calcium carbonate precipitation by bacterial strains isolated from a limestone cave and from a loamy soil. Geomicrobiol J 20:85–98

    CAS  Google Scholar 

  • Caffrey C, Sengupta M, Park-Lee E et al (2012) Residents living in residential care facilities: United States, 2010. NCHS data brief, no. 91. National Center for Health Statistics, Hyattsville

    Google Scholar 

  • Cai J, Jiang J, Zheng P (2010) Isolation and identification of bacteria responsible for simultaneous anaerobic ammonium and sulfate removal. Sci China Chem 53(3):645–650

    CAS  Google Scholar 

  • Campanini B, Pieroni M, Raboni S, Bettati S, Benoni R, Pecchini C, Mozzarelli A (2015) Inhibitors of the sulfur assimilation pathway in bacterial pathogens as enhancers of antibiotic therapy. Curr Med Chem 22:187–213

    CAS  PubMed  Google Scholar 

  • Campbell LL, Postgate JR (1965) Classification of the spore-forming sulfate-reducing bacteria. Bacteriol Rev 29:359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canfield DE (1989) Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep Sea Research Part A. Oceanographic Res Papers 36:121–138

    CAS  Google Scholar 

  • Cappitelli F (2016) Biocleaning of cultural heritage surfaces. Open Conf Proc J 7 (suppl 1: M6):65–69

    Google Scholar 

  • Cappitelli F, Zanardini E, Ranalli G, Mello E, Daffonchio D, Sorlini C (2006) Improved methodology for bio removal of black crusts on historical stone artworks by use of sulfate-reducing bacteria. Appl Environ Microbiol 72:3733–3737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, Díaz E (2009) Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 73:71–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caselli E, Pancaldi S, Baldisserotto C, Petrucci F, Impallaria A, Volpe L, Bevilacqua F (2018) Characterization of biodegradation in a 17th century easel painting and potential for a biological approach. PLoS One 13:e0207630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castanier S, Le Metayer-Levrel G, Perthuisot J P (2000) Bacterial roles in the precipitation of carbonate minerals. In: Microbial sediments. Springer, Berlin/Heidelberg, pp 32–39

    Google Scholar 

  • Castro HF, Williams NH, Ogram A (2000) Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31:1–9

    CAS  PubMed  Google Scholar 

  • Chafetz HS (1986) Marine peloids; a product of bacterially induced precipitation of calcite. J Sediment Res 56:812–817

    CAS  Google Scholar 

  • Chalasani AG, Dhanarajan G, Nema S, Sen R, Roy U (2015) An antimicrobial metabolite from Bacillus sp.: significant activity against pathogenic bacteria including multidrug-resistant clinical strains. Front Microbiol 6:1335

    PubMed  PubMed Central  Google Scholar 

  • Chapman SJ (1989) Oxidation of micronized elemental sulphur in soil. Plant Soil 116:69–76

    CAS  Google Scholar 

  • Chartron J, Shiau C, Stout CD, Carroll KS (2007) 3′-Phosphoadenosine-5′-phosphosulfate reductase in complex with thioredoxin: a structural snapshot in the catalytic cycle. Biochemist 46:3942–3951

    CAS  Google Scholar 

  • Chen KY, Morris JC (1972) Kinetics of oxidation of aqueous sulfide by oxygen. Environ Sci Technol 6:529–537

    CAS  Google Scholar 

  • Chen TM, Kuschner WG, Gokhale J, Shofer S (2007) Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. Am J Med Sci 333:249–256

    PubMed  Google Scholar 

  • Chiang YL, Hsieh YC, Fang JY, Liu EH, Huang YC, Chuankhayan P, Chen CJ (2009) Crystal structure of adenylylsulfate reductase from Desulfovibrio gigas suggests a potential self-regulation mechanism involving the C terminus of the β-subunit. J Bacteriol 191:7597–7608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ciferri O, Tiano P, Mastromei G (eds) (2000) Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. Springer, New York

    Google Scholar 

  • Collins MD, Weddel F (1986) Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a systematic investigation. Syst Appl Microbiol 8:8–18

    CAS  Google Scholar 

  • Constantin D, Bini A, Meletti E, Moldeus P, Monti D, Tomasi A (1996) Age-related differences in the metabolism of sulphite to sulphate and in the identification of sulphur trioxide radical in human polymorphonuclear leukocytes. Mech Ageing Dev 88:95–109

    CAS  PubMed  Google Scholar 

  • Cord-Ruwisch R, Kleinitz W, Widdel F (1987) Sulfate-reducing bacteria and their activities in oil production. J Pet Technol 39:97–106

    CAS  Google Scholar 

  • Cord-Ruwisch R, Seitz HJ, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 149:350–357

    CAS  Google Scholar 

  • Costentin C (2008) Electrochemical approach to the mechanistic study of proton-coupled electron transfer. Chem Rev 108:2145–2179

    CAS  PubMed  Google Scholar 

  • Cypionka H (1987) Uptake of sulfate, sulfite and thiosulfate by proton–anion symport in Desulfovibrio desulfuricans. Arch Microbiol 148:144–149

    CAS  Google Scholar 

  • Cypionka H (1994) Sulfate transport. In: Methods in enzymology, vol 243. Academic, San Diego, pp 3–14

    Google Scholar 

  • Cypionka H (1995) Solute transport and cell energetics. In: Sulfate-reducing bacteria. Springer, Boston, pp 151–184

    Google Scholar 

  • Czechowski MH, He SH, Nacro M, DerVartanian DV, Peck HD Jr, LeGall J (1984) A cytoplasmic nickel–iron hydrogenase with high specific activity from Desulfovibrio multispirans sp. N., a new species of sulfate reducing bacterium. Biochem Biophysical Res Comm 125:1025–1032

    CAS  Google Scholar 

  • da Silva SM, Voordouw J, Leitao C, Martins M, Voordouw G, Pereira IA (2013) Function of formate dehydrogenases in Desulfovibrio vulgaris Hildenborough energy metabolism. Microbiology 159:1760–1769

    PubMed  Google Scholar 

  • Dahl C (2008) Microbial sulfur metabolism. In: Friedrich CG (ed). Springer, Berlin/New York, pp 151–169

    Google Scholar 

  • Dahl C, Trüper HG (2001) Sulfite reductase and APS reductase from Archaeoglobus fulgidus. In: Methods in enzymology, vol 331. Academic, pp 427–441

    Google Scholar 

  • Daskalakis MI, Magoulas A, Kotoulas G, Catsikis I, Bakolas A, Karageorgis AP, Rigas F (2013) Pseudomonas and C. upriavidus isolates induce calcium carbonate precipitation for biorestoration of ornamental stone. J Appl Microbiol 115:409–423

    CAS  PubMed  Google Scholar 

  • de Vito PC, Dreyfuss J (1964) Metabolic regulation of adenosine triphosphate sulfurylase in yeast. J Bacteriol 88:1341–1348

    PubMed Central  Google Scholar 

  • den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340

    Google Scholar 

  • Devalia JL, Rusznak C, Herdman MJ, Trigg CJ, Davies RJ, Tarraf H (1994) Effect of nitrogen dioxide and sulphur dioxide on airway response of mild asthmatic patients to allergen inhalation. Lancet 344:1668–1671

    CAS  PubMed  Google Scholar 

  • Devereux R, Delaney M, Widdel F, Stahl DA (1989) Natural relationships among sulfate-reducing eubacteria. J Bacteriol 171:6689–6695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devereux R, Kane MD, Winfrey J, Stahl DA (1992) Genus- and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria. Syst Appl Microbiol 15:601–609

    CAS  Google Scholar 

  • Dhami NK, Reddy MS, Mukherjee A (2014) Application of calcifying bacteria for remediation of stones and cultural heritages. Front Microbiol 5:304

    PubMed  PubMed Central  Google Scholar 

  • Dhillon A, Teske A, Dillon J, Stahl DA, Sogin ML (2003) Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69:2765–2772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Didenko N, Skripnuk D (2014) The impact of energy resources on social development in Russia. In: Brebbia CA, Polonara F, Magaril ER, Passerini G (eds). Energy production and management in the 21st century: the quest for sustainable energy, vol 1. WIT Press, Southampton, pp 151–159

    Google Scholar 

  • Dowling LM, Crewther WG, Inglis AS (1986) The primary structure of component 8c-1, a subunit protein of intermediate filaments in wool keratin. Relationships with proteins from other intermediate filaments. Biochem J 236:695–703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte AG, Catarino T, White GF, Lousa D, Neukirchen S, Soares CM, Pereira IA (2018) An electrogenic redox loop in sulfate reduction reveals a likely widespread mechanism of energy conservation. Nat Commun 9:5448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elshahed MS, Senko JM, Najar FZ, Kenton SM, Roe BA, Dewers TA, Krumholz LR (2003) Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl Environ Microbiol 69:5609–5621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80:1226–1236

    PubMed  PubMed Central  Google Scholar 

  • Fernandes P (2006) Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Appl Microbiol Biotechnol 73:291

    CAS  PubMed  Google Scholar 

  • Fewson CA (1988) Microbial metabolism of mandelate: a microcosm of diversity. FEMS Microbiol Rev 4:85–110

    CAS  PubMed  Google Scholar 

  • Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145:56–61

    CAS  Google Scholar 

  • Fida TT, Voordouw J, Ataeian M, Kleiner M, Okpala GN, Mand J, Voordouw G (2018) Synergy of sodium nitroprusside and nitrate in inhibiting the activity of sulfate reducing bacteria in oil-containing bioreactors. Front Microbiol 9:981

    PubMed  PubMed Central  Google Scholar 

  • Filipovic MR, Zivanovic J, Alvarez B, Banerjee R (2017) Chemical biology of H2S signaling through persulfidation. Chem Rev 118:1253–1337

    PubMed  PubMed Central  Google Scholar 

  • Finster K, Coates JD, Liesack W, Pfennig N (1997) Desulfuromonas thiophila sp. nov., a new obligately sulfur-reducing bacterium from anoxic freshwater sediment. Int J Syst Evol Microbiol 47:754–758

    CAS  Google Scholar 

  • Fioletov VE, McLinden C, Krotkov N, Li C (2015) Lifetimes and emissions of SO2 from point sources estimated from OMI. Geophys Res Lett 42:1969–1976

    CAS  Google Scholar 

  • Fischer RX, Tillmanns E (1988) The equivalent isotropic displacement factor. Acta Crystallogr Sect C Cryst Struct Commun 44:775–776

    Google Scholar 

  • Fitz RM, Cypionka H (1989) A study on electron transport-driven proton translocation in Desulfovibrio desulfuricans. Arch Microbiol 152:369–376

    CAS  Google Scholar 

  • Forsberg CW (1980) Sulfide production from cysteine by Desulfovibrio desulfuricans. Appl Environ Microbiol 39:453–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foti M, Sorokin DY, Lomans B, Mussman M, Zacharova EE, Pimenov NV, Muyzer G (2007) Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl Environ Microbiol 73:2093–2100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fröstl JM, Overmann J (2000) Phylogenetic affiliation of the bacteria that constitute phototrophic consortia. Arch Microbiol 174:50–58

    PubMed  Google Scholar 

  • Gahan J, Schmalenberger A (2014) The role of bacteria and mycorrhiza in plant sulfur supply. Front Plant Sci 5:723

    PubMed  PubMed Central  Google Scholar 

  • Galushko AS, Schink B (2000) Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture. Arch Microbiol 174:314–321

    CAS  PubMed  Google Scholar 

  • Gauri KL, Parks L, Jaynes J, Atlas R (1992) Removal of sulphated-crust from marble using sulphate-reducing bacteria. In: Stone cleaning and the nature, soiling and decay mechanisms of stone: proceedings of an international conference in Edinburgh, UK, 14–16 April 1992, pp 160–165

    Google Scholar 

  • Gebhardt MR, Daniel TC, Schweizer EE, Allmaras RR (1985) Conservation tillage. Science 230:625–630

    CAS  PubMed  Google Scholar 

  • Ghosh W, Dam B (2009) Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev 33:999–1043

    CAS  PubMed  Google Scholar 

  • Gigolashvili T, Kopriva S (2014) Transporters in plant sulfur metabolism. Front Plant Sci 5:442

    PubMed  PubMed Central  Google Scholar 

  • Gilmour CC, Elias DA, Kucken AM, Brown SD, Palumbo AV, Schadt CW, Wall JD (2011) Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Appl Environ Microbiol 77:3938–3951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gitt MA, Wang LF, Doi RH (1985) A strong sequence homology exists between the major RNA polymerase sigma factors of Bacillus subtilis and Escherichia coli. J Biol Chem 260:7178–7185

    CAS  PubMed  Google Scholar 

  • Grein F, Ramos AR, Venceslau SS, Pereira IA (2013) Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism. Biochimica et Biophysica Acta (BBA)-Bioenergetic 1827:145–160. doi: 10.1016/j.bbabio.2012.09.001

    Google Scholar 

  • Guimaraes LHS (2012) Carbohydrates from biomass: sources and transformation by microbial enzymes, carbohydrates—comprehensive studies on glycobiology and glycotechnology. Chuan-Fa Chang, IntechOpen, pp 441–458. https://doi.org/10.5772/51576

  • Günal S, Hardman R, Kopriva S, Mueller JW (2019) Sulfation pathways from red to green. J Biol Chem 294:12293–12312

    PubMed  PubMed Central  Google Scholar 

  • Gutknecht J, Walter A (1981) Transport of protons and hydrochloric acid through lipid bilayer membranes. Biochim Biophys Acta (BBA)-Biomemb 641:183–188

    Google Scholar 

  • Haas KL, Franz KJ (2009) Application of metal coordination chemistry to explore and manipulate cell biology. Chem Rev 109(10):4921–4960

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1:3–7

    CAS  Google Scholar 

  • Hao X, Ma K (2003) Minimal sulfur requirement for growth and sulfur-dependent metabolism of the hyperthermophilic archaeon Staphylothermus marinus. Archaea:191–197

    Google Scholar 

  • Hausmann B, Pelikan C, Herbold CW, Köstlbacher S, Albertsen M, Eichorst SA, Stingl U (2018) Peatland acidobacteria with a dissimilatory sulfur metabolism. ISME J 12:1729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hazeu W, Batenburg-Van der Vegte WH, Bos P, Van der Pas RK, Kuenen JG (1988) The production and utilization of intermediary elemental sulfur during the oxidation of reduced sulfur compounds by Thiobacillus ferrooxidans. Arch Microbiol 150:574–579

    CAS  Google Scholar 

  • Hébert A, Forquin-Gomez MP, Roux A, Aubert J, Junot C, Heilier JF, Beckerich JM (2013) New insights into sulfur metabolism in yeasts as revealed by studies of Yarrowia lipolytica. Appl Environ Microbiol 79:1200–1211

    PubMed  PubMed Central  Google Scholar 

  • Hedderich R, Klimmek O, Kröger A, Dirmeier R, Keller M, Stetter KO (1998) Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev 22:353–381

    CAS  Google Scholar 

  • Heggendorn FL, Fraga AGM, Ferreira DDC, Gonçalves LS, Lione VDOF, Lutterbach MTS (2018) Sulfate-reducing bacteria: biofilm formation and corrosive activity in endodontic files. Int J Dentistry 2018:1–12

    Google Scholar 

  • Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Daugherty SC (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22(5):554

    CAS  PubMed  Google Scholar 

  • Henrichs SM, Reeburgh WS (1987) Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol J 5(3–4):191–237

    CAS  Google Scholar 

  • Herrmann J, Ravilious GE, McKinney SE, Westfall CS, Lee SG, Baraniecka P, Jez JM (2014) Structure and mechanism of soybean ATP sulfurylase and the committed step in plant sulfur assimilation. J Biol Chem 289(15):10919–10929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heselmeyer K, Fischer U, Krumbein WE, Warscheid T (1991) Application of Desulfovibrio vulgaris for the bioconversion of rock gypsum crusts into calcite. Bioforum 1(2):89

    Google Scholar 

  • Hocking WP, Stokke R, Roalkvam I, Steen IH (2014) Identification of key components in the energy metabolism of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus by transcriptome analyses. Front Microbiol 5:95

    PubMed  PubMed Central  Google Scholar 

  • Hryniewicz M, Sirko A, Pałucha A, Böck A, Hulanicka D (1990) Sulfate and thiosulfate transport in Escherichia coli K-12: identification of a gene encoding a novel protein involved in thiosulfate binding. J Bacteriol 172(6):3358–3366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huber SC, Huber JL, Campbell WH, Redinbaugh MG (1992) Apparent dependence of the light activation of nitrate reductase and sucrose-phosphate synthase activities in spinach leaves on protein synthesis. Plant Cell Physiol 33(5):639–646

    CAS  Google Scholar 

  • Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R (1996) Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech Dev 59(1):3–10

    CAS  PubMed  Google Scholar 

  • Huber R, Sacher M, Vollmann A, Huber H, Rose D (2000) Respiration of arsenate and selenate by hyperthermophilic archaea. Syst Appl Microbiol 23(3):305–314

    CAS  PubMed  Google Scholar 

  • Hügler M, Wirsen CO, Fuchs G, Taylor CD, Sievert SM (2005) Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the subdivision of proteobacteria. J Bacteriol 187(9):3020–3027

    PubMed  PubMed Central  Google Scholar 

  • Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D, Thakur IS (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89(1):101–112

    CAS  Google Scholar 

  • Jaramillo ML, Abanto M, Quispe RL, Calderón J, del Valle LJ, Talledo M, Ramírez P (2012) Cloning, expression and bioinformatics analysis of ATP sulfurylase from Acidithiobacillus ferrooxidans ATCC 23270 in Escherichia coli. Bioinformatics 8(15):695

    Google Scholar 

  • Jeanjean R, Broda E (1977) Dependence of sulphate uptake by Anacystis nidulans on energy, on osmotic shock and on sulphate starvation. Arch Microbiol 114(1):19–23

    CAS  PubMed  Google Scholar 

  • Jeanthon C, L’Haridon S, Cueff V, Banta A, Reysenbach AL, Prieur D (2002) Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. Int J Syst Evol Microbiol 52(3):765–772

    CAS  PubMed  Google Scholar 

  • Jiménez-López C, Rodriguez-Navarro C, Piñar G, Carrillo-Rosúa FJ, Rodriguez-Gallego M, Gonzalez-Muñoz MT (2007) Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere 68(10):1929–1936

    PubMed  Google Scholar 

  • Jørgensen BB (1990) A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249(4965):152–154

    PubMed  Google Scholar 

  • Jørgensen BB, Bang M, Blackburn TH (1990) Anaerobic mineralization in marine sediments from the Baltic Sea–North Sea transition. Mar Ecol Prog Ser 59:39–54

    Google Scholar 

  • Jørgensen BB, Findlay AJ, Pellerin A (2019) The biogeochemical sulfur cycle of marine sediments. Front Microbiol 10:849

    PubMed  PubMed Central  Google Scholar 

  • Jormakka M, Törnrot S, Byrne B, Iwata S (2002) Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science 295(5561):1863–1868

    PubMed  Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. Biodegradation—Life of Science, pp 289–320. doi: 10.5772/56194

    Google Scholar 

  • Jroundi F, Gómez-Suaga P, Jimenez-Lopez C, González-Muñoz MT, Fernandez-Vivas MA (2012) Stone-isolated carbonatogenic bacteria as inoculants in bioconsolidation treatments for historical limestone. Sci Total Environ 425:89–98

    CAS  PubMed  Google Scholar 

  • Junier P, Junier T, Podell S, Sims DR, Detter JC, Lykidis A, Bernier-Latmani R (2010) The genome of the Gram-positive metal- and sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1. Environ Microbiol 12(10):2738–2754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kety (1979) Disorders of the human brain. Sci Am 241(3):202–218

    CAS  PubMed  Google Scholar 

  • Kim BH, Kim HJ, Hyun MS, Park DH (1999) Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9:127–131

    Google Scholar 

  • Klein L, Bruno R, Bavassano B, Rosenbauer H (1993) Anisotropy and minimum variance of magnetohydrodynamic fluctuations in the inner heliosphere. J Geophys Res Space Physics 98(A10):17461–17466

    Google Scholar 

  • Klenk R, Blieske U, Dieterle V, Ellmer K, Fiechter S, Hengel I, Lux-Steiner MC (1997) Properties of CuInS2 thin films grown by a two-step process without H2S. Solar Energy Mater Solar Cell 49(1–4):349–356

    CAS  Google Scholar 

  • Kodama Y, Watanabe K (2003) Isolation and characterization of a sulfur-oxidizing chemolithotroph growing on crude oil under anaerobic conditions. Appl Environ Microbiol 69(1):107–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krämer M, Cypionka H (1989) Sulfate formation via ATP sulfurylase in thiosulfate- and sulfite-disproportionating bacteria. Arch Microbiol 151(3):232–237

    Google Scholar 

  • Kreke B, Cypionka H (1992) Protonmotive force in freshwater sulfate-reducing bacteria, and its role in sulfate accumulation in Desulfobulbus propionicus. Arch Microbiol 158(3):183–187

    CAS  PubMed  Google Scholar 

  • Kuhad RC, Singh A (2013) Biotechnology for environmental management and resource recovery. Springer, New Delhi, pp 191–218

    Google Scholar 

  • L’Haridon S, Cilia V, Messner P, Raguenes G, Gambacorta A, Sleytr UB, Jeanthon C (1998) Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 48(3):701–711

    Google Scholar 

  • Laanbroek HJ, Stal LJ, Veldkamp H (1978) Utilization of hydrogen and formate by Campylobacter sp. under aerobic and anaerobic conditions. Arch Microbiol 119(1):99–102

    CAS  PubMed  Google Scholar 

  • Laanbroek HJ, Smit AJ, Nulend GK, Veldkamp H (1979) Competition for L-glutamate between specialised and versatile Clostridium sp. Arch Microbiol 120(1):61–66

    CAS  PubMed  Google Scholar 

  • Labrado AL, Brunner B, Bernasconi SM, Peckmann J (2019) Formation of large native sulfur deposits does not require molecular oxygen. Front Microbiol 10:24

    PubMed  PubMed Central  Google Scholar 

  • Langer S, Hashimoto M, Hobl B, Mathes T, Mack M (2013) Flavoproteins are potential targets for the antibiotic roseoflavin in Escherichia coli. J Bacteriol 195(18):4037–4045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larson LJ, Kuno M, Tao FM (2000) Hydrolysis of sulfur trioxide to form sulfuric acid in small water clusters. J Chem Phys 112(20):8830–8838

    CAS  Google Scholar 

  • Laue H, Friedrich M, Ruff J, Cook AM (2001) Dissimilatory sulfite reductase (desulfoviridin) of the taurine-degrading, non-sulfate-reducing bacterium Bilophila wadsworthia RZATAU contains a fused DsrB–DsrD subunit. J Bacteriol 183(5):1727–1733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leathen WW, Kinsel NA, Braley SA Sr (1956) Ferrobacillus ferrooxidans: a chemosynthetic autotrophic bacterium. J Bacteriol 72(5):700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leavitt WD, Bradley AS, Santos AA, Pereira IAC, Johnston DT (2015) Sulfur isotope effects of dissimilatory sulfite reductase. Front Microbiol 6:1392

    PubMed  PubMed Central  Google Scholar 

  • Leyva Salas M, Mounier J, Valence F, Coton M, Thierry A, Coton E (2017) Antifungal microbial agents for food biopreservation—a review. Microorganism 5(3):37

    Google Scholar 

  • Liamleam W, Annachhatre AP (2007) Electron donors for biological sulfate reduction. Biotechnol Adv 25(5):452–463

    CAS  PubMed  Google Scholar 

  • Lie TJ, Godchaux W, Leadbetter ER (1999) Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis. Appl Environ Microbiol 65(10):4611–4617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, Matsudaira P (2000) Molecular cell biology, 6th edn. W.H. Freeman and Company, New York

    Google Scholar 

  • Lonergan DJ, Jenter HL, Coates JD, Phillips EJ, Schmidt TM, Lovley DR (1996) Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178(8):2402–2408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long Y, Fang Y, Shen D, Feng H, Chen T (2016) Hydrogen sulfide (H2S) emission control by aerobic sulfate reduction in landfill. Sci Rep 6:38103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294(1):1–8

    CAS  PubMed  Google Scholar 

  • Lovley DR, Phillips EJ, Lonergan DJ, Widman PK (1995) Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl Environ Microbiol 61(6):2132–2138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macy JM, Schröder I, Thauer RK, Kröger A (1986) Growth the Wolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources. Arch Microbiol 144(2):147–150

    CAS  Google Scholar 

  • Majumder ELW, Wall JD (2017) Uranium bio-transformations: chemical or biological processes? Open J Inorg Chem 7(2):28–60

    CAS  Google Scholar 

  • Makarova KS, Wolf YI, Mekhedov SL, Mirkin BG, Koonin EV (2005) Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res 33(14):4626–4638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manzella MP, Holmes DE, Rocheleau JM, Chung A, Reguera G, Kashefi K (2015) The complete genome sequence and emendation of the hyperthermophilic, obligate iron-reducing archaeon “Geoglobus ahangari” strain 234 T. Stand Genomic Sci 10(1):77

    PubMed  PubMed Central  Google Scholar 

  • Martins M, Faleiro ML, Barros RJ, Veríssimo AR, Barreiros MA, Costa MC (2009) Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination. J Hazard Mater 166(2–3):706–713

    CAS  PubMed  Google Scholar 

  • Masuda S, Bao Z, Okubo T, Sasaki K, Ikeda S, Shinoda R, Minamisawa K (2016) Sulfur fertilization changes the community structure of rice root, and soil-associated bacteria. Microbes Environ 31(1):70–75

    PubMed  PubMed Central  Google Scholar 

  • Matejuk A, Leng Q, Begum MD, Woodle MC, Scaria P, Chou ST, Mixson AJ (2010) Peptide-based antifungal therapies against emerging infections. Drugs Future 35(3):197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matias PM, Pereira IA, Soares CM, Carrondo MA (2005) Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog Biophys Mol Biol 89(3):292–329

    CAS  PubMed  Google Scholar 

  • May E, Webster A, Inkpen R, Zamarreño D, Kuever J, Rudolph C, Ranalli G (2008) The BIOBRUSH project for bioremediation of Heritage stone. In: Heritage microbiology and science: microbes, monuments and maritime materials. Royal Society of Chemistry, Cambridge, pp 76–93

    Google Scholar 

  • McNamara CJ, Mitchell R (2005) Microbial deterioration of historic stone. Front Ecol Environ 3(8):445–451

    Google Scholar 

  • Md Zain WS, Salleh H, Insyirah, N., Abdullah, A. (2018). Natural biocides for mitigation of sulphate reducing bacteria. Int J Corrosion 2018: 1–7

    Google Scholar 

  • Melim Kristen M, Shinglman Penelope J, Boston Diana E, Northup Michael N, Spilde J, Michael Queen L (2001) Evidence for microbial involvement in pool finger precipitation, Hidden Cave, New Mexico. Geomicrobiol J 18(3):311–329

    Google Scholar 

  • Menendez JA, Menendez EM, Iglesias MJ, Garcıa A, Pis JJ (1999) Modification of the surface chemistry of active carbons by means of microwave-induced treatments. Carbon 37(7):1115–1121

    CAS  Google Scholar 

  • Meyer B, Kuever J (2008) Homology modeling of dissimilatory APS reductases (AprBA) of sulfur-oxidizing and sulfate-reducing prokaryotes. PLoS One 3(1):e1514

    PubMed  PubMed Central  Google Scholar 

  • Miralles-Robledillo JM, Torregrosa-Crespo J, Martínez-Espinosa RM, Pire C (2019) DMSO reductase family: phylogenetics and applications of extremophiles. Int J Mol Sci 20(13):3349

    CAS  PubMed Central  Google Scholar 

  • Módis K, Bos EM, Calzia E, Van Goor H, Coletta C, Papapetropoulos A, Szabo C (2014) Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects. Br J Pharmacol 171(8):2123–2146

    PubMed  PubMed Central  Google Scholar 

  • Möller-Zinkhan D, Börner G, Thauer RK (1989) Function of methanofuran, tetrahydromethanopterin, and coenzyme F 420 in Archaeoglobus fulgidus. Arch Microbiol 152(4):362–368

    Google Scholar 

  • Müller A, Krebs B (eds) (2016) Sulfur: its significance for chemistry, for the geo-, bio-, and cosmosphere and technology, vol 5. Elsevier, Burlington

    Google Scholar 

  • Muñoz-Dorado J, Marcos-Torres FJ, García-Bravo E, Moraleda-Muñoz A, Pérez J (2016) Myxobacteria: moving, killing, feeding, and surviving together. Front Microbiol 7:781

    PubMed  PubMed Central  Google Scholar 

  • Mussmann M, Richter M, Lombardot T, Meyerdierks A, Kuever J, Kube M, Amann R (2005) Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer. J Bacteriol 187(20):7126–7137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Myers CR, Nealson KH (1988a) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240(4857):1319–1321

    CAS  PubMed  Google Scholar 

  • Myers CR, Nealson KH (1988b) Microbial reduction of manganese oxides: interactions with iron and sulfur. Geochim Cosmochim Acta 52(11):2727–2732

    CAS  Google Scholar 

  • Nanninga HJ, Gottschal JC (1987) Properties of Desulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant. Appl Environ Microbiol 53(4):802–809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nazina TN, Rozanova EP, Kuznetsov SI (1985) Microbial oil transformation processes accompanied by methane and hydrogen-sulfide formation. Geomicrobiol J 4(2):103–130

    CAS  Google Scholar 

  • Newsome L, Morris K, Lloyd JR (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol 363:164–184

    CAS  Google Scholar 

  • Nguyen JL, Schwartz J, Dockery DW (2014) The relationship between indoor and outdoor temperature, apparent temperature, relative humidity, and absolute humidity. Indoor Air 24(1):103–112

    CAS  PubMed  Google Scholar 

  • Noreña CZ, Rigon RT (2018) Effect of blanching on enzyme activity and bioactive compounds of blackberry. Braz Arch Biol Technol 61:e18180018. https://doi.org/10.1590/1678-4324-2018180018

  • Northup E, Kathleen H, Lavoie D (2001) Geomicrobiology of caves: a review. Geomicrobiol J 18(3):199–222

    CAS  Google Scholar 

  • Norvaišienė R, Miniotaitė R, Stankevičius V (2003) Climatic and air pollution effects on building facades. Mater Sci (Medžiagotyra) 16(1):80–85

    Google Scholar 

  • Novotný C, Kapralek F (1979) Participation of quinone and cytochrome b in tetrathionate reductase respiratory chain of Citrobacter freundii. Biochem J 178(1):237–240

    PubMed  PubMed Central  Google Scholar 

  • O’Brien JM, Wolkin RH, Moench TT, Morgan JB, Zeikus JG (1984) Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J Bacteriol 158(1):373–375

    PubMed  PubMed Central  Google Scholar 

  • O’Flaherty V, Lens P, Leahy B, Colleran E (1998) Long-term competition between sulphate-reducing and methane-producing bacteria during full-scale anaerobic treatment of citric acid production wastewater. Water Res 32(3):815–825

    Google Scholar 

  • Odom JM, Singleton R (1993) The sulfate-reducing bacteria: contemporary perspectives. Springer, New York, pp 189–210

    Google Scholar 

  • Okafor N (2011) Taxonomy, physiology, and ecology of aquatic microorganisms. In: Environmental microbiology of aquatic and waste systems. Springer, Dordrecht, pp 47–107

    Google Scholar 

  • Oliveira TF, Vonrhein C, Matias PM, Venceslau SS, Pereira IA, Archer M (2008) The crystal structure of Desulfovibrio vulgaris dissimilatory sulfite reductase bound to DsrC provides novel insights into the mechanism of sulfate respiration. J Biol Chem 283(49):34141–34149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira TF, Franklin E, Afonso JP, Khan AR, Oldham NJ, Pereira IA, Archer M (2011) Structural insights into dissimilatory sulfite reductases: structure of desulforubidin from Desulfomicrobium norvegicum. Front Microbiol 2(71):71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver MJ (2014) Why we need GMO crops in agriculture. Missouri Med 111(6):492

    PubMed  PubMed Central  Google Scholar 

  • Ollivier B, Zeyen N, Gales G, Hickman-Lewis K, Gaboyer F, Benzerara K, Westall F (2018) Importance of prokaryotes in the functioning and evolution of the present and past geosphere and biosphere. In: Prokaryotes and evolution. Springer, Cham, pp 57–129

    Google Scholar 

  • Oltmann LF, Stouthamer AH (1975) Reduction of tetrathionate, trithionate and thiosulphate, and oxidation of sulphide in Proteus mirabilis. Arch Microbiol 105(1):135–142

    CAS  PubMed  Google Scholar 

  • Oltmann LF, Van der Beek EG, Stouthamer AH (1975) Reduction of inorganic sulphur compounds by facultatively aerobic bacteria. Plant Soil 43(1–3):153–169

    CAS  Google Scholar 

  • Ortega-Calvo JJ, Ariño X, Hernandez-Marine M, Saiz-Jimenez C (1995) Factors affecting the weathering and colonization of monuments by phototrophic microorganisms. Sci Total Environ 167(1–3):329–341

    CAS  Google Scholar 

  • Ouattara AS, Traore AS, Garcia JL (1992) Characterization of Anaerovibrio burkinabensis sp. nov., a lactate fermenting bacterium isolated from rice field soils. Int J Syst Evol Microbiol 42(3):390–397

    CAS  Google Scholar 

  • Oyaizu H, Woese CR (1985) Phylogenetic relationships among the sulfate respiring bacteria, myxobacteria and purple bacteria. Syst Appl Microbiol 6(3):257–263

    CAS  Google Scholar 

  • Ozawa K, Tsapin AI, Nealson KH, Cusanovich MA, Akutsu H (2000) Expression of a tetraheme protein, Desulfovibrio vulgaris Miyazaki F cytochrome c3, in Shewanella oneidensis MR-1. Appl Environ Microbiol 66(9):4168–4171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276(5313):734–740

    CAS  PubMed  Google Scholar 

  • Palková Z (2004) Multicellular microorganisms: laboratory versus nature. EMBO Rep 5(5):470–476

    PubMed  PubMed Central  Google Scholar 

  • Parey K, Fritz G, Ermler U, Kroneck PM (2013) Conserving energy with sulfates around 100 C—structure and mechanism of key metal enzymes in hyperthermophilic Archaeoglobus fulgidus. Metallomics 5(4):302–317

    CAS  PubMed  Google Scholar 

  • Parkes RJ, Gibson GR, Mueller-Harvey I, Buckingham WJ, Herbert RA (1989) Determination of the substrates for sulphate-reducing bacteria within marine and esturaine sediments with different rates of sulphate reduction. Microbiology 135(1):175–187

    CAS  Google Scholar 

  • Peck HD (1961) Enzymatic basis for assimilatory and dissimilatory sulfate reduction. J Bacteriol 82(6):933–939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peck HD Jr (1960) Adenosine 5′-phosphosulfate as an intermediate in the oxidation of thiosulfate by Thiobacillus thioparus. Proc Natl Acad Sci U S A 46(8):1053

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peck HD, Odom M (1981) Anaerobic fermentations of cellulose to methane. In: Trends in the biology of fermentations for fuels and chemicals. Springer, Boston, pp 375–395

    Google Scholar 

  • Pereira Roders A, Van Oers R (2011) Initiating cultural heritage research to increase Europe’s competitiveness. J Cultural Herit Manag Sustain Dev 1(2):84–95

    Google Scholar 

  • Pereira IA, Ramos AR, Grein F, Marques MC, Da Silva SM, Venceslau SS (2011a) A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front Microbiol 2:69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira PHF, Voorwald HCJ, Cioffi MOH, Mullinari DR, Da Luz SM, Da Silva MLCP (2011b) Sugarcane bagasse pul** and bleaching: thermal and chemical characterization. Biol Res 6(3):2471–2482

    CAS  Google Scholar 

  • Pester M, Knorr KH, Friedrich MW, Wagner M, Loy A (2012) Sulfate-reducing microorganisms in wetlands—fameless actors in carbon cycling and climate change. Front Microbiol 3:72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110(1):3–12

    CAS  PubMed  Google Scholar 

  • Pfennig N, Widdel F (1981) Ecology and physiology of some anaerobic bacteria from the microbial sulfur cycle. In: Biology of inorganic nitrogen and sulfur. Springer, Berlin/Heidelberg, pp 169–177

    Google Scholar 

  • Pihl TD, Black LK, Schulman BA, Maier RJ (1992) Hydrogen-oxidizing electron transport components in the hyperthermophilic archaebacterium Pyrodictium brockii. J Bacteriol 174(1):137–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pikuta E, Lysenko A, Suzina N, Osipov G, Kuznetsov B, Tourova T, Laurinavichius K (2000) Desulfotomaculum alkaliphilum sp. nov., a new alkaliphilic, moderately thermophilic, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50(1):25–33

    CAS  PubMed  Google Scholar 

  • Plugge CM, Zhang W, Scholten J, Stams AJ (2011) Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2:81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poyatos F, Morales F, Nicholson AW, Giordano A (2018) Physiology of biodeterioration on canvas paintings. J Cell Physiol 233(4):2741–2751

    CAS  PubMed  Google Scholar 

  • Prange A, Arzberger I, Engemann C, Modrow H, Schumann O, Trüper HG, Hormes J (1999) In situ analysis of sulfur in the sulfur globules of phototrophic sulfur bacteria by x-ray absorption near edge spectroscopy. Biochim Biophys Acta (BBA)-Gen Subj 1428(2–3):446–454

    CAS  Google Scholar 

  • Prioretti L, Gontero B, Hell R, Giordano M (2014) Diversity and regulation of ATP sulfurylase in photosynthetic organisms. Front Plant Sci 5:597

    PubMed  PubMed Central  Google Scholar 

  • Probst GS, Bousquet WF, Miya TS (1977) Correlation of hepatic metallothionein concentrations with acute cadmium toxicity in the mouse. Toxicol Appl Pharmacol 39(1):61–69

    CAS  PubMed  Google Scholar 

  • Rabus R, Hansen TA, Widdel F (2013) Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin/Heidelberg, pp 309–404

    Google Scholar 

  • Ramesh MV, Sirakova TD, Kolattukudy PE (1995) Cloning and characterization of the cDNAs and genes (mep20) encoding homologous metalloproteinases from Aspergillus flavus and A. fumigatus. Gene 165(1):121–125

    CAS  PubMed  Google Scholar 

  • Ranalli G, Chiavarini M, Guidetti V, Marsala F, Matteini M, Zanardini E, Sorlini C (1997) The use of microorganisms for the removal of sulphates on artistic stoneworks. Int Biodeterior Biodegrad 40(2–4):255–261

    CAS  Google Scholar 

  • Ranalli G, Matteini M, Tosini I, Zanardini E, Sorlini C (2000) Bioremediation of cultural heritage: removal of sulphates, nitrates and organic substances. In: Of microbe art. Springer, Boston, pp 231–245

    Google Scholar 

  • Ranalli G, Alfano G, Belli C, Lustrato G, Colombini MP, Bonaduce I, Zanardini E, Abbruscato P, Cappitelli F, Sorlini C (2005) Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. J Appl Microbiol 98:73–83

    CAS  PubMed  Google Scholar 

  • Rapp-Giles BJ, Casalot L, English RS, Ringbauer JA, Dolla A, Wall JD (2000) Cytochrome c3 mutants of Desulfovibrio desulfuricans. Appl Environ Microbiol 66(2):671–677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reece SY, Hodgkiss JM, Stubbe J, Nocera DG (2006) Proton-coupled electron transfer: the mechanistic underpinning for radical transport and catalysis in biology. Philos Trans R Soc B Biol Sci 361(1472):1351–1364

    CAS  Google Scholar 

  • Roden EE, Lovley DR (1993) Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol 59(3):734–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Navarro C, Rodriguez-Gallego M, Chekroun KB, Gonzalez-Munoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus induced carbonate biomineralization. Appl Environ Microbiol 69(4):2182–2193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogerio-Candelera MA, Lazzari M, Cano E (eds) (2013) Science and technology for the conservation of cultural heritage. CRC, Boca Raton

    Google Scholar 

  • Rosnes JT, Torsvik T, Lien T (1991) Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl Environ Microbiol 57(8):2302–2307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy AB, Trudinger PA (1970) The chemistry of some sulphur compounds. The biochemistry of inorganic compounds of sulphur. Cambridge University Press, Cambridge, pp 7–29

    Google Scholar 

  • Saiz-Jimenez C (1993) Deposition of airborne organic pollutants on historic buildings. Atmos Environ Part B Urban Atmos 27(1):77–85

    Google Scholar 

  • Sáiz-Jiménez C, Garcia-Rowe J, Rodriguez-Hidalgo JM (1991) Biodeterioration of polychrome Roman mosaics. Int Biodeterior 28(1–4):65–79

    Google Scholar 

  • Sanmartín P, Bosch-Roig P (2019) Biocleaning to remove graffiti: a real possibility? Advances towards a complete protocol of action. Coating 9(2):104

    Google Scholar 

  • Santoro C, Zarkout K, Le Hô AS, Mirambet F, Gourier D, Binet L, Griesmar P (2014) New highlights on degradation process of verdigris from easel paintings. Appl Phys A 114(3):637–645

    CAS  Google Scholar 

  • Santos AA, Venceslau SS, Grein F, Leavitt WD, Dahl C, Johnston DT, Pereira IA (2015) A protein trisulfide couples dissimilatory sulfate reduction to energy conservation. Science 350(6267):1541–1545

    CAS  PubMed  Google Scholar 

  • Schäfer H, Mathey D, Hugo F, Bhakdi S (1986) Deposition of the terminal C5b-9 complement complex in infarcted areas of human myocardium. J Immunol 137(6):1945–1949

    PubMed  Google Scholar 

  • Schauder R, Widdel F, Fuchs G (1987) Carbon assimilation pathways in sulfate-reducing bacteria II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus. Arch Microbiol 148(3):218–225

    CAS  Google Scholar 

  • Schauder R, Preuß A, Jetten M, Fuchs G (1988) Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. Arch Microbiol 151(1):84–89

    Google Scholar 

  • Scheffers DJ, Pinho MG (2005) Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev 69(4):585–607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schiffer A, Parey K, Warkentin E, Diederichs K, Huber H, Stetter KO, Ermler U (2008) Structure of the dissimilatory sulfite reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus. J Mol Biol 379(5):1063–1074

    CAS  PubMed  Google Scholar 

  • Schillinger U, Geisen R, Holzapfel WH (1996) Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci Technol 7(5):158–164

    CAS  Google Scholar 

  • Schlesner H, Lawson PA, Collins MD, Weiss N, Wehmeyer U, Völker H, Thomm M (2001) Filobacillus milensis gen. nov., sp. nov., a new halophilic spore-forming bacterium with Orn-D-Glu-type peptidoglycan. Int J Syst Evol Microbiol 51(2):425–431

    CAS  PubMed  Google Scholar 

  • Schmidt A, Jäger K (1992) Open questions about sulfur metabolism in plants. Annu Rev Plant Biol 43(1):325–349

    CAS  Google Scholar 

  • Schmitz ML, Baeuerle PA (1991) The p65 subunit is responsible for the strong transcription activating potential of NF-kappa B. EMBO J 10(12):3805–3817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scholten JC, Stams AJ (2000) Isolation and characterization of acetate-utilizing anaerobes from freshwater sediment. Microb Ecol 40(4):292–299

    CAS  PubMed  Google Scholar 

  • Segerer AH, Stetter KO, Klink F (1985) Two contrary modes of chemolithotrophy in the same archaebacterium. Nature 313(6005):787

    CAS  PubMed  Google Scholar 

  • Segerer AH, Neuner A, Kristjansson JK, Stetter KO (1986) Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Evol Microbiol 36(4):559–564

    Google Scholar 

  • Segerer AH, Trincone A, Gahrtz M, Stetter KO (1991) Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. Int J Syst Evol Microbiol 41(4):495–501

    Google Scholar 

  • Selig M, Schönheit P (1994) Oxidation of organic compounds to CO2 with sulfur or thiosulfate as electron acceptor in the anaerobic hyperthermophilic archaea Thermoproteus tenax and Pyrobaculum islandicum proceeds via the citric acid cycle. Arch Microbiol 162(4):286–294

    CAS  Google Scholar 

  • Selig M, Xavier KB, Santos H, Schönheit P (1997) Comparative analysis of Embden–Meyerhof and Entner–Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch Microbiol 167(4):217–232

    CAS  PubMed  Google Scholar 

  • Shen Y, Buick R (2004) The antiquity of microbial sulfate reduction. Earth Sci Rev 64(3–4):243–272

    CAS  Google Scholar 

  • Siebers B, Hensel R (1993) Glucose catabolism of the hyperthermophilic archaeum Thermoproteus tenax. FEMS Microbiol Lett 111(1):1–7

    CAS  Google Scholar 

  • Silva M, Rosado T, Teixeira D, Candeias A, Caldeira AT (2015) Production of green biocides for cultural heritage. Novel Biotechnol Solution. Int J Conserv Sci 6:519–530

    CAS  Google Scholar 

  • Silva-Castro GA, Uad I, Gonzalez-Martinez A, Rivadeneyra A, Gonzalez-Lopez J, Rivadeneyra MA (2015) Bioprecipitation of calcium carbonate crystals by bacteria isolated from saline environments grown in culture media amended with seawater and real brine. Biomed Res Int 2015:1–12

    Google Scholar 

  • Simon J, Kroneck PM (2013) Microbial sulfite respiration. In: Advances in microbial physiology, vol 62. Academic, New York, pp 45–117

    Google Scholar 

  • Sirko A, Hryniewicz M, Hulanicka D, Böck A (1990) Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of the cys TWAM gene cluster. J Bacteriol 172(6):3351–3357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skyring GW (1987) Sulfate reduction in coastal ecosystems. Geomicrobiol J 5(3–4):295–374

    CAS  Google Scholar 

  • Smutná T, Pilarová K, Tarábek J, Tachezy J, Hrdý I (2014) Novel functions of an iron–sulfur flavoprotein from Trichomonas vaginalis hydrogenosomes. Antimicrob Chemo 58(6):3224–3232

    Google Scholar 

  • Soffritti I, D’Accolti M, Lanzoni L, Volta A, Bisi M, Mazzacane S, Caselli E (2019) The potential use of microorganisms as restorative agents: an update. Sustainability 11(14):3853

    CAS  Google Scholar 

  • Speich N, Dahl C, Heisig P, Klein A, Lottspeich F, Stetter KO, Trüper HG (1994) Adenylylsulphate reductase from the sulphate-reducing archaeon Archaeoglobus fulgidus: cloning and characterization of the genes and comparison of the enzyme with other iron–sulphur flavoproteins. Microbiology 140(6):1273–1284

    CAS  PubMed  Google Scholar 

  • Sperling D, Kappler U, Wynen A, Dahl C, Trüper HG (1998) Dissimilatory ATP sulfurylase from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases. FEMS Microbiol Lett 162(2):257–264

    CAS  PubMed  Google Scholar 

  • Stahlmann R, Korte M, Van Loveren H, Vos JG, Thiel R, Neubert D (1992) Abnormal thymus development and impaired function of the immune system in rats after prenatal exposure to aciclovir. Arch Toxicol 66(8):551–559

    CAS  PubMed  Google Scholar 

  • Steinsbu BO, Thorseth IH, Nakagawa S, Inagaki F, Lever MA, Engelen B, Pedersen RB (2010) Archaeoglobus sulfaticallidus sp. nov., a thermophilic and facultatively lithoautotrophic sulfate-reducer isolated from black rust exposed to hot ridge flank crustal fluids. Int J Syst Evol Microbiol 60(12):2745–2752

    CAS  PubMed  Google Scholar 

  • Sterflinger K, Piñar G (2013) Microbial deterioration of cultural heritage and works of art—tilting at windmills? Appl Microbiol Biotechnol 97(22):9637–9646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stetter KO, Huber R, Blöchl E, Kurr M, Eden RD, Fielder M, Vance I (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365(6448):743

    Google Scholar 

  • Sutyak KE, Wirawan RE, Aroutcheva AA, Chikindas ML (2008) Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product–derived Bacillus amyloliquefaciens. J Appl Microbiol 104(4):1067–1074

    CAS  PubMed  Google Scholar 

  • Syed (2006) Atmospheric corrosion of materials. EMI J Eng Res 11(1):1–24

    Google Scholar 

  • Szabo C, Ransy C, Módis K, Andriamihaja M, Murghes B, Coletta C, Bouillaud F (2014) Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br J Pharmacol 171(8):2099–2122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor J, Parkes RJ (1983) The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. Microbiology 129(11):3303–3309

    CAS  Google Scholar 

  • Thom J, Anderson GM (2008) The role of thermochemical sulfate reduction in the origin of Mississippi Valley–type deposits. I. Experimental results. Geofluids 8(1):16–26

    CAS  Google Scholar 

  • Tian H, Gao P, Chen Z, Li Y, Li Y, Wang Y, Ma T (2017) Compositions and abundances of sulfate-reducing and sulfur-oxidizing microorganisms in water-flooded petroleum reservoirs with different temperatures in China. Front Microbiol 8:143

    PubMed  PubMed Central  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671

    CAS  PubMed  Google Scholar 

  • Toran L, Harris RF (1989) Interpretation of sulfur and oxygen isotopes in biological and abiological sulfide oxidation. Geochim Cosmochim Acta 53(9):2341–2348

    CAS  Google Scholar 

  • Ueki A, Suto T (1979) Cellular fatty acid composition of sulfate-reducing bacteria. J Gen Appl Microbiol 25(3):185–196

    CAS  Google Scholar 

  • Ullrich TC, Blaesse M, Huber R (2001) Crystal structure of ATP sulfurylase from Saccharomyces cerevisiae, a key enzyme in sulfate activation. EMBO J 20(3):316–329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urbina J, Patil A, Fujishima K, Paulino-Lima IG, Saltikov C, Rothschild LJ (2019) A new approach to biomining: bioengineering surfaces for metal recovery from aqueous solutions. Sci Rep 9(1):1–11

    CAS  Google Scholar 

  • Urzì C (1999) On microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. A report on the International Conference on Microbiology and Conservation (ICMC 1999). Environ Microbiol 1(6):551–553

    PubMed  Google Scholar 

  • Valente FM, Saraiva LM, LeGall J, Xavier AV, Teixeira M, Pereira IA (2001) A membrane-bound cytochrome c3: a type II cytochrome c3 from Desulfovibrio vulgaris Hildenborough. Chembiochem 2(12):895–905

    CAS  PubMed  Google Scholar 

  • Van Driessche AE, Stawski TM, Benning LG, Kellermeier M (2017) Calcium sulfate precipitation throughout its phase diagram. In: New perspectives on mineral nucleation and growth. Springer, Cham, pp 227–256

    Google Scholar 

  • Velho RV, Medina LFC, Segalin J, Brandelli A (2011) Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi. Folia Microbiol 56(4):297

    CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain–treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66

    CAS  Google Scholar 

  • Venceslau SS, Lino RR, Pereira IA (2010) The Qrc membrane complex, related to the alternative complex III, is a menaquinone reductase involved in sulfate respiration. J Biol Chem 285(30):22774–22783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venceslau SS, Stockdreher Y, Dahl C, Pereira IAC (2014) The “bacterial heterodisulfide” DsrC is a key protein in dissimilatory sulfur metabolism. Biochim Biophysica Acta (BBA)-Bioenerg 1837(7):1148–1164

    CAS  Google Scholar 

  • Venkateswaran K, Chung S, Allton J, Kern R (2004) Evaluation of various cleaning methods to remove Bacillus spores from spacecraft hardware materials. Astrobiology 4(3):377–390

    CAS  PubMed  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65(1):1–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM (2004) Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68(1):132–153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vladár P, Rusznyák A, Márialigeti K, Borsodi AK (2008) Diversity of sulfate-reducing bacteria inhabiting the rhizosphere of Phragmites australis in Lake Velencei (Hungary) revealed by a combined cultivation-based and molecular approach. Microb Ecol 56(1):64–75

    PubMed  Google Scholar 

  • Vorholt JA, Hafenbradl D, Stetter KO, Thauer RK (1997) Pathways of autotrophic CO2 fixation and of dissimilatory nitrate reduction to N2O in Ferroglobus placidus. Arch Microbiol 167(1):19–23

    CAS  PubMed  Google Scholar 

  • Wang G, Zhang R, Gomez ME, Yang L, Zamora ML, Hu M, Li J (2016) Persistent sulfate formation from London fog to Chinese haze. Proc Natl Acad Sci 113(48):13630–13635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46(4):343–368

    CAS  Google Scholar 

  • Warthmann R, Cypionka H (1990) Sulfate transport in Desulfobulbus propionicus and Desulfococcus multivorans. Arch Microbiol 154(2):144–149

    CAS  Google Scholar 

  • Warthmann R, Van Lith Y, Vasconcelos C, McKenzie JA, Karpoff AM (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28(12):1091–1094

    CAS  Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: The prokaryotes. Springer, New York, pp 3352–3378

    Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12(3):259–276

    CAS  PubMed  Google Scholar 

  • Wilmes P, Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6(9):911–920

    CAS  PubMed  Google Scholar 

  • Wilson LG, Asahi T, Bandurski RS (1961) Yeast sulfate-reducing system I. Reduction of sulfate to sulfite. J Biol Chem 236(6):1822–1829

    CAS  PubMed  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci 74(11):5088–5090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Magrum LJ, Fox GE (1978) Archaebacteria. J Mol Evol 11(3):245–252

    CAS  PubMed  Google Scholar 

  • Wolf J, Stark H, Fafenrot K, Albersmeier A, Pham TK, Müller KB, Kouril T (2016) A systems biology approach reveals major metabolic changes in the thermoacidophilic archaeon Sulfolobus solfataricus in response to the carbon source L-fucose versus D-glucose. Mol Microbiol 102(5):882–908

    CAS  PubMed  Google Scholar 

  • Yant WP, Schrenk HH, Patty FA (1936) A plant study of urine sulfate determinations as a measure of benzene exposure. J Ind Hyg Toxicol 18:349–356

    CAS  Google Scholar 

  • Ye J, Zhang R, Nielsen S, Joseph SD, Huang D, Thomas T (2016) A combination of biochar–mineral complexes and compost improves soil bacterial processes, soil quality, and plant properties. Front Microbiol 7:372. https://doi.org/10.3389/fmicb.2016.00372

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon S, Sanford RA, Löffler FE (2013) Shewanella spp. use acetate as an electron donor for denitrification but not ferric iron or fumarate reduction. Appl Environ Microbiol 79(8):2818–2822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zellner G, Messner P, Winter J, Stackebrandt E (1998) Methanoculleus palmolei sp. nov., an irregularly coccoid methanogen from an anaerobic digester treating wastewater of a palm oil plant in North-Sumatra, Indonesia. Int J Syst Evol Microbiol 48(4):1111–1117

    CAS  Google Scholar 

  • Zhang Y, Wang X, Zhen Y, Mi T, He H, Yu Z (2017) Microbial diversity and community structure of sulfate-reducing and sulfur-oxidizing bacteria in sediment cores from the East China Sea. Front Microbiol 8:2133

    PubMed  PubMed Central  Google Scholar 

  • Zhu T, Dittrich M (2016) Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front Bioeng Biotechnol 4:4

    PubMed  PubMed Central  Google Scholar 

  • Zillig W, Stetter KO, Prangishvilli D, Schäfer W, Wunderl S, Janekovic D, Palm P (1982) Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales. Zentralblatt Für Bakteriologie Mikrobiologie Und Hygiene: I. Abt. Originale C: Allgemeine, Angewandte Und Ökologische Mikrobiologie 3(2):304–317

    CAS  Google Scholar 

  • Zinder SH, Brock TD (1978) Dimethyl sulphoxide reduction by micro-organisms. Microbiology 105(2):335–342

    CAS  Google Scholar 

  • Zöphel A, Kennedy MC, Beinert H, Kroneck PMH (1988) Investigations on microbial sulfur respiration. Arch Microbiol 150(1):72–77

    Google Scholar 

Download references

Acknowledgements

The authors are greatful to Prof. Jameel Ahmad, Principal, Gandhi Faiz-E-Aam College, Shahjahanpur, Uttar Pradesh for their suggestion and constant encouragement.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandra, P., Enespa, Kumar, R., Ahmad, J. (2020). The Role of Microorganisms in Removal of Sulfates from Artistic Stonework. In: Yadav, A., Rastegari, A., Gupta, V., Yadav, N. (eds) Microbial Biotechnology Approaches to Monuments of Cultural Heritage. Springer, Singapore. https://doi.org/10.1007/978-981-15-3401-0_7

Download citation

Publish with us

Policies and ethics

Navigation