Fundamentals for Biofilms

  • Chapter
  • First Online:
Formation and Control of Biofilm in Various Environments
  • 816 Accesses

Abstract

This chapter includes the fundamentals for biofilms. It starts by introducing the topics of bacteria and biofilms. Then it discusses the formation, growth, collapse, and removal of biofilms, which are the result of bacterial activity. Biofilm constituents (which are predominantly water) and exopolymeric substances (EPS) are also presented. EPS, a sticky slime, is the main component of a biofilm’s three-dimensional structure and includes proteins, polysaccharides, lipids, and more. Quorum sensing, which is cell to cell chemical communication that allows bacteria to coordinate an activity, is described too. In addition, details are provided about biofilm involvement in a wide variety of infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slonczewski, J. L., & Foster, J. W. (2013). Microbiology: An evolving science (Third Ed.) (p. 82). New York: W W Norton. ISBN 9780393123678.

    Google Scholar 

  2. Zifran, A. File: Prokaryote cell.svg. Date: October 12, 2015. License: Creative Commons Attribution-Share Alike, 4.0 International. https://commons.wikimedia.org/wiki/File:Prokaryote_cell.svg.

  3. Yuval. File: Gram stain Anthrax.jpg. Date: November 25, 2005. This work is in the public domain. (It is a work of the Centers for Disease Control and Prevention, part of the United States Department of Health and Human Services, for the U.S. Federal government.) https://commons.wikimedia.org/wiki/File:Gram_Stain_Anthrax.jpg.

  4. Lappin-Scott, H. M., Jass., J. & Costerton, J. W. (1993). Microbial biofilm formation and characterization. In Society for Applied Bacteriology technical series, Society for Applied Bacteriology Symposium (p. 30).

    Google Scholar 

  5. Costerton, J. W. (1999). Introduction to biofilm. International Journal of Antimicrobial Agents, 11, 217–221; discussion, pp. 237-239.

    Article  CAS  Google Scholar 

  6. Lappin-Scott, H. M. & Costerton, J. W. (1995). Microbial biofilms. Cambridge, New York: Cambridge University Press.

    Google Scholar 

  7. Dolan, R., & Carr, J. File: Staphylococcus aureus biofilm 01.jpg. Date: April 19, 2006. This work is in the public domain. (It is a work of the Centers for Disease Control and Prevention, part of the United States Department of Health and Human Services, for the U.S. Federal government.) https://commons.wikimedia.org/wiki/File:Staphylococcus_aureus_biofilm_01.jpg.

  8. Chandki, R., Banthia, P., & Banthia, R. (2011). Biofilms: A microbial home. Journal of Indian Society of Periodontology, Apr–June, 15(2), 111–114. https://doi.org/10.4103/0972-124x.84377.

    Article  Google Scholar 

  9. O’Toole, G., Kaplan, H. B., & Kolter, R. (2000). Biofilm formation as microbial development. Annual Review of Microbiology, 54, 49–79. https://doi.org/10.1146/annurev.micro.54.1.49.ISSN0066-4227.PMID11018124.

    Article  PubMed  Google Scholar 

  10. Davis, D. File: Biofilm.jpg. Date: November 13, 2007. License: Creative Commons Attribution 2.5 Generic. https://commons.wikimedia.org/wiki/File:Biofilm.jpg.

  11. Garrett, T. R., Bhakoo, M., & Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18(9), 1049–1056. https://doi.org/10.1016/j.pnsc.2008.04.001.

    Article  CAS  Google Scholar 

  12. Sketch by Hideyuki Kanematsu.

    Google Scholar 

  13. Flemming, H.-C., Neu, T. R., & Wozniak, D. J. (2007). The EPS matrix: The house of biofilm cells. Journal of Bacteriology, 189(22), 7945–7947. https://doi.org/10.1128/JB.00858-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Allonweiner. File: Bacillus subtilis.jpg. Date: January 18, 2007. This work is in the public domain. (It was taken by a Tecnai T-12 TEM.). https://commons.wikimedia.org/wiki/File:Bacillus_subtilis.jpg.

  15. Mitchell, K., Zarnowski, R., & Andes, D. (2016). The extracellular matrix of fungal biofilms. In I. Christine (Ed.), Fungal biofilms and related infections (Vol. 3, pp. 21–24). Springer.

    Google Scholar 

  16. Roux, D., Cywes-Bentley, C., Zhang, Y. F., Pons, S., Konkol, M., Kearns, D. B., et al. (2015). Identification of Poly-N-acetylglucosamine as a major polysaccharide component of the Bacillus subtilis biofilm matrix. Journal of Biological Chemistry, 290(31), 19261–19272. https://doi.org/10.1074/jbc.M115.648709.

    Article  CAS  PubMed  Google Scholar 

  17. Mann, E. E., Wozniak, D. J. (2012). Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiology Review, 36(4), 893–916. https://doi.org/10.1111/j.1574-6976.2011.00322.x

    Article  CAS  Google Scholar 

  18. Colvin, K. M., Gordon, V. D., Murakami, K., Borlee, B. R., Wozniak, D. J., Wong, G. C., et al. (2011). The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathogens, 7(1), e1001264. https://doi.org/10.1371/journal.ppat.1001264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mulcahy, H., Charron-Mazenod, L., & Lewenza, S. (2008). Extracellular DNA chelates cations and induces anti-biotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathogens, 4(11), e1000213. https://doi.org/10.1371/journal.ppat.1000213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang, L., Hu, Y., Liu, Y., Zhang, J., Ulstrup, J., & Molin, S. (2011). Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environmental Microbiology, 13(7), 1705–1717. https://doi.org/10.1111/j.1462-2920.2011.02503.x.

    Article  CAS  PubMed  Google Scholar 

  21. Milo, R. (2013). What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays, 35(12), 1050–1055. https://doi.org/10.1002/bies.201300066.PMC3910158.PMID24114984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Romero, D., Vlamakis, H., Losick, R., & Kolter, R. (2014). Functional analysis of the accessory protein TapA in Bacillus subtilis amyloid fiber assembly. Journal of Bacteriology, 196(8), 1505–1513. https://doi.org/10.1128/JB.01363-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Toth, A. File: Myoglobin.png. Date: 2008. This work is in the public domain. https://commons.wikimedia.org/wiki/File:Myoglobin.png.

  24. Chem. Grad. Student. File: Peptide-Figure-Revised.png. Date: September 5, 2011. License: Creative Commons Attribution—Share Alike 3.0 https://commons.wikimedia.org/wiki/File:Peptide-Figure-Revised.png.

  25. Benjah-bmm27. File: Cellulose-Ibeta-from-xtal-2002-3D-balls.png. Date: April 24, 2009. This work is in the public domain. https://commons.wikimedia.org/wiki/File:Cellulose-Ibeta-from-xtal-2002-3D-balls.png.

  26. Roux, D., Cywes-Bentley, C., Zhang, Y.-F., Pons, S., Konkol, M., Kearms, D., et al. (2015). Identification of Poly-N-acetyl Glucosamine as a major polysaccharide component of the Bacillus subtilis biofilm matrix. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.m115.648709.

    Article  CAS  Google Scholar 

  27. Yikrazuul. File: N-Acetylglucosamine.svg. Date: November 20, 2008. This work is in the public domain. https://commons.wikimedia.org/wiki/File:N-Acetylglucosamine.svg.

  28. Ma, L., Lu, H., Sprinkle, A., Parsek, M., & Wozniak, D. (2007). Pseudomonas aeruginosa Psl is a galactose- and mannose-rich exopolysaccharide. Journal of Bacteriology, 189(22), 8353–8356. https://doi.org/10.1128/JB.00620-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dahm, R. (2008). Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Human Genetics, 122(6), 565–581. https://doi.org/10.1007/s00439-007-0433-0.PMID17901982.

    Article  CAS  PubMed  Google Scholar 

  30. Jurcisek, J., Brockman, K., Novotny, L., Goodman, S., & Bakaletz, L. (2017). Non typeable Haemophilus influenzae releases DNA and DNABll proteins via T4SS-like complex and ComE of the type IV pilus machinery. PNAS, 114(32), E6632–E6641. https://doi.org/10.1073/pnas.1705508114.

    Article  CAS  PubMed  Google Scholar 

  31. Schaefer, W. File: Fat triglyceride shorthand formula.png. Date: April 21, 2005. This work is in the public domain. https://commons.wikimedia.org/wiki/File:Fat_triglyceride_shorthand_formula.PNG.

  32. Villarreal, M. R. File: Phospholipids aqueous solution structures. svg. Date: November 6, 2007. This work is in the public domain. https://commons.wikimedia.org/wiki/File:Phospholipids_aqueous_solution_structures.svg.

  33. Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61(1), 47–64.

    Article  CAS  Google Scholar 

  34. Lang, S., & Wullbrandt, D. (1999). Rhamnose lipids–biosynthesis, microbial production and application potential. Applied Microbiology and Biotechnology, 51(1), 22–32. https://doi.org/10.1007/s002530051358.PMID10077819.

    Article  CAS  PubMed  Google Scholar 

  35. Soberón-Chávez, G., Aguirre-Ramírez, M., & Sánchez, R. (2005). The Pseudomonas aeruginosa RhlA enzyme is involved in rhamnolipid and polyhydroxyalkanoate production. Journal of Industrial Microbiology and Biotechnology, 32(11–12), 675–677. https://doi.org/10.1007/s10295-005-0243-0.PMID15937697.

    Article  PubMed  Google Scholar 

  36. Glick, R., Gilmour, C., Tremblay, J., Satanower, S., Avidan, O., Dézie, E., et al. (2010). Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. Journal of Bacteriology, 192(12), 2973–80. https://doi.org/10.1128/JB.01601-09.PMC2901684.PMID20154129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Davey, M. E., Caiazza, N. C., & O’Toole, G. A. (2003). Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 185(3), 1027–36. https://doi.org/10.1128/jb.185.3.1027-1036.2003.PMC142794.PMID12533479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boghog. File: Rhamnolipid.tif. Date: November 20, 2011. This work is in the public domain. https://commons.wikimedia.org/wiki/File:Rhamnolipid.tif.

  39. Gira, J. File: Gram Positive Bacteria Quorum Sensing.pdf. Date: December 19, 2016. License: Creative Commons Attribution-Share Alike 4.0 International https://en.wikipedia.org/wiki/File:Gram_Positive_Bacteria_Quorum_Sensing.pdf.

  40. Miller, M. B., & Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Review of Microbiology, 55, 165–199.

    Article  CAS  Google Scholar 

  41. Solano, C., Echeverz, M., & Lasa, I. (2014). Biofilm dispersion and quorum sensing. Current Opinion in Microbiology, 18, 96–104.

    Google Scholar 

  42. Ikegai, H. (2015). Genomics approach. In: Kanematsu, H., Barry, D. M. (Eds.), Biofilm and Materials Science. New York, The USA: Springer.

    Google Scholar 

  43. Whiteley, M., Diggle, S. P., & Greenberg, E. P. (2017). Progress in and promise of bacterial quorum sensing research. Nature, 551, 313–320.

    Article  CAS  Google Scholar 

  44. Li, Zhi, & Nair, Satish. (2012). Quorum sensing: How bacteria can coordinate activity and synchronize their response to external signals. Protein Science, 21(10), 1403–1417. https://doi.org/10.1002/pro.2132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hbf878. File: N-Acyl Homoserine Lactone.svg. Date: December 24, 2017. License: Creative Commons CCO 1.0 Universal Public Domain https://commons.wikimedia.org/wiki/File:N-Acyl_Homoserine_Lactone.svg.

  46. Nealson, K. H., Platt, T., & Hastings, J. W. (1970). Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 104, 313–322.

    Article  CAS  Google Scholar 

  47. Chapman, J. (2015). Detachment of bacteria. In H. Kanematsu & D. M. Barry (Eds.), Biofilm and Materials Science. New York, The USA: Springer.

    Google Scholar 

  48. Kaplan, J. B. (2010). Biofilm dispersal: Mechanisms, clinical implications, and potential therapeutic uses. Journal of Dental Research, 89(3), 205–218. https://doi.org/10.1177/0022034509359403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yirka, B. (2016). Enzymes found that can tear down bacterial biofilm walls Phys.org (report). https://phys.org/news/2016-05-enzymes-bacterial-biofilm-walls.html.

  50. Novotny, Laura, et al. (2016). Monoclonal antibodies against DNA-binding tips of DNABll proteins disrupt biofilms in vitro and induce bacterial clearance in vivo. EBioMedicine. https://doi.org/10.1016/j.ebiom.2016.06.022.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Molobela, P., Cloete, T. E., & Beukes, M. (2010). Protease and amylase enzymes for biofilm removal and degradation of extracellular polymeric substances (EPS) produced by Pseudomonas fluorescens bacteria. African Journal of Microbiology Research, 4(14), 1515–1524.

    CAS  Google Scholar 

  52. Sadaf, M. (2013). Calculation of pigging effectiveness for petroleum (product) pipelines. International Journal of Scientific and Research Publications, 3(9), 2123. ISSN 2250-3153.

    Google Scholar 

  53. Cloyde, C. (2011). Pig trap design and assessment consideration. Pipeline & Gas Journal, 36–42.

    Google Scholar 

  54. Barrison, H. File: Pipeline PIG.jpg. Date: February 24, 2009. License: Creative Commons Attribution-Share Alike 2.0 Generic. https://commons.wikimedia.org/wiki/File:PipelinePIG.jpg.

  55. Ryan, D. L., Darby, M., Bauman, D., Tolle, S., & Naik, D. (2005). Effect of ultrasonic scaling and hand-activated scaling on tactile sensitivity in dental hygiene students. Journal of Dental Hygiene, 79(1), 1–13.

    Google Scholar 

  56. Tortora, G., Funke, B., & Case, C. (2016). Microbiology: An introduction (12th ed.) (pp. 156–157). U.S. Pearson.

    Google Scholar 

  57. Black, J. (Ed.). (2005). Biological performance of materials—Fundamental of biocompatibility. Boca Raton, FL: CRC Press-Taylor & Francis.

    Google Scholar 

  58. Kanematsu, H., Barry, D. M., Ikegai, H., Yoshitake, M., & Mizunoe, Y. (2017). Biofilm evaluation methods outside body to inside—Problem presentations for the future. Medical Research Archives, 5, 1–17.

    Google Scholar 

  59. Szczotka-Flynn, L., Imamura, Y., Chandra, J., Yu, C., Muherjee, P., Pearlman, E., et al. (2009). Increased resistance of contact lens related biofilms to antimicrobial activity of soft contact lens care solutions. Cornea, 28(8), 918–926. https://doi.org/10.1097/ICO.0b013e3181a81835.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Blaus, B. File: Blausen 0181. Date: November 6, 2013. License: Creative Commons Attribution 3.0 https://commons.wikimedia.org/wiki/File:Blausen_0181_Catheter_CentralVenousAccessDevice _NonTunneled.png.

  61. Garcia-Caballero, J., Heruzo-Cabrera, H., Vera-Cortes, M. L., Garcia de Lorenzo, A., Vazquez-Encinar, A., Garcia-Caballero, F., del Rey-Calero, J. (1985). The growth of micro-organisms in intravenous fluids. Journal of Hospital Infection, 6(2), 154–157. https://doi.org/10.1016/S0195-6701(85)80092-X.

    Article  CAS  Google Scholar 

  62. Nicolle, Lindsay. (2014). Catheter associated urinary tract infections. Antimicrobial Resistance and Infection Control, 3, 23. https://doi.org/10.1186/2047-2994-3-23.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ivanovic, B., Trifunovic, D., Matic, S., Petrovic, J., Sacic, D., & Tadic, M. (2019). Prosthetic valve endocarditis—A trouble or a challenge? Journal of Cardiology, 73(2), 126–133.

    Article  Google Scholar 

  64. Nicholson, L. (2016). The immune system. Essays in Biochemistry, 60(3), 275–301.

    Article  Google Scholar 

  65. Hazmat2. File: T cell activation.svg. Date: January 28, 2012. License: This work is in the public domain. https://commons.wikimedia.org/wiki/File:T_cell_activation.svg.

  66. Pereira, L. B. (2014). Impetigo-review. Anais Brasileiros de Dermatologia, 89(2), 293–299.

    Article  Google Scholar 

  67. Doring, G., Flume, P., Heijerman, H., & Elborn, S. (2012). Treatment of lung infection in patients with cystic fibrosis: Current and future strategies. Journal of Cystic Fibrosis, 11(6), 461–479.

    Article  Google Scholar 

  68. Wunderink, R., & Waterer, G. (2014). Community-acquired pneumonia. The New England Journal of Medicine. https://doi.org/10.1056/NEJMcp1214869.

    Article  PubMed  Google Scholar 

  69. Bamberger, D. (2010). Diagnosis, initial management and prevention of meningitis. American Family Physician, 15; 82(12), 1491–1498.

    Google Scholar 

  70. Borghi, L., Nouvernne, A., & Meschi, T. (2012). Nephrolithiasis and urinary tract infections: ‘The chicken or the egg’ dilemma? Nephrology, Dialysis, Transplantation, 27(11), 3982–3984.

    Article  Google Scholar 

  71. Ballinger, E., Mosior, J., Hartman, T., et al. (2019). Opposing reactions in coenzyme A metabolism sensitive Mycobacterium tuberculosis to enzyme inhibition. Science, 363(6426), eaau8959. https://doi.org/10.1126/science.aau8959.

    Article  CAS  Google Scholar 

  72. Rawal, T., & Butani, S. (2016). Combating tuberculosis infection: A forbidding challenge. Indian Journal of Pharmaceutical Sciences, 78(1), 8–16.

    Article  CAS  Google Scholar 

  73. Calhoun, J., Manring, M. M., & Shirtliff, M. (2009). Osteomyelitis of the long bones. Seminars in Plastic Surgery, 23(2), 59–72. https://doi.org/10.1055/S-0029-1214158.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hatzenbuehler, J., & Pulling, T. J. (2011). Diagnosis and management of osteomyelitis. American Family Physician, 84(9), 1027–1033.

    PubMed  Google Scholar 

  75. Hajishengallis, G. (2015). Periodontitis: From microbial immune subversion to systemic inflammation. Nature Reviews Immunology, 15(1), 30–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana M. Barry .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanematsu, H., Barry, D.M. (2020). Fundamentals for Biofilms. In: Formation and Control of Biofilm in Various Environments. Springer, Singapore. https://doi.org/10.1007/978-981-15-2240-6_2

Download citation

Publish with us

Policies and ethics

Navigation