Efficient Multimedia Data Transmission Model for Future Generation Wireless Network

  • Chapter
  • First Online:
International Conference on Communication, Computing and Electronics Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 637))

Abstract

To meet the resource demands of future wireless communications due to the increased usage of smart phones, smart devices and video-streaming platforms have led the future wireless communications to deploy dense heterogeneous Cloud Radio Access Network Systems (C-RANs). The heterogeneous communication environment offers fine-grained uniform experience to its subscribers and low-cost deployment irrespective of user location in the communication environment. The C-RANs have emerged as one of the promising solution to meet the operational cost, Quality of Service (QoS), and compression of baseband data requisite. This work, considers implementation of C-RAN model where baseband unit (BBU) and Remote Radio Heads (RRH) are connected through Common Public Radio Interface (CPRI) Fronthaul links. For such networks, reducing the data rate compression is very essential as the Fronthaul links capacity is limited and costly as they transport complex baseband samples. Fronthaul compression exploits the spatial and temporal behavior of time domain LTE signals for reducing the data rates has been considered by the existing models nonetheless it remains a challenge. To overcome the research challenge in building better transmission model, this work considers jointly exploiting both spatial and temporal correlations of the transmitted baseband signals to obtain efficient Fronthaul compression performance for LTE cellular networks using Refined Huffman. This work, assumes a case similar to massive Multiple-Input Multiple-Output (MIMO) communication mobile environment, where number of receiving antennas will outnumber the active user terminals. Our model applies Low-Rank (LR) approximation of complex baseband samples to obtain spatial and temporal correlations construction matrices of signals. The correlated baseband signals are then encoded using proposed refined Huffman encoder technique (RHCT) to achieve better compression. Experiments are carried out for evaluating the performance attained by the proposed method with Standard Huffman. The results obtained displays, that the proposed model attains superior performance enhancement than the existing state-of-the-art Huffman encoder model in terms of Symbol Error Rate (SER), Bit Error Rate (BER), Compression, and Throughput (Sum rate).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, K., C-RAN, D.R.: The Road Towards Green RAN. China Mobile Research Institute Ver. 2 (2011)

    Google Scholar 

  2. Checko, A., Christiansen, H.L., Yan, Y., Scolari, L., Kardaras, G., Berger, M.S., Dittmann, L.: Cloud RAN for mobile networks: a technology overview. IEEE Commun. Surv. Tutor. 17(1), 405–426 (2012)

    Article  Google Scholar 

  3. Zhu, Z., Gupta, P., Wang, Q., Kalyanaraman, S., Lin, Y., Franke, H., Sarangi, S.: Virtual base station pool: towards a wireless network cloud for radio access networks. In: Proceedings of the 8th ACM International Conference on Computing Frontiers, New York, Mar 2011, pp. 34:1–34:10

    Google Scholar 

  4. Marsch, P., Fettweis, G.: Uplink CoMP under a constrained backhaul and imperfect channel knowledge. IEEE Trans. Wirel. Commun. 10(6), 1730–1742 (2011)

    Article  Google Scholar 

  5. ETSI GS: 001: Open Radio Equipment Interface (ORI), Requirements for Open Radio Equipment Interface (Release 3) (2014)

    Google Scholar 

  6. AB Ericsson, Huawei Technologies, NEC Corporation, Alcatel Lucent, Nokia Siemens Networks: Common Public Radio Interface (CPRI); Interface Specification, CPRI Specification, vol. 5 (2011)

    Google Scholar 

  7. CPRI Specification V6.0 (2013-08-30): Common Public Radio Interface (CPRI); Interface Specification (2013)

    Google Scholar 

  8. Park, S., Simeone, O., Sahin, O., Shamai Shitz, S.: Fronthaul compression for cloud radio access networks: signal processing advances inspired by network information theory. IEEE Signal Process. Mag. 31(6), 69–79 (2014)

    Article  Google Scholar 

  9. Guo, B., Cao, W., Tao, A., Samardzija, D.: CPRI compression transport for LTE and LTE-A signal in C-RAN. In: Proceedings of International ICST Conference on Communications and Networking in China (CHINACOM), pp. 843–849. IEEE (2012)

    Google Scholar 

  10. Samardzija, D., Pastalan, J., MacDonald, M., Walker, S., Valenzuela, R.: Compressed transport of baseband signals in radio access networks. IEEE Trans. Wirel. Commun. 11(9), 3216–3225 (2012)

    Article  Google Scholar 

  11. Vosoughi, A., Wu, M., Cavallaro, J.R.: Baseband signal compression in wireless base stations. In: Proceedings of IEEE Global Communications Conference, pp. 4505–4511 (2012)

    Google Scholar 

  12. Vu, T.X., Nguyen, H.D., Quek, T.Q.S., Sun, S.: Fronthaul compression and optimization for cloud radio access networks. In: 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, pp. 1–6 (2016)

    Google Scholar 

  13. Heo, E., Simeone, O., Park, H.: Optimal fronthaul compression for synchronization in the uplink of cloud radio access networks. EURASIP J. Wirel. Commun. Netw. 22 (2017)

    Google Scholar 

  14. Zhou, L., Yu, W.: Optimized backhaul compression for uplink cloud radio access network. IEEE J. Sel. Areas Commun. 32(6), 1295–1307 (2014)

    Article  Google Scholar 

  15. Ren, Y., Wang, Y., Xu, G., Huang, Q.: A compression method for LTE-A signals transported in radio access networks. In: Proceedings of IEEE International Conference on Telecommunications, pp. 293–297 (2014)

    Google Scholar 

  16. Nieman, K.F., Evans, B.L.: Time-domain compression of complex baseband LTE signals for cloud radio access networks. In: Proceedings of IEEE Global Conference on Signal and Information Processing, Dec 2013, pp. 1198–1201

    Google Scholar 

  17. Si, H., Ng, B.L., Rahman, M.S., Zhang, J.: A vector quantization based compression algorithm for CPRI link. In: Proceedings of IEEE Global Communications Conference, Dec 2015

    Google Scholar 

  18. Sanderovich, A., Somekh, O., Poor, H.V., Shamai, S.: Uplink macro diversity of limited backhaul cellular network. IEEE Trans. Inform. Theory 55(8), 3457–3478 (2009)

    Article  MathSciNet  Google Scholar 

  19. Zhou, Y., Xu, Y., Yu, W., Chen, J.: On the optimal fronthaul compression and decoding strategies for uplink cloud radio access networks. IEEE Trans. Inform. Theory (2016). https://doi.org/10.1109/tit.2016.2617862

    Article  MathSciNet  Google Scholar 

  20. Kang, J., Simeone, O., Kang, J., Shitz, S.S.: Joint signal and channel state information compression for the backhaul of uplink network MIMO systems. IEEE Trans. Wirel. Commun. 13(3), 1555–1567 (2014)

    Article  Google Scholar 

  21. Smys, S., Josemin Bala, G.: Performance analysis of virtual clusters in personal communication networks. Clust. Comput. 15(3), 211–222 (2012)

    Article  Google Scholar 

  22. Coso, A.D., Simoens, S.: Distributed compression for MIMO coordinated networks with a backhaul constraint. IEEE Trans. Wirel. Commun. 8(9), 4698–4709 (2009)

    Article  Google Scholar 

  23. Park, S.-H., Simeone, O., Sahin, O., Shamai, S.: Robust and efficient distributed compression for cloud radio access networks. IEEE Trans. Veh. Technol. 62(2), 692–703 (2013)

    Article  Google Scholar 

  24. Simeone, O., Somekh, O., Erkip, E., Poor, H.V., Shamai, S.: Robust communication via decentralized processing with unreliable backhaul links. IEEE Trans. Inform. Theory 57(7), 4187–4201 (2011)

    Article  MathSciNet  Google Scholar 

  25. Lu, L., Li, G.Y., Swindlehurst, A.L., Ashikhmin, A., Zhang, R.: An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Topics Signal Process. 8(5), 742–758 (2014)

    Article  Google Scholar 

  26. Pi, Z., Khan, F.: An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 49(6), 101–107 (2011)

    Article  Google Scholar 

  27. Yasuda, Y.: Overview of digital facsimile coding techniques in Japan. Proc. IEEE 68(7) (1980)

    Article  Google Scholar 

  28. Arps, R.B., Truong, T.K.: Comparison of international standards for lossless still image compression. Proc. IEEE 82(6) (1994)

    Article  Google Scholar 

  29. Kavitha, T., Jaya Sankar, K.: An efficient compression technique for ITU-T group 3 coded images using variable length codes with reduced average length. In: 2016 IEEE International Conference on India International Conference On Information Processing (IICIP-2016), pp. 1–6 (2016)

    Google Scholar 

  30. Ramalho, L., Fonseca, M.N., Klautau, A., Lu, C., Berg, M., Trojer, E., Höst, S.: An LPC-based fronthaul compression scheme. IEEE Commun. Lett. 21(2), 318–321 (2017)

    Article  Google Scholar 

  31. Kavitha, T., Jayasankar, K.: Ideal Huffman code for lossless image compression for ubiquitous access. Indones. J. Electr. Eng. Comput. Sci. 12(2), 765–774 (2018)

    Article  Google Scholar 

  32. Ramalho, L., Freire, I., Lu, C., Berg, M., Klautau, A.: Improved LPC-based fronthaul compression with high rate adaptation resolution. IEEE Commun. Lett. 22(3), 458–461 (2018)

    Article  Google Scholar 

  33. Loyka, S.L.: Channel capacity of MIMO architecture using the exponential correlation matrix. IEEE Commun. Lett. 5(9), 369–371 (2001)

    Article  Google Scholar 

  34. Standard Test Images. Compiled by Mike Waken, University of Michigan. itu.int/net/itu-t/sigdc/genimage/test24.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kavitha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kavitha, T., Jayasankar, K. (2020). Efficient Multimedia Data Transmission Model for Future Generation Wireless Network. In: Bindhu, V., Chen, J., Tavares, J. (eds) International Conference on Communication, Computing and Electronics Systems. Lecture Notes in Electrical Engineering, vol 637. Springer, Singapore. https://doi.org/10.1007/978-981-15-2612-1_54

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2612-1_54

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2611-4

  • Online ISBN: 978-981-15-2612-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation