Genetically Modified (GM) Crops Harbouring Bacillus thuringiensis (BT) Gene(S) to Combat Biotic Stress Caused by Insect Pests

  • Chapter
  • First Online:
Phyto-Microbiome in Stress Regulation

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

Abstract

Insect pests are a menace to the crop plants as they cause 15–22% annual crop loss. Bacillus thuringiensis (Bt) crystal protein toxin(s) have been observed to be effective against lepidopteran, coleopteran, dipteran and hemipteran insect pests. With the emergence of recombinant DNA technology, computational biology and plant transformation procedures, it is now possible to design, modify and transfer any gene (natural or synthetic) into crop plants especially, to cope with insect pests, herbicide tolerance, various abiotic stresses and to enhance the expression level and nutritional quality. Bt-based biopesticides are an alternative to synthetic pesticides and are insect- specific, effective, eco-friendly and cost-effective. Agrobacterium-mediated plant transformation technique utilizes the natural genetic engineering property of Agrobacterium tumefaciens which has played a pivotal role in plant genetic engineering and development of stable transgenics, over conventional breeding procedures. Several stable Bt-transgenics (potato, maize, cotton, soybean, canola, squash, rice, etc.) developed by various companies (Monsanto, Dow AgroSciences, Syngenta, Bayer cropScience, etc.) have been approved by Genetic Engineering Appraisal Committee (GEAC), Environment Protection Agency (EPA), and commercialized. The most successful story of Bt-transgenics is that of Bt-cotton (Bollgard: trade name) harbouring Bt-cry1Ac like gene. In order to avoid the development of insect resistance, various strategies such as use of hybrid gene, Bt-gene pyramiding, refugia strategies, enhanced expression of Bt-gene(s) and use of sterile insects are followed as and when required for maintaining the sustainability of Bt-technology. In the last few years, after analysing the effectiveness and promising future of this ‘green technology,’ there has been a remarkable progress in the list of countries accepting the Bt-GM crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adang MJ, Brody MS, Cardineau G, Eagan N, Roush RT, Shewmaker CK, Jones A, Oakes JV, McBride KE (1993) The reconstruction and expression of a Bacillus thuringiensis cryШA gene in protoplasts and potato plants. Plant Mol Biol 21:1131–1145

    Article  CAS  PubMed  Google Scholar 

  • Agarwal S, Singh R, Sanyal I, Amla DV (2008) Expression of modified gene encoding functional human .-1-antitrypsin protein in transgenic tomato plants. Transgenic Res 17:881–896

    Article  CAS  PubMed  Google Scholar 

  • Alam MF, Datta K, Abrigo E, Vasquez A, Senadhira D, Datta SK (1998) Production of transgenic deepwater indica rice plants expressing a synthetic Bacillus thuringiensis cry1A(b) gene with enhanced resistance to yellow stem borer. Plant Sci 135:25–30

    Article  Google Scholar 

  • Alam MF, Datta K, Abrigo E, Oliva N, Tu J, Virmani SS, Datta SK (1999) Transgenic insect-resistant maintainer line (IR 68899B) for improvement of hybrid rice. Plant Cell Rep 18:572–575

    Article  CAS  Google Scholar 

  • Arenas I, Bravo A, Soberon M, Gomez I (2010) Role of alkaline phosphate from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin. J Biol Chem 258:12497–12503

    Article  CAS  Google Scholar 

  • Arencibia A, Vázquez RI, Prieto D, Téllez P, Carmona ER, Coego A, Hernández L, De la Riva GA, Selman-Housein G (1997) Transgenic sugarcane plants resistant to stem borer attack. Mol Breed 3(4):247–255

    Article  Google Scholar 

  • Aronson AI, Shai Y (2001) Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action. FEMS Microbiol Lett 195:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bajwa WI, Kogan M (2001) Bacillus thuringiensis based biological control of insect pests. http://www.ppc.orst.edu/dir/microbial/bt/

  • Ballester V, Escriche B, Mensua JL, Riethmacher GW, Ferre J (1994) Lack of cross-resistance to other Bacillus thuringiensis crystal proteins in a population of Plutella xylostella highly resistant to cry1A(b). Biocontrol Sci Tech 4:437–443

    Article  Google Scholar 

  • Barton KA, Whiteley HR, Yang NS (1987) Bacillus thuringiensis δ-endotoxin expressed in transgenic Nicotiana tabaccum provides resistance to lepidopteran insects. Plant Physiol 85:1103–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bevan MW, Flavell RB, Chilton MD (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    Article  CAS  Google Scholar 

  • Bhattacharya N, Bhat SR, Kirti PB, Chopra VL (2002) Development of insect-resistant transgenic cabbage plants expressing a synthetic cry1A(b) gene from Bacillus thuringiensis. Curr Sci 83:146–150

    CAS  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  CAS  PubMed  Google Scholar 

  • Bohorova N, Frutos R, Royer M, Estanol P, Pacheco M, Rascon Q, Mclean S, Hoisington D (2001) Novel synthetic Bacillus thuringiensis cry1B gene and cry1B-cry1Ab translational fusion confer resistance to south western corn borer, sugarcane borer and fall army worm in transgenic tropical maize. Theor Appl Genet 103:817–826

    Article  CAS  Google Scholar 

  • Boonserm P, Davis D, Ellar J, Li J (2005) Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J Mol Biol 348:363–382

    Article  CAS  PubMed  Google Scholar 

  • Boonserm P, Mo M, Angsuthanasombat C, Lescar J (2006) Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution. J Bacteriol 188:3391–3401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulter D (1993) Insect pest control by copying nature using genetically-engineered crops. Biochemistry 34:1453–1466

    CAS  Google Scholar 

  • Bravo A, Soberon M (2008) How to cope with insect resistance to Bt toxins? Cell 26:573–579

    CAS  Google Scholar 

  • Bravo A, Gomez I, Conde J, Munoz-Garay C, Sanchez J, Miranda R, Zhuang M, Gill SS, Soberon M (2004) Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochem Biophys Acta 1667:38–46

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423–435

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Likitvivatanavong S, Gill SS, Soberon M (2011) Bacillus thuringiensis: a story of a successful bioinsecticides. Insect Biochem Mol Biol 4:423–431

    Article  CAS  Google Scholar 

  • Breitler JC, Vassal JM, del Mar Catala M, Meynard D, Marfà V, Melé E, Royer M, Murillo I, San Segundo B, Guiderdoni E, Messeguer J (2004) Bt rice harbouring cry genes controlled by a constitutive or wound-inducible promoter: protection and transgene expression under Mediterranean field conditions. Plant Biotechnol J 2(5):417–430

    Article  CAS  PubMed  Google Scholar 

  • Broderick NA, Raffa KF, Handelsman J (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc Natl Acad Sci U S A 103:15196–15199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao J, Shelton AM, Earle ED (2001) Gene expression and insect resistance in transgenic broccoli containing a Bacillus thuringiensis cry1Ab gene with the chemically inducible PR-1a promoter. Mol Breed 8:207–216

    Article  CAS  Google Scholar 

  • Carozzi NB, Warren GW, Desai N, Jayne SM, Lotstein R, Rice DA, Evola S, Koziel MG (1992) Expression of a chimeric CaMV35S Bacillus thuringiensis insecticidal protein gene in transgenic tobacco. Plant Mol Biol 20:539–548

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti SK, Mandaokar AD, Shukla A, Pattanayak D, Naik PS, Sharma RP, Kumar PA (2000) Bacillus thuringiensis cry1Ab gene confers resistance to potato against Helicoverpa armigera (Hubner). Potato Res 43(2):143–152

    Article  CAS  Google Scholar 

  • Chan MT, Yu SM (1998) The 3′ untranslated region of a rice alpha-amylase gene functions as a sugar-dependent mRNA stability determinant. Proc Natl Acad Sci U S A 95:6543–6547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Liu X, Wang Z, Song J, Qi Q, Wang PG (2005) Modification of plant .-glycans processing: the future of producing therapeutic protein by transgenic plant. Med Res Rev 25:343–360

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Bolgard MG, Saxena RC, Sticklen MB (1992) Production of insect resistant potato by genetic transformation with a delta-endotoxin gene from Bacillus thuringiensis var. kurstaki. Plant Sci 81:83–91

    Article  CAS  Google Scholar 

  • Cheng X, Sardana R, Kaplan H, Altosaar I (1998) Agrobacterium-transformed rice plants expressing synthetic cry1A(b) and cry1A(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci U S A 95:2767–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coombs J, Douches D, Li W, Grafius E, Pett W (2002) Combining engineered (Bt-cry3A) and natural resistance mechanisms in potato for control of Colorado potato beetle. J Am Soc Hort Sci 127:62–68

    Article  CAS  Google Scholar 

  • Cornu D, Leple JC, Bonade M, Ross A, Augustin S, Delplanque A, Jouanin L, Pilate G (1996) Expression of proteinase inhibitor and a Bacillus thuringiensis δ-endotoxin in transgenic poplars. In: Proceedings IUFRO meeting on somatic cell genetics and molecular genetics of trees. Kluwer, Dordrecht, pp 131–136

    Chapter  Google Scholar 

  • Crickmore N, Ziegler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crickmore N, Zeigler DR, Schnepf E, Van Rie J, Lereclus D, Baum J, Bravo A, Dean DH (2011) Bacillus thuringiensis toxin nomenclature. http://www.lifesci.sussex.ac.uk/home/Neil_Cricknore/Bt/index.html

  • Datla RS, Bekkaoui F, Hammerlindl JK, Pilate G, Dunstan DI, Crosby WL (1993) Improved high level constitutive foreign gene expression in plants using an AMV RNA4 untranslated leader sequence. Plant Sci 94:139–149

    Article  CAS  Google Scholar 

  • Datta K, Vasquez A, Tu J, Torrizo L, Alam MF, Oliva N, Abrigo E, Khush GS, Datta SK (1998) Constitutive and tissue-specific differential expression of cry1A(b) gene in transgenic rice plants conferring resistance to rice insect pests. Theor Appl Genet 97:20–30

    Article  CAS  Google Scholar 

  • DeCosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Over-expression of the Bt cry2Aa2 operon in chloroplasts leads to transformation of insecticidal crystals. Nat Biotechnol 19:71–74

    Article  CAS  Google Scholar 

  • Delannay X, LaVallee BJ, Proksch RK, Fuchs RL, Sims SR, Greenplate JT, Marrone PG, Dodson RB, Augustine JJ, Layton JG, Fischhoff DA (1989) Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var kurstaki insect control protein. Nat Biotechnol 7:1265–1269

    Article  Google Scholar 

  • DeMaagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199

    Article  CAS  Google Scholar 

  • DeRocher EJ, Vargo-Gogola TC, Diehn SH, Green PJ (1998) Direct evidence for rapid degradation of Bacillus thuringiensis toxin mRNA as a cause of poor expression in plants. Plant Physiol 117:1445–1461

    Article  CAS  Google Scholar 

  • Diehn SH, De Rocher EJ, Green PJ (1996) Problems that can limit the expression of foreign genes in plants: lessons to be learned from B.t.-toxin genes. In: Setlow JK (ed) Genetic engineering: principles and methods, vol 18. Plenum Press, New York, pp 83–99

    Chapter  Google Scholar 

  • Diehn SH, Chiu W-L, DeRocher EJ, Green PJ (1998) Premature polyadenylation at multiple sites within a Bacillus thuringiensis toxin gene-coding region. Plant Physiol 117:1433–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douches DS, Westedt AL, Zarka K, Schroeter B, Grafius EJ (1998) Potato transformation to combine natural and engineeered resistance for controlling tuber moth. Hort Sci 33:1053–1056

    Article  CAS  Google Scholar 

  • Dowson Day MJ, Ashurst JL, Mathias SF, Watts JW, Wilson TM, Dixon RA (1993) Plant viral leaders influence expression of a reporter gene in tobacco. Plant Mol Biol 23:97–109

    Article  CAS  PubMed  Google Scholar 

  • Dutton A, Romies J, Bigler F (2005) Effects of Bt maize expressing cry1Ab and Bt spray on Spodoptera littoralis. Entomol Exp Appl 114:161–169

    Article  CAS  Google Scholar 

  • Estela A, Escriche B, Ferre J (2004) Interaction of Bacillus thuringiensis toxins with larval midgut binding sites of Helicoverpa armigera (Lepidoptera: Noctuidae). App Environ Microbiol 70:1378–1384

    Article  CAS  Google Scholar 

  • Fearing PL, Brown D, Vlachos D, Meghji M, Privalle L (1997) Quantitative analysis of CryIA(b) expression in B.t. maize plants, tissues, and silage and stability of expression over successive generations. Mol Breed 3:169–176

    Article  CAS  Google Scholar 

  • Feitelson JS, Payne J, Kim L (1992) Bacillus thuringiensis: insect and beyond. Biotech 10:271–275

    Google Scholar 

  • Ferry N, Edwards MG, Gatehouse JA, Gatehouse AMR (2004) Plant-insect interactions: molecular approaches to insect resistance. Curr Opin Biotechnol 15:155–161

    Article  CAS  PubMed  Google Scholar 

  • Fischhoff DA, Bowdish KS, Perlak FJ, Marrone PG, McCormick SM, Niedermeyer JG, Dean DA, Kusano-Kretzmer K, Mayer EJ, Rochester DE, Rogers SG, Fraley RT (1987) Insect tolerant transgenic tomato plants. Nat Biotechnol 5:807–813

    Article  CAS  Google Scholar 

  • Fujimoto H, Itoh K, Yamomoto M, Kyojuka J, Shimamoto K (1993) Insect resistant rice generated by introduction of a modified δ-endotoxin gene of Bacillus thuringiensis. Nat Biotechnol 11:1151–1155

    Article  CAS  Google Scholar 

  • Galitsky N, Cody V, Wojtczak A, Ghosh D, Luft JR, Pangborn W, English L (2001) Structure of the insecticidal bacterial δ-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Cryst D 57:1101–1109

    Article  CAS  Google Scholar 

  • Gallie DR, Tanguay RL, Leathers V (1995) The tobacco etch viral 5′ leader and poly(A) tail are functionally synergistic regulators of translation. Gene 165:233–238

    Article  CAS  PubMed  Google Scholar 

  • Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plant. Plant Physiol 146:881–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatehouse AMR, Davidson GM, Newell CA, Merryweather A, Hamilton WDO, Burgess EPJ, Gilbert RJC, Gatehouse JA (1997) Transgenic potato plants with enhanced resistance to the tomato moth Laccanobia oleracea: growth room trials. Mol Breeding 3:49–63

    Article  CAS  Google Scholar 

  • Gerber D, Shai Y (2000) Insertion and organization within membranes of delta-endotoxin pore-forming domain, helix-4-loop-helix 5 and inhibition of its activity by a mutant helix 4 peptide. J Biol Chem 275:23602–23607

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Cowles EA, Pietrantonio FV (1992) The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol 37:615–636

    Article  CAS  PubMed  Google Scholar 

  • Gleave AP, Mitra DS, Markwick NP, Morris BAM, Beuning LL (1998) Enhanced expression of the Bacillus thuringiensis cry9Aa2 gene in transgenic plants by nucleotide sequence modification confers resistance to potato tuber moth. Mol Breed 4:459–472

    Article  CAS  Google Scholar 

  • Gómez I, Arenas I, Benitez I, Miranda-Rios J, Becerri B, Grande R, Almagro JC, Bravo A, Soberon M (2006) Specific epitopes of domain II and III of Bacillus thuringiensis Cry1Ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta. J Biol Chem 281:34032–34039

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez JM, Dulmage HT Jr, Carlton BC (1981) Correlation between specific plasmids and delta-endotoxin production in Bacillus thuringiensis. Plasmid 5:351–365

    Article  CAS  Google Scholar 

  • Gonzalez JM, Brown BJ Jr, Carlton BC (1982) Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc Natl Acad Sci U S A 79:6951–6955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O’Brien JV, Chambers SA, Adams WR, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lernaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grochulski P, Masson L, Borisova S, Pusztai-Carery M, Schwartz JL, Brousseau R, Cygler M (1995) Bacillus thuringiensis Cry1A(a) insecticidal toxin: crystal structural and channel formation. J Mol Biol 254:447–464

    Article  CAS  PubMed  Google Scholar 

  • Gulbitti-Onarici S, Zaidi MA, Taga I, Ozcan S, Altosaar I (2009) Expression of Cry1Ac in transgenic tobacco plants under the control of a wound-inducible promoter (AoPR1) isolated from Asparagus officinalis to control Heliothis virescens and Manduca sexta. Mol Biotechnol 42(3):341–349

    Article  CAS  PubMed  Google Scholar 

  • Gunning RV, Dang HT, Kemp FC, Nicholson IC, Moores GD (2005) New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin. Appl Environ Microbiol 71:2558–2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Ye S, Liu Y, Wei L, Xue J, Wu H, Song F, Zhang J, Wu X, Huang D, Rao Z (2009) Crystal structure of Bacillus thuringiensis Cry8Ea1: an insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela. J Struct Biol 168:259–266

    Article  CAS  PubMed  Google Scholar 

  • Haider MZ, Ellar DJ (1987) Analyses of the molecular basis of insecticidal specificity of Bacillus thuringiensis crystal delta-endotoxin. Biochem J 248:197–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haq TA, Mason HS, Clements JD, Artnzen CJ (1995) Oral immunization with recombinant bacterial antigen produced in transgenic plants. Science 268:714–716

    Article  CAS  PubMed  Google Scholar 

  • Hilder VA, Boulter D (1999) Genetic engineering of crop plants for insect resistance-a critical review. Crop Prot 18:177–191

    Article  Google Scholar 

  • Ho NH, Baisakh N, Oliva N, Datta K, Frutos R, Datta SK (2006) Translational fusion hybrid Bt genes confer resistance against yellow stem borer in transgenic Elite Vietnamese rice (Oryza sativa L.) cultivars. Crop Sci 46:781–789

    Article  CAS  Google Scholar 

  • Hodgman TC, Ellar DJ (1990) Models for the structure and function of the Bacillus thuringiensis delta-endotoxins determined by compilational analysis. DNA Seq 1:97–106

    Article  CAS  PubMed  Google Scholar 

  • Hofmann C, Vanderbruggen H, Hofte H, Van Rie J, Jansens S, Van Mellaert H (1988) Specificity of Bacillus thuringienis δ-endotoxin is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc Natl Acad Sci U S A 85:7844–7848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hood E, Witcher D, Maddock S, Meyer T, Baszezynski C, Bailey M (1997) Commercial production of Avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breed 3:291–306

    Article  CAS  Google Scholar 

  • Hooykaas PJJ, Mozo T (1994) Agrobacterium molecular genetics. Plant Molecular Biology Manual B, vol 3. Klwer Academic Publishers, Belgium, pp 1–9

    Google Scholar 

  • Hua G, Jurat-Fuentes JL, Adang MJ (2004) Bt-R1a extracellular cadherin repeat 12 mediates Bacillus thuringiensis Cry1Ab binding and cytotoxicity. J Biol Chem 279:28051–28056

    Article  CAS  PubMed  Google Scholar 

  • Indurker S, Misra HS, Eapen S (2010) Agrobacterium-mediated transformation in chickpea (Cicer arietinum L.) with an insecticidal protein gene: optimisation of different factors. Physiol Mol Biol Plants 16(3):273–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jafari M, Norouzi P, Malboobi MA, Ghareyazie B, Valizadeh M, Mohammadi SA, Mousavi M (2009) Enhanced resistance to a lepidopteran pest in transgenic sugar beet plants expressing synthetic cry1Ab gene. Euphytica 165:333–344

    Article  CAS  Google Scholar 

  • James C (2012) Global status of commercialized biotech/GM crops. ISAAA Brief No. 44. ISAAA, Ithaca, NY

    Google Scholar 

  • Jelenkovic G, Billings S, Chen Q, Lashomb J, Hamilton G, Ghidiu G (1998) Transformation of eggplant with synthetic cryIIIA gene produces a high level of resistance to the Colorado potato beetle. J Am Soc Hortic Sci 123:19–25

    Article  CAS  Google Scholar 

  • Kamble S, Misra HS, Mahajan SK, Eapen S (2003) A protocol for efficient biolistic transformation of mothbean Vigna aconitifolia L. Jacq. Marechal. Plant Mol Biol Rep 21:457–457

    Article  Google Scholar 

  • Kar S, Basu D, Das S, RamKrishnan NA, Mukherjee P, Nayak P (1997) Expression of cry1Ac gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod borer (Heliothis armigera) larvae. Transgenic Res 6:177–185

    Article  CAS  Google Scholar 

  • Khanna HK, Raina SK (2002) Elite Indica transgenic rice plants expressing modified Cry1Ac endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer (Scirpophaga incertulas). Transgenic Res 11(4):411–423

    Article  CAS  PubMed  Google Scholar 

  • Knight P, Crickmore N, Ellar DJ (1994) The receptor for Bacillus thuringiensis CryIA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol 11:429–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowles B (1994) Mechanisms of action of Bacillus thuringiensis insecticidal endotoxins. Adv Insect Physiol 24:275–308

    Article  CAS  Google Scholar 

  • Knowles BH, Ellar DJ (1988) Differential specificity of two insecticidal toxins from Bacillus thuringiensis var aizawai. Mol Microbiol 2:153–157

    Article  CAS  PubMed  Google Scholar 

  • Ko K, Tekoah Y, Rudd PM, Harvey DJ, Dwek RA, Spitsin S (2003) Function and glycosylation of plant-derived antiviral monoclonal antibody. Proc Natl Acad Sci U S A 100:8013–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kota MDH, Varma S, Gareznski F, Moar WJ (1999) Overexpression of Bacillus thuringiensis (Bt)cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci U S A 96:1840–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koul B (2013) Expression of insecticidal toxin coded by modified full-length and truncated Bt-cry1Ac genes in transgenic tomato for assessment of their stability and efficacy against target insects, PhD thesis. Banasthali Vidyapith, Rajasthan, India

    Google Scholar 

  • Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M, Evola SV (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Biotech 11:194–200

    CAS  Google Scholar 

  • Kumar H, Kumar V (2004) Tomato expressing Cry1A(b) insecticidal protein from Bacillus thuringiensis protected against tomato fruit borer, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) damage in the laboratory, greenhouse and field. Crop Prot 23:135–139

    Article  CAS  Google Scholar 

  • Kumar PA, Mandaokar A, Sreenivasu K, Chakrabarti SK, Bisaria S, Sharma SR, Kaur S, Sharma RP (1998) Insect-resistant transgenic brinjal plants. Mol Breed 4:33–37

    Article  CAS  Google Scholar 

  • Leroy T, Henry AM, Royer M, Altosaar I, Frutos R, Duris D, Philippe R (2000) Genetically modified coffee plants expressing the Bacillus thuringiensis cry1Ac gene for resistance to leaf miner. Plant Cell Rep 19:382–389

    Article  CAS  PubMed  Google Scholar 

  • Li J, Carroll J, Ellar DJ (1991) Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature 353:815–817

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Sivamani E, Azhakanandam K, Samadder P, Li X, Qu R (2008) Gene expression enhancement mediated by the 5' UTR intron of the rice rubi3 gene varied remarkably among tissues in transgenic rice plants. Mol Gen Genomics 279:563–572

    Article  CAS  Google Scholar 

  • Ma G (2005) The molecular biology of tolerance to Bacillus thuringiensis endotoxin in Helicoverpa armigera: a novel mechanism and its genetic transmission. PhD Thesis, The University of Adelaide, Waite Campus, Australia

    Google Scholar 

  • Mandaokar AD, Goyal RK, Shukla A, Bisaria S, Bhalla R, Reddy VS, Chaurasia A, Sharma I, Altosaar I, Kumar PA (2000) Transgenic tomato plant resistant to fruit borer (Helicoverpa armigera Hubner). Crop Prot 19:307–312

    Article  CAS  Google Scholar 

  • Maqbool SB, Husnain T, Riazuddin S, Masson L, Christou P (1998) Effective control of yellow stem borer and rice leaf folder in transgenic rice indica varieties basmati 370 and M7 using the novel δ-endotoxin cry2A Bacillus thuringiensis gene. Mol Breed 4(6):501–507

    Article  CAS  Google Scholar 

  • Maqbool SB, Riazuddin S, Loc NT, Gatehouse AMR, Gatehouse JA, Christou P (2001) Expression of multiple insecticidal genes confers board resistance against a range of different rice pests. Mol Breed 7:85–93

    Article  CAS  Google Scholar 

  • Marfà V, Melé E, Gabarra R, Vassal JM, Guiderdoni E, Messeguer J (2002) Influence of the developmental stage of transgenic rice plants (cv. Senia) expressing the cry1B gene on the level of protection against the striped stem borer (Chilo suppressalis). Plant Cell Rep 20:1167–1172

    Article  CAS  Google Scholar 

  • Masson L, Lu YJ, Mazza A, Brousseau R, Adang MJ (1995) The Cry1A(c) receptor purified from Manduca sexta displays multiple specificities. J Biol Chem 270:20309–20315

    Article  CAS  PubMed  Google Scholar 

  • Mcbride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P (1995) Amplification of a chimeric Bacillus thuringiensis gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/Technology 13:362–365

    CAS  Google Scholar 

  • McCormick S, Jeanne N, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5:81–84

    Article  CAS  PubMed  Google Scholar 

  • McCown BH, McCabe DE, Russell DR, Robison DJ, Barton KA, Raffa KF (1991) Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Rep 9:590–594

    Article  CAS  PubMed  Google Scholar 

  • Mehlo L, Gahakwa D, Nghia PT, Loc NT, Capell T, Gatehouse JA, Gatehouse AMR, Christou P (2005) An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proc Natl Acad Sci 102:7812–7816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehrotra M, Singh AK, Sanyal I, Altosaar I, Amla DV (2011) Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea (Cicer arietinum L.) for improved resistance to pod borer insect Helicoverpa armigera. Euphytica 182(1):87–102

    Article  CAS  Google Scholar 

  • Morán R, García R, López A, Zaldúa Z, Mena J, García M, Armas R, Somonte D, Rodríguez J, Gómez M, Pimentel E (1998) Transgenic sweetpotato plants carrying the delta-endotoxin gene from Bacillus thuringiensis var. tenebrionis. Plant Sci 139:175–184

    Article  Google Scholar 

  • Morse RJ, Yamamoto T, Stroud RM (2001) Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9:409–417

    Article  CAS  PubMed  Google Scholar 

  • Murray EE, Lotzer J, Eberle M (1989) Codon usage in plant genes. Nucleic Acids Res 17(2):477–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naimov S, Dukiandijiev S, de Maad RA (2003) A hybrid Bacillus thuringiensis delta-endotoxin gene gives resistance against a coleopteran and lepidopteran pest in transgenic potato. Plant Biotechnol J 1:51–57

    Google Scholar 

  • Nation J (2002) Insect physiology and biochemistry, 1st edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Nayak P, Basu D, Das S, Basu A, Ghosh D, Ramakrishnan NA, Ghosh M, Sen SK (1997) Transgenic elite indica rice plants expressing Cry1Ac δ-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scripophaga incertulas). Proc Natl Acad Sci U S A 94:2111–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacheco S, Gómez I, Arenas I, Saab-Rincon G, Rodríguez-Almazán C, Gill SS, Bravo A, Soberón M (2009) Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a “** pong” binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors. J Biol Chem 284:32750–32757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardo Lopez L, Soberon M, Bravo A (2013) Bacillus thuringiensis insecticidal three-domain cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbial Rev 37:3–22

    Article  CAS  Google Scholar 

  • Park JR, McFarlane I, Phipps RH, Ceddia G (2011) The role of transgenic crops in sustainable development. Plant Biotechnol J 9:2–21

    Article  Google Scholar 

  • Parrott WA, Clemente TE (2004) Transgenic soybean. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses, Agronomy monograph no. 16, 3rd edn. American Society of Agronomy-Crop Science Society of America-Soil Science Society of America, Madison, WI, pp 265–302

    Google Scholar 

  • Parrott WA, All JN, Adang MJ, Bailey MA, Boerma HR, Stewart CNJ (1994) Recovery and evaluation of soybean plants transgenic for a Bacillus thuringiensis var. Kurstaki insecticidal gene. In Vitro Cell Dev Biol 30:144–149

    Article  Google Scholar 

  • Peferoen M, Jansens S, Reynaerts A, Leemans J (1990) Potato plants with engineered resistance against insect attack. In: Vayda M, Park W (eds) Molecular and cellular biology of the potato. CAB, Tucson, pp 193–204

    Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect-resistant cotton plants. Nat Biotechnol 8:939–943

    Article  CAS  Google Scholar 

  • Perlak FJ, Fischhoff DA (1993) Insect resistant cotton: from the laboratory to the marketplace. In: Kim L (ed) Advanced engineered pesticides. Marcel Dekker, New York, pp 199–211

    Google Scholar 

  • Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA (1991) Modification of the coding sequences enhances plant expression of insect control protein genes. Proc Natl Acad Sci U S A 88:3324–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlak FJ, Oppenhuizen M, Gustafson K, Voth R, Sivasupramaniam S, Heering D, Carey B, Ihrig RA, Roberts JK (2001) Development and commercial use of Bollgard cotton in the USA-early promises versus today’s reality. Plant J 27:489–501

    Article  CAS  PubMed  Google Scholar 

  • Pigott CR, Ellar DJ (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev 71(2):255–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell JP, Oppenhuizen M, Wofford T, Reed AJ, Perlak FJ (2004) The story of Bollgard cotton. In: Christou P, Klee H (eds) Handbook of plant biotechnology. John Wiley & Sons, New York, NY, pp 1147–1163

    Google Scholar 

  • Rajamohan F, Alzate O, Cotrill JA, Curtiss A, Dean DH (2006) Protein engineering of Bacillus thuringiensis delta-endotoxin: mutations at domain II of Cry1Ab enhance receptor affinity and toxicity toward gypsy moth larvae. Proc Natl Acad Sci 93:14338–14343

    Article  Google Scholar 

  • Ramesh S, Nagadhara D, Reddy VD, Rao KV (2004) Production of transgenic indica rice resistant to yellow stem borer and sap-sucking insects, using super-binary vectors of Agrobacterium tumefaciens. Plant Sci 166:1077–1085

    Article  CAS  Google Scholar 

  • Rawat P, Singh AK, Ray K, Chaudhary B, Kumar S, Gautam T, Kanoria S, Kaur G, Kumar P, Pental D, Burma PK (2011) Detrimental effect of expression of Bt endotoxin Cry1Ac on in vitro regeneration, in vivo growth and development of tobacco and cotton transgenics. J Biosci 36:363–376

    Article  CAS  PubMed  Google Scholar 

  • Rico E, Ballester V, Mensua JL (1998) Survival of two strains of Phthorimae opercutella (Lepidoptera: Gelechiidae) reared on transgenic potatoes expressing a Bacillus thuringiensis crystal protein. Agronomie 18:151–155

    Article  Google Scholar 

  • Ronald P (2011) Plant genetics, sustainable agriculture and global food security. Genetics 188:11–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Rukmini V, Reddy CY, Venkateswerlu G (2000) Bacillus thuringiensis crystal δ-endotoxin: role of proteases in the conversion of protoxin to toxin. Biochimie 82:109–116

    Article  CAS  PubMed  Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:283–300

    Article  CAS  PubMed  Google Scholar 

  • Sanchis V, Lereclus D, Menou G, Chaufaux J, Lecadet MM (1988) Multiplicity of delta endotoxin genes with different insecticidal specificities in Bacillus thuringiensis aizawai. Mol Microbiol 2:393–404

    Article  CAS  PubMed  Google Scholar 

  • Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci 168:1135–1146

    Article  CAS  Google Scholar 

  • Saraswathy N, Kumar PA (2004) Protein engineering of δ-endotoxins of Bacillus thuringiensis. Electron J Biotechnol 7(2)

    Google Scholar 

  • Sardana R, Dukiandjiev S, Giband M, Cheng X, Cowan K, Sauder C, Altosaar I (1996) Construction and rapid testing of synthetic and modified toxin gene sequences Cry1A (b & c) by expression in maize endosperm culture. Plant Cell Rep 15:677–681

    Article  CAS  PubMed  Google Scholar 

  • Schnepf HE, Whiteley HR (1981) Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc Natl Acad Sci U S A 78:2893–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnepf HE, Crickmore N, Van Rie J, Lereculus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvapandiyan A, Reddy VS, Kumar PA, Tewari KK, Bhatnagar RK (1998) Transformation of Nicotiana tabacum with a native cry1Ia5 gene confers complete protection against Heliothis armigera. Mol Breed 4(6):473–478

    Article  CAS  Google Scholar 

  • Sharma KK, Seetharama N, Ortiz R, Sharma HC (2000) Prospects for using transgenic resistance to insects in crop improvement. Electron J Biotechnol 3:76–95

    Article  Google Scholar 

  • Sharma HC, Sharma KK, Seetharama N, Crouch JH (2004) Genetic engineering of crops for insect control: potential and limitations. CRC Crit Rev Plant Sci 23:47–72

    Article  CAS  Google Scholar 

  • Sharma KK, Lavanya K, Anjalah A (2006) Agrobacterium tumefaciens-mediated production of transgenic pigeonpea (Cajanus cajan [L.] mill sp.) expressing the synthetic BT cry1Ab gene. Invitro Cell Dev Biol 42:165–173

    Article  CAS  Google Scholar 

  • Shu Q, Ye G, Cui H, Cheng X, **ang Y, Wu D, Gao M, **a Y, Hu C, Sardana R, Altosaar I (2000) Transgenic rice plants with a synthetic cry1Ab gene from Bacillus thuringiensis were highly resistant to eight lepidopteran rice pest species. Mol Breed 6(4):433–439

    Article  CAS  Google Scholar 

  • Singh PK, Kumar M, Chaturvedi CP, Yadav D, Tuli R (2004) Development of a hybrid δ-endotoxin and its expression in tobacco and cotton for control of a polyphagous pest Spodoptera litura. Trans Res 14:1–14

    Google Scholar 

  • Singh R, Channappa RK, Deeba F, Nagaraj NJ, Sukavaneaswaran MK, Manjunath TM (2005) Tolerance of Bt corn (MON810) to maize stem borer Chilo partellus (Lepidoptera: Crambidae). Plant Cell Rep 24:556–560

    Article  CAS  PubMed  Google Scholar 

  • Singsit C, Adang MJ, Lynch RE, Anderson WF, Wang A, Cardineau G, Ozias-Akins P (1997) Expression of Bacillus thuringiensis cry1A(c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Trans Res 6:169–176

    Article  CAS  Google Scholar 

  • Smith EF, Townsend CO (1907) A plant-tumor of bacterial origin. Science 25:671–673

    Article  CAS  PubMed  Google Scholar 

  • Soberon M, Lopez-Diaz JA, Bravo A (2013) Cyt toxins produced by Bacillus thuringiensis: a protein conserved in several pathogenic microorganisms. Peptides 41:87–89

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S (2007) Expression and performance of modified Bacillus thuringiensis insecticidal cry1A genes in transgenic tomato for insect resistance. Ph.D. thesis, University of Lucknow, Lucknow, India

    Google Scholar 

  • Staub JM, Garcia B, Graves J, Hajdukiewicz PTJ, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D, Ye GN, Russell D (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338

    Article  CAS  PubMed  Google Scholar 

  • Stewart CN Jr, Adang MJ, All JN, Boerma HR, Cardineau G, Tucker D, Parrott WA (1996) Genetic transformation, recovery and characterization of fertile soybean transgenic for a synthetic B. thuringiensis cry1Ac gene. Plant Physiol 112:121–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strizhov N, Keller M, Mathur J, Koncz-Kálmán Z, Bosch D, Prudovsky E, Schell J, Sneh B, Koncz C, Zilberstein A (1996) A synthetic cryIC gene, encoding a Bacillus thuringiensis delta-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proc Natl Acad Sci U S A 93(26):15012–15017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surekha C, Beena MR, Arundhati A, Singh PK, Tuli R, Dutta-Gupta A, Kirti PB (2005) Agrobacterium-mediated genetic transformation of pigeonpea (Cajanus cajan L. Millsp.) using embryonal segments and development of transgenic plants for resistance against Spodoptera. Plant Sci 169:1074–1080

    Article  CAS  Google Scholar 

  • Tabashnik BE, Finson N, Johnson MW, Moar WJ (1993) Resistance to toxins from Bacillus thuringiensis subsp. Kurstaki causes minimal cross-resistance to B. thuringiensis subsp. aizawai in the diamondback moth (Lepidoptera: Plutallida). Appl Environ Microbiol 59:1332–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabashnik BE, Liu YB, Finson N, Masson L, Heckel DG (1997) One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. Proc Natl Acad Sci U S A 94:1640–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabashnik BE, Dennehy TJ, Sims MA, Larkin K, Head GP, Moar WJ, Carrière Y (2002) Control of resistant pink bollworm by transgenic cotton with Bacillus thuringiensis toxin Cry2Ab. Appl Environ Microbiol 68:3790–3794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabashnik BE, Carrière Y, Dennehy TJ, Morin S, Sisterson MS, Roush RT, Shelton AM, Zhao JZ (2003) Insect resistance to transgenic Bt crops: lessons from the laboratory and field. J Eco Entomol 96:1031–1038

    Article  CAS  Google Scholar 

  • Tabashnik BE, Sisterson MS, Ellsworth PC, Dennehy TJ, Antilla L, Liesner L, Whitlow M, Staten RT, Fabrick JA, Unnithan GC, Yelich AJ, Ellers-Kirk C, Harpold VS, Li X, Carriere Y (2010) Suppressing resistance to Bt cotton with sterile insect release. Nat Biotechnol 28:1304–1307

    Article  CAS  PubMed  Google Scholar 

  • Thi Van D, Ferro N, Jacobsen HJ (2010) Development of a simple and effective protocol for Agrobacterium tumefaciens mediated leaf disc transformation of commercial tomato cultivars. GM Crops 1–5:312–321

    Article  Google Scholar 

  • Tu J, Zhang G, Datta K, Xu C, He Y, Zhang Q, Khush GS, Datta SK (2000) Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin. Nat Biotechnol 18:1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Tyc K, Konarska M, Gross HJ, Filipowicz W (1984) Multiple ribosome binding to the 5′-terminal leader sequence of tobacco mosaic virus RNA. Assembly of an 80S ribosome X mRNA complex at the AUU codon. Eur J Biochem 140:503–511

    Article  CAS  PubMed  Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opinion Biotech 17:147–154

    Article  CAS  Google Scholar 

  • Upadhyay SK, Singh PK (2011) Role of alkaline phosphatase in insecticidal action of Cry1Ac against Helicoverpa armigera larvae. Biotechnol Lett 33:2027–2036

    Article  CAS  PubMed  Google Scholar 

  • Vachon V, Laprade R, Schwartz JL (2012) Current models of the mode of acion of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J Invertebr Pathol 111:1–12

    Article  CAS  PubMed  Google Scholar 

  • Vadlamudi RK, Weber E, Ji I, Ji TH, Bulla LA Jr (1995) Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem 270:5490–5494

    Article  CAS  PubMed  Google Scholar 

  • Vaeck M, Reynaerts A, Hofte H, Jansens S, De Beuckeleer M, Dean C, Zabeau M, Van Montagu M, Leemans J (1987) Transgenic plants protected from insect attack. Nature 328:33–37

    Article  CAS  Google Scholar 

  • Valderrama AM, Velá squez N, Rodríguez E, Zapata A, Zaidi M, Altosaar I, Arango R (2007) Resistance to Tecia solanivora (Lepidoptera: Gelechiidae) in three transgenic andean varieties of potato expressing Bacillus thuringiensis Cry1Ac protein. J Econ Entomol 100(1):172–179

    Article  PubMed  Google Scholar 

  • Velcheva M, Faltin Z, Flaishman M, Eshdat Y, Perl A (2005) A liquid culture system for Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum L. Mill.). Plant Sci 168:121–130

    Article  CAS  Google Scholar 

  • Verma AK, Chand L (2005) Agrobacterium-mediated transformation of pigeonpea (Cajanus cajan L.) with uidA and cryIA(b) genes. Physiol Mol Biol Plant 11:99–109

    CAS  Google Scholar 

  • Wahab S (2009) Biotechnological approaches in the management of plant pests, diseases and weeds for sustainable agriculture. J Biopest 2:115–134

    Google Scholar 

  • Wang XG, Zhang GH, Liu CX, Zhang YH, **ao CZ, Fang RX (2001) Purified cholera toxin B subunit from transgenic tobacco plants possesses authentic antigenicity. Biotechnol Bioeng 72:490–494

    Article  CAS  PubMed  Google Scholar 

  • Wang DJ, Brandsma M, Yin Z, Wang A, Jevnikar AM, Ma S (2008) A novel platform for biologically active recombinant human interleukin-13 production. Plant Biotechnol J 6:504–515

    Article  CAS  PubMed  Google Scholar 

  • Weng LX, Deng HH, Xu JL, Li Q, Zhang YQ, Jiang ZD, Li QW, Chen JW, Zhang LH (2010) Transgenic sugarcane plants expressing high levels of modified cry1Ac provide effective control against stem borers in field trials. Transgenic Res 20(4):759–772

    Article  CAS  PubMed  Google Scholar 

  • Whiteley RH, Schnepf HE (1986) The molecular biology of parasporal crystal body formation in Bacillus thuringiensis. Ann Rev Microbiol 40:549–576

    Article  CAS  Google Scholar 

  • Wu C, Fan Y, Zhang C, Olica N, Datta SK (1997) Transgenic fertile japonica rice plants expressing a modified cryIA(b) gene resistant to yellow stem borer. Plant Cell Rep 17:129–132

    Article  CAS  PubMed  Google Scholar 

  • Wu SJ, Koller CN, Miller DL, Bauer LS, Dean DH (2000) Enhanced toxicity of Bacillus thuringiensis Cry3A delta-endotoxin in coleopterans by mutagenesis in a receptor binding loop. FEBS Lett 473:227–232

    Article  CAS  PubMed  Google Scholar 

  • Wunn J, Kloti A, Burkhardt PK, Biswas CG, Launis K, Iglesias VA, Potrykus I (1996) Transgenic indicia rice breeding line IR58 expressing a synthetic cryIAb gene from Bacillus thuringiensis provides effective insect pest control. Bio/Technology 14:171–176

    CAS  Google Scholar 

  • **e R, Zhuang M, Ross LS, Gomez I, Oltean DI, Bravo A, Soberon M, Gill SS (2005) Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins. J Biol Chem 280:8416–8425

    Article  CAS  PubMed  Google Scholar 

  • Ye GY, Yao HW, Shu QY, Cheng X, Hu C, **a YW, Gao MW, Altosaar I (2003) High levels of stable resistance in transgenic rice with a cry1Ab gene from Bacillus thuringiensis Berliner to rice leaffolder, Cnaphalocrocis medinalis (Guenée) under field conditions. Crop Prot 22:171–178

    Article  CAS  Google Scholar 

  • Zaidi MA, Mohammadi M, Postel S, Masson L, Altosaar I (2005) The Bt gene cry2Aa2 driven by a tissue specific ST-LS1 promoter from potato effectively controls Heliothis virescens. Trans Res 14(3):289–298

    Article  CAS  Google Scholar 

  • Zambryski P, Tempe J, Schell J (1989) Transfer and function of T-DNA genes from agrobacterium Ti and Ri plasmids in plants. Cell 56(2):193–201

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Candas M, Griko NB, Taussig R, Bulla LA Jr (2006) A mechanism of cell death involving an adenylyl cyclase PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci U S A 103(26):9897–9902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao JZ, Li YX, Collins HL, Cao J, Earle ED, Shelton AM (2001) Different cross-resistance patterns in the diamond back moth (Lepidoptera: Plutellidae) resistant to Bacillus thuringiensis toxin cry1C. J Econ Entomol 94(6):1547–1552

    Article  CAS  PubMed  Google Scholar 

  • Zhao JZ, Cao J, Li Y, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21(12):1493–1497

    Article  CAS  PubMed  Google Scholar 

  • Zhao J-Z, Cao J, Collins HL, Bates SL, Roush RT, Earle ED, Shelton AM (2005) Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc Natl Acad Sci U S A 102:8426–8430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupendra Koul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koul, B. (2020). Genetically Modified (GM) Crops Harbouring Bacillus thuringiensis (BT) Gene(S) to Combat Biotic Stress Caused by Insect Pests. In: Kumar, M., Kumar, V., Prasad, R. (eds) Phyto-Microbiome in Stress Regulation. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2576-6_2

Download citation

Publish with us

Policies and ethics

Navigation