Vector Analysis

  • Chapter
  • First Online:
Electromagnetics Made Easy

Abstract

Several complex problems in electromagnetism involve many physical quantities having both magnitude and direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Balaji .

Exercises

Exercises

Problem 1.1

Check whether the two vectors \( {\mathbf{P}} = 12\,{\hat{\mathbf{i}}} - 6\,{\hat{\mathbf{j}}} + 3\,{\hat{\mathbf{k}}} \) and \( {\mathbf{Q}}\, = \,{\hat{\mathbf{i}}} - {\hat{\mathbf{j}}} - z\,{\hat{\mathbf{k}}} \) are perpendicular to each other.

Problem 1.2

If \( {\mathbf{P}} = 1 0{\hat{\mathbf{i}}} - 4{\hat{\mathbf{j}}} + 2{\hat{\mathbf{k}}} \) find Q if Q is parallel to P.

Problem 1.3

Check whether the vectors \( {\mathbf{P}} = 2{\hat{\mathbf{i}}} + 4{\hat{\mathbf{j}}} + 18{\hat{\mathbf{k}}} \),

\( {\mathbf{Q}} = 9{\hat{\mathbf{i}}} + 3{\hat{\mathbf{j}}} + 6{\hat{\mathbf{k}}} \) and \( {\mathbf{R}} = 10{\hat{\mathbf{i}}} + 5{\hat{\mathbf{j}}} + 15{\hat{\mathbf{k}}} \) are coplanar.

Problem 1.4

If \( {\mathbf{P}} = 3{\hat{\mathbf{i}}} + 2{\hat{\mathbf{j}}} + 5{\hat{\mathbf{k}}} \) find the unit vector in the direction of P.

Problem 1.5

Check whether the three vectors \( {\mathbf{A}} = 2{\hat{{\mathbf{i}}}} + 3{\hat{{\mathbf{j}}}} + 5{\hat{{\mathbf{k}}}} \),

and \( {\mathbf{B}} = {\hat{{\mathbf{i}}}} + {\hat{{\mathbf{j}}}} - {\hat{{\mathbf{k}}}} \), \( {\mathbf{C}} = 3{\hat{{\mathbf{i}}}} + 4{\hat{{\mathbf{j}}}} + 4{\hat{{\mathbf{k}}}} \) form a right angled triangle.

Problem 1.6

A vector P is directed from (3, 4, 5) to (1, 3, 2). Determine \( \left| {\mathbf{P}} \right| \) and unit vector in the direction of P.

Problem 1.7

Find the angle between the two vectors \( {\mathbf{P}} = {\hat{{\mathbf{i}}}} - {\hat{{\mathbf{j}}}} + {\hat{{\mathbf{k}}}} \) and \( {\mathbf{Q}} = 3{\hat{{\mathbf{i}}}} - 2{\hat{{\mathbf{j}}}} - {\hat{{\mathbf{k}}}} \) using dot product and cross product.

Problem 1.8

Find the value of a such that the three vectors \( 1 0{\hat{{\mathbf{i}}}} - 5{\hat{{\mathbf{j}}}} + 5{\hat{{\mathbf{k}}}} \),

\( 2{\hat{{\mathbf{i}}}} + 4{\hat{{\mathbf{j}}}} - 6{\hat{{\mathbf{k}}}} \) and \( 3{\hat{{\mathbf{i}}}} + 2{\hat{{\mathbf{j}}}} + a{\hat{{\mathbf{k}}}} \) are coplanar.

Problem 1.9

Find the projection of vector \( {\mathbf{P}} = {\hat{{\mathbf{i}}}} + 3{\hat{{\mathbf{j}}}} + 2{\hat{{\mathbf{k}}}} \) on vector \( {\mathbf{Q}} = 2{\hat{{\mathbf{i}}}} + {\hat{{\mathbf{j}}}} - 3{\hat{{\mathbf{k}}}} \)

Problem 1.10

If P + Q + R = 0 then show that P × Q = Q × R = R × P.

Problem 1.11

Calculate (P × Q) ∙ (R × S)

Problem 1.12

Show that \( {\mathbf{\nabla }}\; \log \;\text{r} = \frac{{\mathbf{r}}}{{\text{r}^{2} }} \) where r is the position vector.

Problem 1.13

If r is the position vector show that

  1. (i)

    \( {\mathbf{\nabla }}\text{r}^{\text{n}} = \text{rn}^{{\text{n}} - 2} {\mathbf{r}} \)

  2. (ii)

    div r = 3

  3. (iii)

    \( \text{div}\,\text{r}^{\text{n}} {\mathbf{r}} = ( \text{n + 3)r}^{\text{n}} \)

  4. (iv)

    \( \text{curl}(\text{r}^{\text{n}} {\mathbf{r}}) = 0 \)

Problem 1.14

Calculate \( {\mathbf{\nabla }}\,\text{u}\,\text{at (1,} - 5 , \text{ 3)\,if}\,\text{u} = x^ 2z + y^ 3z^ 2 \).

Problem 1.15

Show that \( {\mathbf{\nabla }}\,\cdot\,({\mathbf{P}} + {\mathbf{Q}}) = {\mathbf{\nabla }}\,\cdot\,{\mathbf{P}} + {\mathbf{\nabla }}\,\cdot\,{\mathbf{Q}} \)

Problem 1.16

Calculate a if \( {\mathbf{A}} = (3x + y){\hat{{\mathbf{i}}}} + (z - x){\hat{{\mathbf{j}}}} + (\text{a}y + z){\hat{{\mathbf{k}}}} \) is solenoidal.

Problem 1.17

If \( {\mathbf{P}} = 3x^ 2{\hat{\mathbf{i}}} - y^ 2z{\hat{\mathbf{j}}} + 2x^ 3z{\hat{\mathbf{k}}} \) find

  1. (a)

    \( {\mathbf{\nabla }} \times {\mathbf{P}} \)

  2. (b)

    \( {\mathbf{\nabla }} \times ({\mathbf{\nabla }} \times {\mathbf{P}}) \)

Problem 1.18

If \( {\mathbf{P}} = ( 2x^ 2\text{ + }y ){\hat{\mathbf{i}}} - 1 0yz{\hat{\mathbf{j}}} + 1 2xz^{2} {\hat{\mathbf{k}}} \)

Calculate \( \int {{\mathbf{P}}\,\cdot\,\text{d}{\mathbf{r}}} \) along the straight line from (0, 0, 0) to (1, 1, 0) and then to (1, 1, 1).

Problem 1.19

Calculate the gradients of

  1. (a)

    \( \text{u}(\text{r},\uptheta,\upphi) = 3 \text{r}\, \sin \,\uptheta - 4\upphi\text{ + 1} \)

  2. (b)

    \( \text{u}(\text{r},\uptheta,z) = 3 \text{cos}\,\upphi - \text{r}z \)

Problem 1.20

Calculate div P if

  1. (a)

    \( {\mathbf{P}} = 3{\hat{\mathbf{r}}} + \text{r}\, \sin \,\uptheta\,{\hat{\varvec{\uptheta}}} + \text{r}{\hat{\varvec{\upphi}}} \)

  2. (b)

    \( {\mathbf{P}} = \text{r}{\hat{\mathbf{r}}} + z \cos \,\upphi\,{\hat{\varvec{\upphi}}} + 3{\hat{\mathbf{z}}} \)

Problem 1.21

Calculate the net flux of the vector field \( {\mathbf{P}}(x ,y ,z) = 3xy^ 2{\hat{\mathbf{i}}} + z^ 2{\hat{\mathbf{j}}} + y^ 3{\hat{\mathbf{k}}} \) emerging from a cube of dimensions \( 0 \le x ,y ,z \le 1 \)

Problem 1.22

Solve Problem 1.21 using Gauss’s divergence theorem.

Problem 1.23

Verity divergence theorem for the vector \( {\mathbf{P}} = x^{3} {\hat{\mathbf{i}}} + y^ 3{\hat{\mathbf{j}}} + z^ 3{\hat{\mathbf{k}}} \) for the cube \( 0 \le x ,y ,z \le 1 \) shown in Fig. 1.25.

Problem 1.24

Verify Stoke’s theorem for the vector \( {\mathbf{P}} = (x\text{ + }y ){\hat{\mathbf{i}}} + (y\text{ + }z ){\hat{\mathbf{j}}} + (x\text{ + }z ){\hat{\mathbf{k}}} \) for a plane rectangular area with vertices (0, 0), (2, 0), (2, 1), (0, 1) as shown in Fig. 1.46.

Fig. 1.46
figure 51

A rectangular area in Cartesian coordinates (Problem 1.24)

Problem 1.25

Find the value of a, b and c if

$$ {\mathbf{P}} = {(4}x{ + 5}y{ + \text{a}}\,z{)}{\hat{\mathbf{i}}} + {(3}x{ + \text{b y} + }z {)}{\hat{\mathbf{j}}} + ( \text{c}\,x{ + 2}y - {3}z{)}\,{\hat{\mathbf{k}}}\,{\text{is}}\,{\text{irrotational}} . $$

Problem 1.26

Calculate the surface area and volume of a sphere by integrating surface and volume elements in spherical polar coordinates.

Problem 1.27

Calculate the surface area and volume of a cylinder by integrating surface and volume elements in cylindrical coordinates.

Problem 1.28

Prove that for any vector \( {\mathbf{G}}\int\limits_{\uptau} {{\mathbf{\nabla }} \times {\mathbf{G}}\,\text{d}\tau = - \oint\limits_{\text{S}} {{\mathbf{G}} \times \text{d}{\mathbf{s}}} } \).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balaji, S. (2020). Vector Analysis. In: Electromagnetics Made Easy. Springer, Singapore. https://doi.org/10.1007/978-981-15-2658-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2658-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2657-2

  • Online ISBN: 978-981-15-2658-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation