Hybridized Bonding

  • Chapter
  • First Online:
Electron and Phonon Spectrometrics
  • 485 Accesses

Abstract

Atoms of electronegative elements such as F, O, N and S bond to atoms of lower electronegativity form new chemical bonds with an association of positively-charged holes, nonbonding lone pairs, and antibonding dipoles, which modifies the valence band by introducing additionally four DOS features. The derived DOS features are detectable using STS (around EF), IPES (inverse PES, E > EF), and PES (E < EF). New bond formation also modifies the crystal potential and hence results in further core-level entrapment. The polarization will in turn screen and split the potential to add excessive features to the core band. Atomic undercoordination and orbital hybridization enhance each other on the nonbonding electron polarization that fosters the monolayer high-TC and topological insulator edge superconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.M. Chua, Y. Kuk, P.J. Silverman, Oxygen chemisorption on Cu(110): an atomic view by scanning tunneling microscopy. Phys. Rev. Lett. 63(4), 386–389 (1989)

    Article  ADS  Google Scholar 

  2. J. Tersoff, D. Hamann, Theory of the scanning tunneling microscope, in Scanning Tunneling Microscopy (Springer, Heidelberg, 1985), pp. 59–67

    Google Scholar 

  3. J. Wintterlin, R.J. Behm, In the Scanning Tunnelling Microscopy I, ed. H.J. Günthert, R. Wiesendanger (Springer, Berlin, 1992)

    Google Scholar 

  4. W. Jacob, V. Dose, A. Goldmann, Atomic adsorption of oxygen on Cu (111) and Cu (110). Appl. Phys. A 41(2), 145–150 (1986)

    Article  ADS  Google Scholar 

  5. W. Sesselmann et al., Probing the local density of states of metal-surfaces by deexcitation of metastable noble-gas atoms. Phys. Rev. Lett. 50(6), 446–450 (1983)

    Article  ADS  Google Scholar 

  6. C.Q. Sun, O-Cu(001): II. VLEED quantification of the four-stage Cu3O2 bonding kinetics. Surf. Rev. Lett. 8(6), 703–734 (2001)

    Google Scholar 

  7. C.Q. Sun, O-Cu(001): I. Binding the signatures of LEED, STM and PES in a bond-forming way. Surf. Rev. Lett. 8(3–4), 367–402 (2001)

    Google Scholar 

  8. R. DiDio, D. Zehner, E. Plummer, An angle-resolved UPS study of the oxygen-induced reconstruction of Cu (110). J. Vac. Sci. Technol., A 2(2), 852–855 (1984)

    Article  ADS  Google Scholar 

  9. V.P. Belash et al., Transformation of the electronic structure of Cu into Cu2O in the adsorption of oxygen. Surf. Rev. Lett. 6(3–4), 383–388 (1999)

    Article  ADS  Google Scholar 

  10. R. Courths et al., Dispersion of the oxygen-induced bands on Cu (110)—an angle-resolved UPS study of the system p(2x1)O/Cu(110). Solid State Commun. 63(7), 619–623 (1987)

    Article  ADS  Google Scholar 

  11. C. Surgers, M. Schock, H. von Lohneysen, Oxygen-induced surface structure of Nb(110). Surf. Sci. 471(1–3), 209–218 (2001)

    Article  ADS  Google Scholar 

  12. V. Dose, Momentum-resolved inverse photoemission. Surf. Sci. Rep. 5, 337–378 (1986)

    Article  ADS  Google Scholar 

  13. G. Binnig et al., Tunneling spectroscopy and inverse photoemission—image and field states. Phys. Rev. Lett. 55(9), 991–994 (1985)

    Article  ADS  Google Scholar 

  14. T. Jung, Y.W. Mo, F.J. Himpsel, Identification of metals in scanning-tunneling-microscopy via image states. Phys. Rev. Lett. 74(9), 1641–1644 (1995)

    Article  ADS  Google Scholar 

  15. M. Portalupi et al., Electronic structure of epitaxial thin NiO(100) films grown on Ag(100): towards a firm experimental basis. Phys. Rev. B 64(16), 165402 (2001)

    Article  ADS  Google Scholar 

  16. R. Pantel, M. Bujor, J. Bardolle, Continuous measurement of surface-potential variations during oxygen-adsorption on (100), (110) and (111) faces of niobium using mirror electron-microscope. Surf. Sci. 62(2), 589–609 (1977)

    Article  ADS  Google Scholar 

  17. C.T. Chen, N.V. Smith, Unoccupied surface-states on clean and oxygen-covered Cu(110) and Cu(111). Phys. Rev. B 40(11), 7487–7490 (1989)

    Article  ADS  Google Scholar 

  18. S. Warren et al., Photoemission studies of single crystal CuO (100). J. Phys.: Condens. Matter 11(26), 5021 (1999)

    MathSciNet  ADS  Google Scholar 

  19. E.G. Emberly, G. Kirczenow, Antiresonances in molecular wires. J. Phys.-Condens. Matter 11(36), 6911–6926 (1999)

    Article  ADS  Google Scholar 

  20. S. Hüfner, Photoelectron Spectroscopy: Principles and Applications (Springer Science & Business Media, 2013)

    Google Scholar 

  21. C.Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications. Prog. Mater Sci. 48(6), 521–685 (2003)

    Article  Google Scholar 

  22. D. Sekiba et al., Electronic structure of the Cu-O/Ag(110)(2x2)p2mg surface. Phys. Rev. B 67(3), 035411 (2003)

    Article  ADS  Google Scholar 

  23. C.Q. Sun, Time-resolved VLEED from the O-Cu(001): atomic processes of oxidation. Vacuum 48(6), 525–530 (1997)

    Article  ADS  Google Scholar 

  24. C.Q. Sun, Nature of the O-fcc(110) surface-bond networking. Mod. Phys. Lett. B 11(25), 1115–1122 (1997)

    Article  ADS  Google Scholar 

  25. C.Q. Sun, Oxygen-reduced inner potential and work function in VLEED. Vacuum 48(10), 865–869 (1997)

    Article  ADS  Google Scholar 

  26. C.Q. Sun, A model of bond-and-band for the behavior of nitrides. Mod. Phys. Lett. B 11(23), 1021–1029 (1997)

    Article  ADS  Google Scholar 

  27. C.Q. Sun, Angular-resolved VLEED from O-Cu(001): valence bands, chemical bonds, potential barrier, and energy states. Int. J. Mod. Phys. B 11(25), 3073–3091 (1997)

    Article  ADS  Google Scholar 

  28. C.Q. Sun, Exposure-resolved VLEED from the O-Cu(001): bonding dynamics. Vacuum 48(6), 535–541 (1997)

    Article  ADS  Google Scholar 

  29. C.Q. Sun, Coincidence in angular-resolved VLEED spectra: brillouin zones, atomic shifts and energy bands. Vacuum 48(6), 543–546 (1997)

    Article  ADS  Google Scholar 

  30. C.Q. Sun, Spectral sensitivity of the VLEED to the bonding geometry and the potential barrier of the O-Cu(001) surface. Vacuum 48(5), 491–498 (1997)

    Article  ADS  Google Scholar 

  31. C.Q. Sun, What effects in nature the two-phase on the O-Cu(001)? Mod. Phys. Lett. B 11(2–3), 81–86 (1997)

    Article  ADS  Google Scholar 

  32. C.Q. Sun, C.L. Bai, Modelling of non-uniform electrical potential barriers for metal surfaces with chemisorbed oxygen. J. Phys.-Condens. Matter 9(27), 5823–5836 (1997)

    Article  ADS  Google Scholar 

  33. C.Q. Sun, C.L. Bai, A model of bonding between oxygen and metal surfaces. J. Phys. Chem. Solids 58(6), 903–912 (1997)

    Article  ADS  Google Scholar 

  34. C.Q. Sun, C.L. Bai, Oxygen-induced nonuniformity in surface electrical-potential barrier. Mod. Phys. Lett. B 11(5), 201–208 (1997)

    Article  ADS  Google Scholar 

  35. C.Q. Sun et al., Spectral correspondence to the evolution of chemical bond and valence band in oxidation. Mod. Phys. Lett. B 11(25), 1103–1113 (1997)

    Article  ADS  Google Scholar 

  36. C.Q. Sun, On the nature of the O-Co(1010) triphase ordering. Surf. Rev. Lett. 5(5), 1023–1028 (1998)

    Article  ADS  Google Scholar 

  37. C.Q. Sun, Driving force behind the O-Rh(001) clock reconstruction. Mod. Phys. Lett. B 12(20), 849–857 (1998)

    Article  ADS  Google Scholar 

  38. C.Q. Sun, O-Ru(0001) surface bond and band formation. Surf. Rev. Lett. 5(2), 465–471 (1998)

    Article  ADS  Google Scholar 

  39. C.Q. Sun, Origin and processes of O-Cu(001) and the O-Cu(110) biphase ordering. Int. J. Mod. Phys. B 12(9), 951–964 (1998)

    Article  ADS  Google Scholar 

  40. C.Q. Sun, Nature and dynamics of the O-Pd(110) surface bonding. Vacuum 49(3), 227–232 (1998)

    Article  ADS  Google Scholar 

  41. C.Q. Sun, A model of bonding and band-forming for oxides and nitrides. Appl. Phys. Lett. 72(14), 1706–1708 (1998)

    Article  ADS  Google Scholar 

  42. C.Q. Sun, On the nature of the O-Rh(11O) multiphase ordering. Surf. Sci. 398(3), L320–L326 (1998)

    Article  ADS  Google Scholar 

  43. C.Q. Sun, On the nature of the triphase ordering. Surf. Rev. Lett. 5(05), 1023–1028 (1998)

    Article  ADS  Google Scholar 

  44. C.Q. Sun, Mechanism for the N-Ni(100) clock reconstruction. Vacuum 52(3), 347–351 (1999)

    Article  ADS  Google Scholar 

  45. C.Q. Sun, P. Hing, Driving force and bond strain for the C-Ni(100) surface reaction. Surf. Rev. Lett. 6(1), 109–114 (1999)

    Article  ADS  Google Scholar 

  46. C.Q. Sun, S. Li, Oxygen-derived DOS features in the valence band of metals. Surf. Rev. Lett. 7(3), 213–217 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  47. C.Q. Sun, Oxygen interaction with Rh(111) and Ru(0001) surfaces: bond-forming dynamics. Mod. Phys. Lett. B 14(6), 219–227 (2000)

    Article  ADS  Google Scholar 

  48. C.Q. Sun et al., Preferential oxidation of diamond {111}. J. Phys. D-Appl. Phys. 33(17), 2196–2199 (2000)

    Article  ADS  Google Scholar 

  49. W.T. Zheng, C.Q. Sun, Electronic process of nitriding: mechanism and applications. Prog. Solid State Chem. 34(1), 1–20 (2006)

    Article  MathSciNet  Google Scholar 

  50. K. Yagi, K. Higashiyama, H. Fukutani, Angle-resolved photoemission study of oxygen-induced c (2 × 4) structure on Pd (110). Surf. Sci. 295(1), 230–240 (1993)

    Article  ADS  Google Scholar 

  51. J. Mercer et al., Angle-resolved photoemission study of half-monolayer O and S structures on the Rh (100) surface. Phys. Rev. B 55(15), 10014 (1997)

    Article  ADS  Google Scholar 

  52. M. Zacchigna et al., Photoemission from atomic and molecular adsorbates on Rh(100). Surf. Sci. 347(1–2), 53–62 (1996)

    Article  ADS  Google Scholar 

  53. C.W. Tucker, Oxygen faceting of rhodium (210) and (100) surfaces. Acta Metall. 15(9), 1465–1474 (1967)

    Article  Google Scholar 

  54. J. Wintterlin et al., Atomic motion and mass-transport in the oxygen induced reconstructions of Cu(110). J. Vac. Sci. Technol., B 9(2), 902–908 (1991)

    Article  Google Scholar 

  55. F. Pforte et al., Wave-vector-dependent symmetry analysis of a photoemission matrix element: the quasi-one-dimensional model system Cu(110)(2X1)O. Phys. Rev. B 63(16), 165405 (2001)

    Article  ADS  Google Scholar 

  56. C. Benndorf et al., The initial oxidation of Cu (100) single crystal surfaces: an electron spectroscopic investigation. Surf. Sci. 74(1), 216–228 (1978)

    Article  ADS  Google Scholar 

  57. C. Benndorf et al., Oxygen interaction with Cu (100) studied by AES, ELS, LEED and work function changes. J. Phys. Chem. Solids 40(12), 877–886 (1979)

    Article  ADS  Google Scholar 

  58. V.A. Bondzie, P. Kleban, D.J. Dwyer, XPS identification of the chemical state of subsurface oxygen in the O/Pd(110) system. Surf. Sci. 347(3), 319–328 (1996)

    Article  ADS  Google Scholar 

  59. E. Schwarz et al., The interaction of oxygen with a rhodium (110) surface. Vacuum 41(1–3), 167–170 (1990)

    Article  ADS  Google Scholar 

  60. L. Li et al., Oxygenation mediating the valence density-of-states and work function of Ti (0001) skin. Phys. Chem. Chem. Phys. 17, 9867–9872 (2015)

    Article  Google Scholar 

  61. C.Q. Sun, Relaxation of the Chemical Bond (Springer Ser. Chem. Phys.), vol 108 (Springer, Heidelberg, 2014), 807 pp

    Google Scholar 

  62. L. Li et al., Defects improved photocatalytic ability of TiO2. Appl. Surf. Sci. 317, 568–572 (2014)

    Article  ADS  Google Scholar 

  63. L. Li et al., Nitrogen mediated electronic structure of the Ti (0001) surface. RSC Adv. 6(18), 14651–14657 (2016)

    Article  Google Scholar 

  64. M. Huda, L. Kleinman, Density functional calculations of the influence of hydrogen adsorption on the surface relaxation of Ti (0001). Phys. Rev. B 71(24) (2005)

    Google Scholar 

  65. D. Hanson, R. Stockbauer, T. Madey, Photon-stimulated desorption and other spectroscopic studies of the interaction of oxygen with a titanium (001) surface. Phys. Rev. B 24(10), 5513–5521 (1981)

    Article  ADS  Google Scholar 

  66. Y. Fukuda, W.T. Elam, R.L. Park, Nitrogen, oxygen, and carbon monoxide chemisorption on polycrystalline titanium surfaces. Appl. Surf. Sci. 1, 278–287 (1978)

    Article  ADS  Google Scholar 

  67. S. Schwegmann et al., The adsorption of atomic nitrogen on Ru (0001): geometry and energetics. Chem. Phys. Lett. 264(6), 680–686 (1997)

    Article  ADS  Google Scholar 

  68. D. Eastman, Photoemission energy level measurements of sorbed gases on titanium. Solid State Commun. 10(10), 933–935 (1972)

    Article  ADS  Google Scholar 

  69. S. Schwegmann et al., Oxygen adsorption on the Ru(10(1)over-bar0) surface: anomalous coverage dependence. Phys. Rev. B 57(24), 15487–15495 (1998)

    Article  ADS  Google Scholar 

  70. Y.Q. Fu et al., Crystalline carbonitride forms harder than the hexagonal Si-carbonitride crystallite. J. Phys. D-Appl. Phys. 34(9), 1430–1435 (2001)

    Article  ADS  Google Scholar 

  71. C.Q. Sun et al., Bond contraction and lone pair interaction at nitride surfaces. J. Appl. Phys. 90(5), 2615–2617 (2001)

    Article  ADS  Google Scholar 

  72. M. Terrones et al., N-do** and coalescence of carbon nanotubes: synthesis and electronic properties. Appl. Phys. A-Mater. Sci. Process. 74(3), 355–361 (2002)

    Article  ADS  Google Scholar 

  73. Y. Guo et al., Tantalum surface oxidation: lattice reconstruction, bond relaxation, energy entrapment, and electron polarization, in Applied Surface Science, 2016. in press

    Google Scholar 

  74. Y. Guo et al., Tantalum surface oxidation: bond relaxation, energy entrapment, and electron polarization. Appl. Surf. Sci. 396, 177–184 (2017)

    Article  ADS  Google Scholar 

  75. J. Van der Veen, F. Himpsel, D. Eastman, Chemisorption-induced 4 f-core-electron binding-energy shifts for surface atoms of W (111), W (100), and Ta (111). Phys. Rev. B 25(12), 7388 (1982)

    Article  ADS  Google Scholar 

  76. C. Guillot et al., Core-level spectroscopy of clean and adsorbate-covered Ta (100). Phys. Rev. B 30(10), 5487 (1984)

    Article  ADS  Google Scholar 

  77. B. Lv, T. Qian, H. Ding, Angle-resolved photoemission spectroscopy and its application to topological materials. Nat. Rev. Phys. 1(10), 609–626 (2019)

    Article  Google Scholar 

  78. Z. Lin et al., Multiple nodeless superconducting gaps in (Ba0. 6K0. 4) Fe2As2 superconductor from angle-resolved photoemission spectroscopy. Chin. Phys. Lett. 25(12), 4402 (2008)

    Google Scholar 

  79. T. Sato et al., Low Energy Excitation and Scaling in Bi2Sr2Can−1CunO2n+ 4 (n = 1–3): angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 89(6), 067005 (2002)

    Article  ADS  Google Scholar 

  80. A. Fedorov et al., Temperature dependent photoemission studies of optimally doped Bi2Sr2CaCu2O8. Phys. Rev. Lett. 82(10), 2179 (1999)

    Article  ADS  Google Scholar 

  81. A. Damascelli, Z. Hussain, Z.-X. Shen, Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75(2), 473 (2003)

    Article  ADS  Google Scholar 

  82. Y. Yu et al., High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature (2019)

    Google Scholar 

  83. C. Yang et al., Intermediate bosonic metallic state in the superconductor-insulator transition. Science (2019), p. eaax5798

    Google Scholar 

  84. K. Stacy, Research reveas new state oof matter: a Cooper pair metal, in Brown University (2019)

    Google Scholar 

  85. L. Zhang et al., Stabilization of the dual-aromatic Cyclo-N5 anion by acidic entrapment. J. Phys. Chem. Lett. 10, 2378–2385 (2019)

    Article  Google Scholar 

  86. H. Tillborg et al., O/Cu(100) studied by core level spectroscopy. Surf. Sci. 270, 300–304 (1992)

    Article  ADS  Google Scholar 

  87. M.V. Ganduglia-Pirovano, M. Scheffler, Structural and electronic properties of chemisorbed oxygen on Rh(111). Phys. Rev. B 59(23), 15533–15543 (1999)

    Article  ADS  Google Scholar 

  88. S. Lizzit et al., Surface core-level shifts of clean and oxygen-covered Ru(0001). Phys. Rev. B 63(20), 205419 (2001)

    Article  ADS  Google Scholar 

  89. T. Pillo et al., The electronic structure of PdO found by photoemission (UPS and XPS) and inverse photoemission (BIS). J. Phys.-Condens. Matter 9(19), 3987–3999 (1997)

    Article  ADS  Google Scholar 

  90. K. Yagi, H. Fukutani, Oxygen adsorption site of Pd(110)c(2x4)-O: analysis of ARUPS compared with STM image. Surf. Sci. 412–13, 489–494 (1998)

    Article  ADS  Google Scholar 

  91. R. Ozawa et al., Angle-resolved UPS study of the oxygen-induced 2x1 surface of Cu(110). Surf. Sci. 346(1–3), 237–242 (1996)

    Article  ADS  Google Scholar 

  92. Y.S. Wang et al., An AES, UPS and HREELS study of the oxidation and reaction of NB(110). Surf. Sci. 372(1–3), L285–L290 (1997)

    Article  Google Scholar 

  93. A.I. Boronin, S.V. Koscheev, G.M. Zhidomirov, XPS and UPS study of oxygen states on silver. J. Electron Spectrosc. Relat. Phenom. 96(1–3), 43–51 (1998)

    Article  Google Scholar 

  94. A.M. Aprelev et al., UPS (8.43-ev and 21.2-ev) data on the evolution of DOS spectra near E(f) of Bi2Sr2CaCu2O8 under thermal and light treatments. Physica C 235, 1015–1016 (1994)

    Google Scholar 

  95. A. Howard et al., Initial and final state effects in photoemission from Au nanoclusters on TiO2(110). Surf. Sci. 518(3), 210–224 (2002)

    Article  ADS  Google Scholar 

  96. C.Q. Sun et al., Solution certainty in the Cu(110)-(2x1)-2O(2-) surface crystallography. Int. J. Mod. Phys. B 16(1–2), 71–78 (2002)

    Article  ADS  Google Scholar 

  97. H. Tillborg et al., Electronic-structure of atomic oxygen adsorbed on Ni(100) and Cu(100) studied by soft-x-ray emission and photoelectron spectroscopies. Phys. Rev. B 47(24), 16464–16470 (1993)

    Article  ADS  Google Scholar 

  98. A. Spitzer, H. Luth, The adsorption of oxygen on copper surfaces.1. Cu(100) and Cu(110). Surf. Sci. 118(1–2), 121–135 (1982)

    Google Scholar 

  99. A. Spitzer, H. Luth, The adsorption of oxygen on copper surfaces. 2. Cu(111). Surf. Sci. 118(1–2), 136–144 (1982)

    Google Scholar 

  100. D. Alfe, S. de Gironcoli, S. Baroni, The reconstruction of Rh(001) upon oxygen adsorption. Surf. Sci. 410(2–3), 151–157 (1998)

    Article  ADS  Google Scholar 

  101. A.C. Perrella et al., Scanning tunneling spectroscopy and ballistic electron emission microscopy studies of aluminum-oxide surfaces. Phys. Rev. B 65(20), 201403 (2002)

    Article  ADS  Google Scholar 

  102. J.D. Zhang et al., Angle-resolved photoemission-study of oxygen-chemisorption on Gd(0001). Surf. Sci. 329(3), 177–183 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  103. A. Bottcher, H. Niehus, Oxygen adsorbed on oxidized Ru(0001). Phys. Rev. B 60(20), 14396–14404 (1999)

    Article  ADS  Google Scholar 

  104. A. Bottcher, H. Conrad, H. Niehus, Reactivity of oxygen phases created by the high temperature oxidation of Ru(0001). Surf. Sci. 452(1–3), 125–132 (2000)

    Article  ADS  Google Scholar 

  105. G. Bester, M. Fahnle, On the electronic structure of the pure and oxygen covered Ru(0001) surface. Surf. Sci. 497(1–3), 305–310 (2002)

    Article  ADS  Google Scholar 

  106. C. Stampfl et al., Catalysis and corrosion: the theoretical surface-science context. Surf. Sci. 500(1–3), 368–394 (2002)

    Article  ADS  Google Scholar 

  107. S. Altieri, L.H. Tjeng, G.A. Sawatzky, Electronic structure and chemical reactivity of oxide-metal interfaces: MgO(100)/Ag(100). Phys. Rev. B 61(24), 16948–16955 (2000)

    Article  ADS  Google Scholar 

  108. R. Mamy, Spectroscopic study of the surface oxidation of a thin epitaxial Co layer. Appl. Surf. Sci. 158(3–4), 353–356 (2000)

    Article  ADS  Google Scholar 

  109. J.C. Zheng et al., Oxygen-induced surface state on diamond (100). Diam. Relat. Mater. 10(3–7), 500–505 (2001)

    Article  ADS  Google Scholar 

  110. L.W. Lin, The role of oxygen and fluorine in the electron-emission of some kinds of cathodes. J. Vacuum Sci. Technol. A-Vacuum Surf. Films 6(3), 1053–1057 (1988)

    Article  ADS  Google Scholar 

  111. G.G. Tibbetts, J.M. Burkstrand, J.C. Tracy, Electronic properties of adsorbed layers of nitrogen, oxygen, and sulfur on copper (100). Phys. Rev. B 15(8), 3652–3660 (1977)

    Article  ADS  Google Scholar 

  112. G.G. Tibbetts, J.M. Burkstrand, Electronic properties of adsorbed layers of nitrogen, oxygen, and sulfur on silver (111). Phys. Rev. B 16(4), 1536–1541 (1977)

    Article  ADS  Google Scholar 

  113. G.G. Fuentes, E. Elizalde, J.M. Sanz, Optical and electronic properties of TiCxNy films. J. Appl. Phys. 90(6), 2737–2743 (2001)

    Article  ADS  Google Scholar 

  114. S. Souto et al., Electronic structure of nitrogen-carbon alloys (a-CNx) determined by photoelectron spectroscopy. Phys. Rev. B 57(4), 2536–2540 (1998)

    Article  ADS  Google Scholar 

  115. Z.Y. Chen et al., Valence band electronic structure of carbon nitride from x-ray photoelectron spectroscopy. J. Appl. Phys. 92(1), 281–287 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, C. (2020). Hybridized Bonding. In: Electron and Phonon Spectrometrics. Springer, Singapore. https://doi.org/10.1007/978-981-15-3176-7_9

Download citation

Publish with us

Policies and ethics

Navigation