Abstract

This chapter describes the usefulness of biofilms. It starts by discussing the importance of biofilms for producing electricity and the process which is known as microbial fuel cell (MFC) technology. The next topic presents beneficial applications of biofilms to the environment. It includes bioremediation, nitrogen-fixing bacteria that make atmospheric nitrogen available to plants, and biofilm/bacteria use for recycling elements vital to life. Biofilms are also used to immobilize harmful materials, as biological pesticides, and for bioleaching to extract metals from their ores. The final section provides a description of how biofilms contribute to water treatment applications for pollutants such as plastics in our oceans, heavy metals, industrial wastes, oil spills, and sewage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dervisoglu, R. File: Solid oxide fuel cell protonic.svg. Date: May 2012. License: This work is in the public domain. https://commons.wikimedia.org/wiki/File:Solid_oxide_fuel_cell_protonic.svg.

  2. Arizona State University (Jan 7, 2008) Fuel cell that uses bacteria to generate electricity. Science Daily. https://www.sciencedaily.com/releases/2008/01/080103101137.htm.

  3. Wiley (June 27, 2017) Coating bacteria with electron-conducting polymer for microbial fuel-cells: Coating of individual bacterial cells with an electron-conducting polymer provides for a high-performance anode for microbial fuel-cell applications. Science Daily. https://www.sciencedaily.com/releases/2017/06/170627105323.htm.

  4. Guy, M. F. C. (2010). File: Soil MFC.png. Date: September 1, 2010. License: Creative Commons Attribution-Share Alike 3.0. https://commons.wikimedia.org/wiki/File:SoilMFC.png.

  5. KVDP. File: Plant microbial fuel cell.png. Date: April 23, 2010. License: This work is in the public domain. https://commons.wikimedia.org/wiki/File:Plant_Microbial_Fuel_Cell.png.

  6. Chen, T., Barton, S. C., Binyamin, G., Gao, Z., Zhang, Y., Kim, H.-H., et al. (2001). A miniature biofuel cell. Journal of the American Chemical Society, 123(35), 8630–8631.

    Article  CAS  Google Scholar 

  7. Bullen, R. A., Arnot, T. C., Lakeman, J. B., & Walsh, F. C. (2006). Biofuel cells and their development. Biosensors & Bioelectronics, 21(11), 2015–2045.

    Article  CAS  Google Scholar 

  8. Venkata Mohan, S., Veer Raghavulu, S., & Sarma, P. N. (2008). Biochemical evaluation of bioelectricity production process from anaerobic wastewater treatment in a single chambered microbial fuel cell (MFC) employing glass wool membrane. Biosensors & Bioelectronics, 23(9), 1326–1332.

    Article  CAS  Google Scholar 

  9. Venkata Mohan, S., Veer Raghavulu, S., & Sarma, P. N. (2008). Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia. Biosensors & Bioelectronics, 24(1), 41–47.

    Article  CAS  Google Scholar 

  10. Liu, H., Grot, S., & Logan, B. E. (2005). Electrochemically assisted microbial production of hydrogen from acetate. Environmental Science and Technology, 39(11), 4317–4320.

    Article  CAS  Google Scholar 

  11. Sleutels, T. H. J. A., Lodder, R., Hamelers, H. V. M., & Buisman, C. J. N. (2009). Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport. International Journal of Hydrogen Energy, 34(24), 9655–9661.

    Article  CAS  Google Scholar 

  12. Winter, C.-J. (2005). Into the hydrogen energy economy-Milestones. International Journal of Hydrogen Energy, 30(7), 681–685.

    Article  CAS  Google Scholar 

  13. Rizzi, F., Annunziata, E., Liberati, G., & Frey, M. (2014). Technological trajectories in the automotive industry: Are hydrogen technologies still a possibility? Journal of Cleaner Production, 66, 328–336.

    Article  CAS  Google Scholar 

  14. Deretsky, Z. (National Science Foundation). File: Microbial electrolysis cell.png. Date: April 22, 2010. License: This work is in the public domain. It is a work of the U.S. federal government. https://commons.wikimedia.org/wiki/File:Microbial_electrolysis_cell.png.

  15. Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M., & Lovley, D. R. (2010). Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio, 1(2), e00103–e00110. https://doi.org/10.1128/mbio.00103-10.

  16. Johann Dreo, E. P. A. File: Nitrogen Cycle.svg. Date: September 27, 2009. License: Creative Commons Attribution-Share Alike 3.0. https://commons.wikimedia.org/wiki/File:Nitrogen_Cycle.svg.

  17. Kelvinsong. File: Cyanobacterium—inline.svg. Date: January 23, 2013. License: Creative Commons Attribution-Share Alike 3.0. https://commons.wikimedia.org/wiki/File:Cyanobacterium-inline.svg.

  18. Chandra, S., Sharma, R., Singh, K., et al. (2013). Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Annals Microbiology, 63(2), 417–431.

    Article  CAS  Google Scholar 

  19. Lopez, A., Lazaro, N., Priego, J. M., & Marques, A. M. (2000). Effect of pH on the biosorption of nickel and other heavy metals by Pseudomonas fluorescens 4F39. Journal of Industrial Microbiology and Biotechnology, 24, 146–151.

    Article  CAS  Google Scholar 

  20. Nanda, M., Kumar, V., & Sharma, D. K. (2019). Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to clean-up heavy metal contaminants from water. Aquatic Toxicology, 212, 1–10.

    Article  CAS  Google Scholar 

  21. File: Enterobacter cloacae 01.png. License: This is the work of the Centers for Disease Control and Prevention. It is in the public domain. https://commons.wikimedia.org/wiki/File:Enterobacter_cloacae_01.png.

  22. Rousseaux, C. (2011). Geobacter: The junk food connoisseurs of the bacterial kingdom. Department of Energy. https://www.energy.gov/articles/geobacter-junk-food-connoisseurs-bacterial-kingdom.

  23. Bti for Mosquito Control (2016). EPA.gov. US EPA. 2016-07-05. Retrieved June 28, 2018.

    Google Scholar 

  24. Buckman, J., & Johnston, P. R. File: Bt-toxin-crystals.jpg. Date: December 19, 2006. License: This work is in the public domain. https://commons.wikimedia.org/wiki/File:Bt-toxin-crystals.jpg.

  25. AZo Mining (2014). Bioleaching process—Mining fundamentals. https://www.azomining.com/Article.aspx?ArticleID=1095.

  26. deOliveira, D. M., Sobral, L. G. S. Olson, G. J., Olson, S. B. (2014). Acid leaching of copper ore by sulphur-oxidizing microorganisms. Hydrometallurgy, 147–148, 223–227.

    Article  CAS  Google Scholar 

  27. Richard, M. G. (2005). The pollution eating & power generating bacteria. treehugger. https://www.treehugger.com/renewable-energy/the-pollution-eating-power-generating-bacteria.html.

  28. Sims, B. (2011). Researchers use bacterium to convert cellulose into n-butanol. Biomass Magazine. http://biomassmagazine.com/articles/7273/researchers-use-bacterium-to-convert-cellulose-into-n-butanol/?ref=brm.

  29. Dincer, C., Bruch, R., Costa-Rama, E., Fernandez-Abedul, M. T. (2019). Disposable sensors in diagnostics, food, and environmental monitoring. Advanced Materials. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201806739.

  30. Evans, J., & Periman, H. (USGS). File: watercyclesummary.jpg. Date: June 22, 2013. License: This work is in the public domain. https://commons.wikimedia.org/wiki/File:Watercyclesummary.jpg.

  31. Anishct. File: HydrologicalCycle1.png. Date: October 19, 2010. License: This work is in the public domain. https://commons.wikimedia.org/wiki/File:HydrologicalCycle1.png.

  32. Gao, N. File: Zoogloea floc versus planktonic.tiff. Date: July 19, 2018. License: This work is in the public domain. https://commons.wikimedia.org/wiki/File:Zoogloea_floc_vs_planktonic.tiff.

  33. Leonard, G. (at English Wikipedia). File: ESQUEMPEQUE-EN.jpg. Date: December 19, 2006. License: Creative Commons Attribution—Share Alike 2.5 Generic. https://commons.wikimedia.org/wiki/File:ESQUEMPEQUE-EN.jpg.

  34. Yayasan IDEP Foundation and Wastewater Gardens. File: SchemConstructedWetlandSewage.jpg. Date: January 1, 2000. License: This work is in the public domain. https://commons.wikimedia.org/wiki/File:SchemConstructedWetlandSewage.jpg.

  35. Marine Photobank. File: Oiled Bird-Black Sea Oil Spill 111207.jpg. Date: November 12, 2007. License: Creative Commons Attribution 2.0 Generic. https://commons.wikimedia.org/wiki/File:Oiled_Bird_-_Black_Sea_Oil_Spill_111207.jpg.

  36. Martins, V. A. P., et al. (2008). Genomic insights into oil biodegradation in marine systems. In Microbial biodegradation: Genomics and molecular biology. Caister Academic Press. ISBN 978-1-904455-17-2.

    Google Scholar 

  37. Yuki, K. (2002). Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environmental Microbiology, 4(3), 141–147.

    Article  Google Scholar 

  38. Yakimov, M. M., Timmis, K. N., & Golyshin, P. N. (2007). Obligate oil—degrading marine bacteria. Current Opinion in Biotechnology, 18(3), 257–266.

    Article  CAS  Google Scholar 

  39. Schneiker, S., et al. (2006). Genome sequence of the ubiquitous hydrocarbon- degrading marine bacterium Alcanivorax borkumensis. Nature Biotechnology, 24(8), 997–1004.

    Article  CAS  Google Scholar 

  40. Kasai, Y., Kishira, H., & Harayama, S. (2002). Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Applied and Environmental Microbiology, 68(11), 5625–5633.

    Article  CAS  Google Scholar 

  41. Garrity, G.M., Bell, J.A., & Liburn, T. (2015). Oceanospirillales ord. nov. In W. B. Whitman (Ed.), Bergey’s manual of systematics of archaea and bacteria (p. 1). https://doi.org/10.1002/9781118960608.obm00100.

  42. NASA/Jodi Switzer Blum. File: GFAJ-1 (grown on arsenic).jpg. Date: 2010. License: This file is in the public domain. https://commons.wikimedia.org/wiki/File:GFAJ-1_(grown_on_arsenic).jpg.

  43. Muntaka Chasant. File: Plastic Pollution in Ghana.jpg. Date: October 3, 2018. License: Creative Commons Attribution-Share Alike 4.0 International. https://commons.wikimedia.org/wiki/File:Plastic_Pollution_in_Ghana.jpg.

  44. Yoshida, S., Hiraga, K., Takehana, T., et al. (2016). A bacterium that degrades and assimilates poly (ethylene terephthalate). Science, 351(6278), 1196–1199. https://doi.org/10.1126/science.aad6359.

    Article  CAS  Google Scholar 

  45. Tanasupawat, S., Takehana, T., Yoshida, S., Hiraga, K., Oda, K. (2016). Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly (ethylene terephthalate). International Journal of Systematic and Evolutionary Microbiology, 66(8), 2813–2818. https://doi.org/10.1099/ijsem.0.001058.

    Article  CAS  Google Scholar 

  46. Zhang, H., Walker, T. R., Davis, E., Ma, G. (September 2019). Ecological risk assessment of metals in small craft harbour sediments in Nova Scotia, Canada. Marine Pollution Bulletin, 146, 466–475. https://www.sciencedirect.com/science/article/abs/pii/S0025326X19305144?via%3Dihub.

    Article  CAS  Google Scholar 

  47. File: CadmiumMetalUSGOV.jpg. License: This work is in the public domain. https://commons.wikimedia.org/wiki/File:CadmiumMetalUSGOV.jpg.

  48. Daisley, B. A., Monachese, M., Trinder, M., Bisanz, J. E., Chmiel, J. A., Burton, J. P., et al. (2019). Immobilization of cadmium and lead by Lactobacillus rhamnosus GR-1 mitigates apical-to-basolateral heavy metal translocation in a Caco-2 model of the intestinal epithelium. Gut Microbes, 10(3), 321–333. https://doi.org/10.1080/19490976.2018.1526581.

    Article  CAS  PubMed  Google Scholar 

  49. Chelliaiah, E. R. (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aerugnosa: A minireview. Applied Water Science, 8(154). https://doi.org/10.1007/s13201-018-0796-5.

  50. Bionerd. File: Pouring liquid mercury bionerd.jpg. Date: 2008. License: Creative Commons Attribution 3.0 unported. https://en.wikipedia.org/wiki/File:Pouring_liquid_mercury_bionerd.jpg.

  51. Outten, F. W., Outten, C. E., & O’Halloran, T. (2000). Metalloregulatory systems at the interface between bacterial metal homeostasis and resistance. In G. Storz & R. Hengge-Aronis (Eds.), Bacterial stress responses (pp. 145–157). Washington, D.C: ASM Press.

    Google Scholar 

  52. von Canstein, H., Li, Y., Timmis, K. N., Deckwer, W.-D., & Wagner-Döbler, I. (1999). Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain. Applied and Environment Microbiology, 65, 5279–5284.

    Article  Google Scholar 

  53. White, C., & Gadd, G. M. (1998). Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms. Microbiology, 144, 1407–1415.

    Article  CAS  Google Scholar 

  54. Azizi, S., Kamika, I., & Tekere, M. (2016). Evaluation of heavy metal removal from wastewater in a modified packed bed biofilm reactor. PLoS ONE, 11(5), e0155462. https://doi.org/10.1371/journal.pone.0155462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wagner-Döbler, I., Lünsdorf, H., von Lübbenhüsen, T., Canstein, H. F., & Li, Y. (2000). Structure and species composition of mercury-reducing biofilms. Applied and Environment Microbiology, 66, 4559–4563.

    Article  Google Scholar 

  56. Chemical Elements. File: Lead-2.jpg. Date: March 5, 2016. License: Creative Commons Attribution 3.0 unported. https://commons.wikimedia.org/wiki/File:Lead-2.jpg.

  57. Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51, 730–750.

    Article  CAS  Google Scholar 

  58. Templeton, A. S., Trainor, T. P., Traina, S. J., Spormann, A. M., & Brown, G. E., Jr. (2001). Pb (II) distributions at biofilm-metal oxide interfaces. Proceedings of the National Academy of Sciences of the United States of America, 98, 11897–11901.

    Article  CAS  Google Scholar 

  59. Kazy, S. K., Sar, P., Singh, S. P., Sen, A. K., & D’Souza, S. F. (2002). Extracellular polysaccharides of a copper-sensitive and a copper-resistant Pseudomonas aeruginosa strain: Synthesis, chemical nature and copper binding. World Journal of Microbiology & Biotechnology, 18, 583–588.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana M. Barry .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanematsu, H., Barry, D.M. (2020). Biofilm Usefulness. In: Formation and Control of Biofilm in Various Environments. Springer, Singapore. https://doi.org/10.1007/978-981-15-2240-6_9

Download citation

Publish with us

Policies and ethics

Navigation