Natural Metabolites: An Eco-friendly Approach to Manage Plant Diseases and for Better Agriculture Farming

  • Chapter
  • First Online:
Natural Bioactive Products in Sustainable Agriculture

Abstract

Natural metabolites and biocontrol agents are becoming more popular and are getting consideration to be viable replacement methods for controlling various plant diseases nowadays because the environment is safer and, in some cases, the only option is available for the protection of plants against the pathogens. In the present scenario, beyond good horticultural and agricultural practices, producers often depend mostly on chemically synthetic pesticides and fertilizers that are not only harmful but also very costly. Development of pathogen-resistant breeds becomes a worldwide problem which imposes and threatens some chemical companies to produce new pesticides with their registration process and profitability. There has been a considerable change in the perspective of farmers toward the use of pesticides for crop protection and crop production. There are several types of biological control agents and natural metabolite products are available, but for effective acquisition and future development, it will need a great understanding of complex interactions between humans, plants, and the environment. In this chapter, we will discuss wide varieties of plants and pathogens and their interaction and management through natural metabolites produced by microbes and plants. These interactions can affect the health of plants in several ways. There are several microbes that reside in plant roots and interact with plants that are beneficial while some can be harmful because they are involved in the development of plant diseases, which occur at various levels of interaction scale that leads to natural control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under soil stress. Mycorrhiza 10:51–54

    Article  CAS  Google Scholar 

  • Barbehenn RV, Constabel CP (2011) Tannins in plant–herbivore interactions. Phytochemistry 72:1551–1565

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  • Brooker NL, Kuzimichev Y, Laas J, Pavlis L (2007) Evaluation of coumarin derivatives as anti-fungal agents soil-borne fungal pathogens. Commun Agric Appl Biol Sci 72:785–793

    CAS  PubMed  Google Scholar 

  • Chen ZX, Chen SY, Dickson DW (2004) Nematology advance and perspectives, vol 2. CAB International, Wallingford

    Google Scholar 

  • Ciocan ID, Bara I (2007) Plant products and antimicrobial agents. Universitatii ale ªtiintifice Analele Alexandru Ioan Cuza, Tom VIII

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, EA BI (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dashti NH, Ali NY, Cherian VM, Montasser MS (2012) Application of plant growth-promoting rhizobacteria (PGPR) in combination with a mild strain of Cucumber mosaic virus (CMV) associated with viral satellite RNAs to enhance growth and protection against a virulent strain of CMV in tomato. Can J Plant Pathol 34:177–186

    Article  Google Scholar 

  • Duchesne LC (1994) Role of ectomycorrhizal fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS Press, St. Paul, pp 27–45

    Google Scholar 

  • Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46:387–400

    Article  Google Scholar 

  • Fawe A, Menzies J, Cherif M, Belanger R (2001) Silicon and disease resistance in dicotyledons. Plant Sci 8:159–169. https://doi.org/10.1016/S0928-3420(01)80013-6

    Article  CAS  Google Scholar 

  • Fitter AH, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159:123–132

    Article  Google Scholar 

  • García-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53(373):1377–1386. https://doi.org/10.1093/jexbot/53.373.1377

    Article  PubMed  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2013) Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  Google Scholar 

  • Hause B et al (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110

    Article  CAS  PubMed  Google Scholar 

  • Hussain T, Khan AA (2020) Bacillus subtilis HussainT-AMU and its antifungal activity against potato black scurf caused by Rhizoctonia solani. Biocatal Agric Biotechnol 23:101433

    Article  Google Scholar 

  • Idris EES, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acticacid (IAA) affects level of plant growth-promotion by Bacillus amyloliquefaciens FZB42. Mol Plant-Microbe Interact 20:619–626

    Article  CAS  PubMed  Google Scholar 

  • Iwashina T (2003) Flavonoid function and activity to plants and other organisms. Biol Sci Space 17(1):24–44

    Article  PubMed  Google Scholar 

  • Jung SC et al (2012) Mycorrhiza induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Khan MR, Jain RK, Singh RV, Pramanik A (2010) Economically important plant parasitic nematodes distribution ATLAS. Directorate of Information and Publications of Agriculture, New Delhi, p 137

    Google Scholar 

  • Kloepper JW, Zablotowick RM, Tip** EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, pp 315–326

    Google Scholar 

  • Kumar J, Saxena SC (2009) Proceedings of the 21st training on recent advances in plant disease management, GBPUA&T Pantnagar, pp 1–3

    Google Scholar 

  • Lanot A, Morris P (2005) Elicitation of isoflavan phytoalexins. In: Marquez AJ (ed) Lotus japonicus handbook. Springer, Amsterdam, pp 355–361

    Chapter  Google Scholar 

  • Lewis RA (1998) Lewis’ dictionary of toxicology. CRC Press, Boca Raton, FL, p 51. ISBN 1–56670–223-2

    Google Scholar 

  • Linderman RG (1994) Role of VAM fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. The American Phytopathological Society, St. Paul, MN, pp 1–27. ISBN 0–89054–158-2

    Google Scholar 

  • Lucy M, Reed E, Glick BR (2005) Application of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  Google Scholar 

  • Maciá-Vicente JG, Rosso LC, Ciancio A, Jansson HB, Lopez-Llorca LV (2009) Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: effects on plant growth and disease. Ann Appl Biol 155:391–401

    Article  Google Scholar 

  • Manske RHF (1965) The alkaloids. Chemistry and physiology, vol VIII. Academic, New York, p 673

    Google Scholar 

  • Morris DL, Ward JB Jr (1992) Coumarin inhibits micronuclei formation induced by benzo(a)pyrene in male but not female ICR mice environ. Mol Mutagen 19:132–138

    Article  CAS  Google Scholar 

  • Ntalli NG, Menkissoglu-Spiroudi U, Giannakou I (2010) Nematicidal activity of powder and extracts of Melia azedarach fruits against Meloidogyne incognita. Ann Appl Biol 156:309–317

    Article  Google Scholar 

  • Pérez-Montaño F, Alías-Villegas C, Bellogín RA, del Cerro P, Espuny MR, Jiménez- Guerrero I, López-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  PubMed  Google Scholar 

  • Nakajima S, Kawazu K (1980) Coumarin and euponin, two inhibitors of insect development from leaves of Eupatorium japonicum. Agric Biol Chem 44:2893–2899

    CAS  Google Scholar 

  • Pineda A, Zheng S-J, van Loon JJA, Pieterse CMJ, Dicke M (2010) Hel** plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15(9):507–514

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Rahman AU (2000) Studies in natural product chemistry, vol 24. Elsevier, Amesterdam, pp 860–861. ISBN: 0-444-50643-8

    Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Razavi SM, Ghasemiyan A, Salehi S, Zahri F (2009) Screening of biological activity of Zosima absinthifoliafruits extracts. Eur Asia J Biosci 4:25–28

    Article  Google Scholar 

  • Sanjay G, Tiku AK (2009) Botanicals in pest management: current status and future perspectives. Biomed Life Scipp, pp 317

    Google Scholar 

  • Sharf R, Shiekh H, Syed A, Akhtar A, Robab MI (2014) Interaction between Meloidogyne incognita and Pochonia chlamydosporia and their effects on the growth of Phaseolus vulgaris. Arch Phytopathol Plant Protect 47(5):622–630

    Article  CAS  Google Scholar 

  • Sharma R, Negi DS, Shiu WK, Gibbons S (2006) Characterization of an insecticidal coumarin from Boenninghausenia albiflora. Phytother Res 20:607–609

    Article  CAS  PubMed  Google Scholar 

  • Specter M (2009) A life of its own. The New Yorker, pp 56–65

    Google Scholar 

  • Sukhada M, Manjula R, Rawal RD, Lakshmikantha HC, Saikat C, Ramachandra YL (2010) Evaluation of arbuscular mycorrhiza and other biocontrol agents in managing Fusarium oxysporum f.sp. cubense infection in nbanana cv. Neypoovan. Biocontrol Sci Tech 20:165–181

    Article  Google Scholar 

  • Tasleem A, Bhosalea JD, Kumara N, Mandala TK, Bendreb RS, Lavekara GS, Dabu R (2012) Natural products – antifungal agents derived from plants. J Asian Nat Prod Res 11(7):621–638

    Google Scholar 

  • Thakur JS, Sharma YP, Lakhanpal TN (2005) Effect of ectomycorrhizal on the development of powdery mildew (Podosphaera leucotricha) of apple (Malus domestica Borkh) seedling. J Myc Pl Pathol 35:275–276

    Google Scholar 

  • Upadhyaya RK, Mukerji KG, Chamola BP (2000) Sustainable management of arbuscular mycorrhizal fungi in the biocontrol of soil-borne plant diseases. In: Sharma MP, Adholeya A (eds) Biocontrol potential and its exploitation in sustainable agriculture, Vol. 1: crop diseases, weeds and nematodes. Kluwer Academic Publishers, New York, pp 117–138

    Chapter  Google Scholar 

  • van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Vogel A (1820) De l’existence de l'acide benzoïque dans la fève de tonka et dans les fleurs de mélilot [On the existence of benzoic acid in the tonka bean and in the flowers of melilot]. Journal de Pharmacie (in French) 6:305–309

    Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 1320:44

    Article  CAS  Google Scholar 

  • Walia RK, Chakrabarty PK (2018) Nematode problems of crops in India; A comparative volume on four decade of AICRP (Nematode), ICAR-All India Coordinated Research Project on Nematodes in agriculture. M. S. Printers, New Delhi, pp 400

    Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Xavier L, Boyetchko S (2004) Arbuscular mycorrhizal fungi in plant disease control. In: Arora D, Bridge P, Bhatnagar D (eds) Fungal biotechnology in agricultural, food, and environmental applications. Marcel Dekker, Inc, New York

    Google Scholar 

  • Yamasaki H, Sakihama Y, lkehara N (1997) Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H202. Plant Physiol 115:1405–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yinsuo J, Vincent MG, Colin JS (2004) The influence of Rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba. Ann Bot 94:251–258

    Article  CAS  Google Scholar 

  • Ziedan EH, Elewa IS, Mostafa MH, Sahab AF (2011) Applications of mycorrhizae for controlling root rot diseases of sesame. J Plant Protect Res 51:354–361

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, T., Singh, S., Danish, M., Pervez, R., Hussain, K., Husain, R. (2020). Natural Metabolites: An Eco-friendly Approach to Manage Plant Diseases and for Better Agriculture Farming. In: Singh, J., Yadav, A. (eds) Natural Bioactive Products in Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-3024-1_1

Download citation

Publish with us

Policies and ethics

Navigation