Global Atmosphere Watch (GAW) Aerosol Program

  • Living reference work entry
  • First Online:
Handbook of Air Quality and Climate Change

Abstract

Aerosols in the atmosphere play a role in air quality, ozone depletion, and the long-range transport and deposition of toxics and nutrients. Aerosols are also tightly linked to climate forcing by direct/indirect effects. The main goal of the Global Atmosphere Watch (GAW) Aerosol Program is to enhance the coverage, effectiveness, and application of long-term aerosol measurements within GAW and with cooperating networks worldwide. This chapter summarizes the organizational structure of GAW aerosol program that consists of Scientific Advisory Group for Aerosols, World Data Centre for Aerosols, World Calibration Center for Aerosol Physics, and World Optical Depth Research and Calibration Center. Then, the monitoring overviews, data summaries, and outcomes of the observations are introduced for each aerosol-monitoring units such as Global Aerosol Observatories, GAW Affiliated AOD Networks, GAW Aerosol Lidar Observation Network (GALION), and GAW in situ aerosol-monitoring network. Besides the GAW monitoring stations, the GAW has a partnership with contributing networks and collaborating organizations and bodies that enable to provide reliable scientific data and information on the chemical composition of the atmosphere. This chapter also introduces major contributing networks and cosponsored programs for aerosol monitoring such as European Monitoring and Evaluation Programme (EMEP), Interagency Monitoring of Protected Visual Environments (IMPROVE), Clean Air Status and Trends Network (CASTNET), and Acid Deposition Monitoring Network in East Asia (EANET). The vision of GAW Aerosol Program is for provision of long-term sustained and consistent observations of aerosol properties on a global scale through a consortium of existing aerosol networks complementing satellite and environmental agencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. WMO (2003) WMO/GAW aerosol measurement procedures guidelines and recommendations, WMO TD No. 1178 GAW Report No. 153. World Meteorological Organization, Geneva

    Google Scholar 

  2. Dlugkencky E, MiWMO (2010) The global atmosphere watch; a history of contributing of climate monitoring. WMO Buliten 59(1):35–39

    Google Scholar 

  3. WMO (2009) Recommendations for a composite surface-based aerosol network, GAW Report No. 207, Emmetten, Switzerland, 28–29 April 2009

    Google Scholar 

  4. Petzold A, Ogren JA et al (2013) Recommendations for reporting “black carbon” measurements Atmos. Chem Phys 13:8365–8379. https://doi.org/10.5194/acp-13-8365-2013

    Article  Google Scholar 

  5. WMO (2016) WMO/GAW aerosol measurement procedures, guidelines and recommendations, 2nd edn. WMO-No. 1177 GAW Report No. 227. ISBN: 978-92-63-11177-7, pp 101

    Google Scholar 

  6. WMO (2001) Strategy for the implementation of the global atmosphere watch programme (2001–2007): a contribution to the implementation of the long-term plan. WMO TD No.1077, GAW Report No. 142. World Meteorological Organization, Geneva

    Google Scholar 

  7. WMO (2014) The global atmosphere watch programme 25 years of global coordinated atmospheric composition observations and analysis

    Google Scholar 

  8. WMO Aerosol Research. https://community.wmo.int/activity-areas/gaw/science/aerosol-research. Cited 25 Aug 2022

  9. GAW Aerosol SAG (2013) WMO Aerosol Bulletin no. 1. World Meteorological Organization (WMO), Geneva, pp 4

    Google Scholar 

  10. GAW Aerosol SAG (2016) WMO Aerosol Bulletin no. 2. World Meteorological Organization (WMO), Geneva, pp 4

    Google Scholar 

  11. GAW Aerosol SAG (2017) WMO Aerosol Bulletin no. 3. World Meteorological Organization (WMO), Geneva, pp 8

    Google Scholar 

  12. GAW Aerosol SAG (2021) WMO Aerosol Bulletin no. 4. World Meteorological Organization (WMO), Geneva, pp 8

    Google Scholar 

  13. Ogren LA (ed) (2011) WMO/GAW standard operating procedures for in-situ measurements of aerosol mass concentration, light scattering and light absorption, GAW Report No. 200. World Meteorological Organization (WMO), Geneva, pp 130

    Google Scholar 

  14. Kazadzis S, Kouremeti N, Nyeki S, Gröbner J, Wehrli C (2018) The World Optical Depth Research and Calibration Center (WORCC) quality assurance and quality control of GAW-PFR AOD measurements. Geosci Instrum Method Data Syst 7:39–53. https://doi.org/10.5194/gi-7-39-2018

    Article  Google Scholar 

  15. Kazadzis S, Kouremeti N, Diémoz H, Gröbner J, Forgan BW, Campanelli M, Estellés V, Lantz K, Michalsky J, Carlund T, Cuevas E, Toledano C, Becker R, Nyeki S, Kosmopoulos PG, Tatsiankou V, Vuilleumier L, Denn FM, Ohkawara N, Ijima O, Goloub P, Raptis PI, Milner M, Behrens K, Barreto A, Martucci G, Hall E, Wendell J, Fabbri BE, Wehrli C (2018) Results from the fourth WMO filter radiometer comparison for aerosol optical depth measurements. Atmos Chem Phys 18:3185–3201. https://doi.org/10.5194/acp-18-3185-2018

    Article  Google Scholar 

  16. Collaud CM, Andrews E, Asmi A, Baltensperger U, Bukowiecki N, Day D, Fiebig M, Fjaeraa AM, Flentje H, Hyvärinen A, Jefferson A, Jennings SG, Kouvarakis G, Lihavainen H, Lund MC, Malm WC, Mihapopoulos N, Molenar JV, O’Dowd C, Ogren JA, Schichtel BA, Sheridan P, Virkkula A, Weingartner E, Weller R, Laj P (2013) Aerosol decadal trends – part 1: in-situ optical measurements at GAW and IMPROVE stations. Atmos Chem Phys 13:869–894. https://doi.org/10.5194/acp-13-869-2013

    Article  Google Scholar 

  17. Asmi A, Collaud CM, Ogren JA, Andrews E, Sheridan P, Jefferson A, Weingartner E, Baltensperger U, Bukowiecki N, Lihavainen H, Kivekäs N, Asmi E, Aalto PP, Kulmala M, Wiedensohler A, Birmili W, Hamed A, O’Dowd C, Jennings SG, Weller R, Flentje H, Fjaeraa AM, Fiebig M, Myhre CL, Hallar AG, Swietlicki E, Kristensson A, Laj P (2013) Aerosol decadal trends – part 2: in-situ aerosol particle number concentrations at GAW and ACTRIS stations. Atmos Chem Phys 13:895–916. https://doi.org/10.5194/acp-13-895-2013

    Article  Google Scholar 

  18. Rose C, Coen MC, Andrews E, Lin Y, Bossert I, Myhre CL, Tuch T, Wiedensohler A, Fiebig M, Aalto P, Alastuey A, Alonso-Blanco E, Andrade M, Artíñano B, Arsov T, Baltensperger U, Bastian S, Bath O, Beukes JP, Brem BT, Bukowiecki N, Casquero-Vera JA, Conil S, Eleftheriadis K, Favez O, Flentje H, Gini MI, Gómez-Moreno FJ, Gysel-Beer M, Hallar AG, Kalapov I, Kalivitis N, Kasper-Giebl A, Keywood M, Kim JE, Kim SW, Kristensson A, Kulmala M, Lihavainen H, Lin NH, Lyamani H, Marinoni A, Martins Dos Santos S, Mayol-Bracero OL, Meinhardt F, Merkel M, Metzger JM, Mihalopoulos N, Ondracek J, Pandolfi M, Pérez N, Petäjä T, Petit JE, Picard D, Pichon JM, Pont V, Putaud JP, Reisen F, Sellegri K, Sharma S, Schauer G, Sheridan P, Sherman JP, Schwerin A, Sohmer R, Sorribas M, Sun J, Tulet P, Vakkari V, van Zyl PG, Velarde F, Villani P, Vratolis S, Wagner Z, Wang SH, Weinhold K, Weller R, Yela M, Zdimal V, Laj P (2021) Seasonality of the particle number concentration and size distribution: a global analysis retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmos Chem Phys 21:17185–17223. https://doi.org/10.5194/acp-21-17185-2021

    Article  Google Scholar 

  19. Laj P, Bigi A, Rose C, Andrews E, Lund Myhre C, Collaud Coen M, Lin Y, Wiedensohler A, Schulz M, Ogren JA, Fiebig M, Gliß J, Mortier A, Pandolfi M, Petäja T, Kim SW, Aas W, Putaud JP, Mayol-Bracero O, Keywood M, Labrador L, Aalto P, Ahlberg E, Alados Arboledas L, Alastuey A, Andrade M, Artíñano B, Ausmeel S, Arsov T, Asmi E, Backman J, Baltensperger U, Bastian S, Bath O, Beukes JP, Brem BT, Bukowiecki N, Conil S, Couret C, Day D, Dayantolis W, Degorska A, Eleftheriadis K, Fetfatzis P, Favez O, Flentje H, Gini MI, Gregorič A, Gysel-Beer M, Hallar AG, Hand J, Hoffer A, Hueglin C, Hooda RK, Hyvärinen A, Kalapov I, Kalivitis N, Kasper-Giebl A, Kim JE, Kouvarakis G, Kranjc I, Krejci R, Kulmala M, Labuschagne C, Lee HJ, Lihavainen H, Lin NH, Löschau G, Luoma K, Marinoni A, Martins Dos Santos S, Meinhardt F, Merkel M, Metzger JM, Mihalopoulos N, Nguyen NA, Ondracek J, Pérez N, Perrone MR, Petit JE, Picard D, Pichon JM, Pont V, Prats N, Prenni A, Reisen F, Romano S, Sellegri K, Sharma S, Schauer G, Sheridan P, Sherman JP, Schütze M, Schwerin A, Sohmer R, Sorribas M, Steinbacher M, Sun J, Titos G, Toczko B, Tuch T, Tulet P, Tunved P, Vakkari V, Velarde F, Velasquez P, Villani P, Vratolis S, Wang SH, Weinhold K, Weller R, Yela M, Yus-Diez J, Zdimal V, Zieger P, Zikova N (2020) A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmos Meas Tech 13:4353–4392. https://doi.org/10.5194/amt-13-4353-2020

    Article  Google Scholar 

  20. Sirois A (1998) A brief and biased overview of time series analysis or how to find that evasive trend in GAW Report No. 133: WMO/EMEP workshop on advanced statistical methods and their application to air quality data sets. World Meteorological Organization (WMO), Geneva, pp 14–18

    Google Scholar 

  21. Henning S, Weingartner E, Schwikowski M, Gäggeler HW, Gehrig R, Hinz KP, Trimborn A, Spengler B, Baltensperger U (2013) Seasonal variation of water-soluble ions of the aerosol at the high-alpine site Jungfraujoch (3580 m asl). J Geophys Res Atmos 108(1). https://doi.org/10.1029/2002JD002439

  22. Yan P, Zhang R, Huan N, Zhou X, Zhang Y, Zhou H, Zhang L (2012) Characteristics of aerosols and mass closure study at two WMO GAW regional background stations in eastern China. Atmos Environ 60:121–131. https://doi.org/10.1016/j.atmosenv.2012.05.050

    Article  Google Scholar 

  23. Carbone C, Decesari S, Paglione M, Giulianelli L, Rinaldi M, Marinoni A, Cristofanelli P, Didiodato A, Bonasoni P, Fuzzi S, Facchini MC (2014) 3 year chemical composition of free tropospheric PM1 at the Mt. Cimone GAW global station – South Europe – 2165 m a.s.l. Atmos Environ 87:218–227. https://doi.org/10.1016/j.atmosenv.2014.01.048

    Article  Google Scholar 

  24. WMO (1984) Recent progress in sunphotometry (determination of the aerosol optical depth), GAW Report No. 43

    Google Scholar 

  25. WMO (1993) Report of the WMO workshop on the measurement of atmospheric optical depth and turbidity, WMO TD No. 659

    Google Scholar 

  26. WMO (2004) WMO/GAW experts workshop on a global surface-based network for long term observations of column aerosol optical properties, WMO TD No. 1287 GAW Report No. 162, Davos

    Google Scholar 

  27. Holben BN, Eck TF et al (1998) AERONET – a federated instrument network and data archive for aerosol characterization. Rem Sens Env 66(1):1–16

    Article  Google Scholar 

  28. Nakajima T, Yoon S (2007) Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing ineast Asia. J Geophys Res 112(D24S91). https://doi.org/10.1029/2007JD009009

  29. Augustine JA, Hodges GB et al (2008) An aerosol optical depth climatology for NOAA’s national surface radiation budget network (SURFRAD). J Geophys Res 113(D11). https://doi.org/10.1029/2007JD009504

  30. Eck TF, Holben BN et al (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosol. J Geophys Res 104:31,333–31,350

    Article  Google Scholar 

  31. Smirnov A, Holben BN et al (2000) Cloud screening and quality control algorithms for the AERONET data base. Rem Sens Env 73(3):337–349

    Article  Google Scholar 

  32. Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J Geophys Res 105:20,673–20,696

    Article  Google Scholar 

  33. Dubovik O, Smirnov A et al (2000) Accuracy assessments of aerosol optical properties retrieved from AERONET sun and sky radiance measurements. J Geophys Res 105:9791–9806

    Article  Google Scholar 

  34. WMO (2007) Plan for the implementation of the GAW Aerosol Lidar Observation Network GALION WMO TD No. 1443 GAW Report No. 178, pp 52, Hamburg

    Google Scholar 

  35. Welton E J (2020) The evolution of Lidar networks: a US perspective. https://ntrs.nasa.gov/citations/20200001238. Cited 25 Aug 2022. Cited by Aug 21

  36. Pappalardo G, Mona L et al (2013) Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET. Atmos Chem Phys 13:4429–4450

    Article  Google Scholar 

  37. Arias P A, Bellouin N (2021) Technical summary. In: Climate change 2021: the physical science basis. Contribution of Working Group I to the sixth assessment report of the Intergovernmental Panel on Climate Change, pp 33–144. https://doi.org/10.1017/9781009157896.002

  38. Tørseth K, Aas W, Breivik K, Fjæraa AM, Fiebig M, Hjellbrekke AG, Lund Myhre C, Solberg S, Yttri KE (2012) Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos Chem Phys 12:5447–5481. https://doi.org/10.5194/acp-12-5447-2012

    Article  Google Scholar 

  39. EMEP (2000) Proc. EMEP-WMO workshop on fine particles – emissions, modelling and measurements. In: Hanssen JE, Ballaman R, Gehrig R (eds) Interlaken, 22–25 November, 1999, EMEP/CCC-Report 9/2000, NorwegianInstitute for Air Research, Kjeller. IPCC (2001) Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds). Cambridge University Press, New York

    Google Scholar 

  40. EANET (2021) Fourth periodic report on the State of acid deposition in East Asia

    Google Scholar 

  41. Vet R, Artz RS, Carou S, Shaw M, Ro C-U, Aas W, Baker A, Bowersox VC, Dentener F, Galy-Lacaux C, Hou A, Piennar JJ, Gillett R, Forti MC, Gromov S, Hara H, Khodzher T, Mahowald NM, Nickovic S, Rao PSP, Reid NW (2014) A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorous. Atmos Environ 93:3–100

    Article  Google Scholar 

  42. Aas W, Mortier A, Bowersox V, Cherian R, Faluvegi G, Fagerli H, Hand J, Klimont Z, GalyLacaux C, Lehmann CMB, Lund Myhre C, Myhre G, Olivie D, Sato K, Quaas J, Rao PSP, Schulz M, Shindell D, Skeie RB, Stein A, Takemura T, Tsyro S, Vet R, Xu X (2019) Global and regional trends of atmospheric sulfur. Sci Rep 9:953

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akie Yuba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yuba, A., Huo, M., Sato, K. (2023). Global Atmosphere Watch (GAW) Aerosol Program. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2527-8_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2527-8_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2527-8

  • Online ISBN: 978-981-15-2527-8

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Navigation