A Review of Thermochemical and Biochemical Conversion of Miscanthus to Biofuels

  • Chapter
  • First Online:
Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals

Abstract

Miscanthus is recently being considered as an energy crop for biofuel production because of certain features, such as adaptability to lower temperature, efficient use of water and nutrients, low or no need of nitrogen fertilisers, high biomass yield, fast-growing cycle and less-intensive agricultural cultivation practices than other energy crops. This review is focused on the value-added applications and conversion of Miscanthus for bioenergy and biomaterial applications. The thermochemical conversion technologies reviewed in this chapter include pyrolysis, liquefaction, torrefaction and gasification, whereas biochemical conversion technologies include enzymatic saccharification and fermentation. The value-added applications of Miscanthus discussed in this chapter include pulp and papermaking, biocomposites and biochemical production. The physicochemical properties of bio-oil and biochar generated from Miscanthus have been thoroughly described for fuel and material applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arnoult S, Hulmel MB (2015) A review on Miscanthus biomass production and composition for bioenergy use: genotypic and environmental variability and implications for breeding. Bioenergy Res 8:502–526

    Article  CAS  Google Scholar 

  • Azargohar R, Nanda S, Rao BVSK, Dalai AK (2013) Slow pyrolysis of deoiled canola meal: product yields and characterization. Energy Fuel 27:5268–5279

    Article  CAS  Google Scholar 

  • Azargohar R, Nanda S, Kozinski JA, Dalai AK, Sutarto R (2014) Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass. Fuel 125:90–100

    Article  CAS  Google Scholar 

  • Azargohar R, Nanda S, Dalai AK, Kozinski JA (2019) Physico-chemistry of biochars produced through steam gasification and hydro-thermal gasification of canola hull and canola meal pellets. Biomass Bioenergy 120:458–470

    Article  CAS  Google Scholar 

  • Balat M (2008) Mechanisms of thermochemical biomass conversion processes. Energ Sourc A 30:620–635

    Article  CAS  Google Scholar 

  • Bousiosa S, Worrell E (2017) Towards a multiple input-multiple output paper mill: opportunities for alternative raw materials and sidestream valorisation in the paper and board. Resour Conserv Recycl 125:218–232

    Article  Google Scholar 

  • Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94

    Article  CAS  Google Scholar 

  • Brosse N, Sannigrah P, Ragauskas A (2009) Pretreatment of Miscanthus× giganteus using the ethanol organosolv process for ethanol production. Ind Eng Chem Res 48:8328–8334

    Article  CAS  Google Scholar 

  • Brosse N, Dufour A, Meng X, Sun Q, Ragauskas A (2012) Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels Bioprod Biorefin 6:580–598

    Article  CAS  Google Scholar 

  • Budaeva VV, Makarova EI, Gismatulina YA (2015) Integrated flowsheet for conversion of non-woody biomass into polyfunctional materials. Key Eng Mater 670:202–206

    Article  Google Scholar 

  • Budaia A, Calucci L, Rasse DP, Strand LT, Pengerud A, Wiedemeier D, Abiven S, Forte C (2017) Effects of pyrolysis conditions on Miscanthus and corncob chars characterization by IR, solid state NMR and BPCA analysis. J Anal Appl Pyrolysis 128:335–345

    Article  CAS  Google Scholar 

  • Cappelletto P, Mongardini F, Barberi B, Sannibale M, Brizzi M, Pignatelli V (2000) Papermaking pulps from the fibrous fraction of Miscanthus x giganteus. Ind Crop Prod 11:205–210

    Article  CAS  Google Scholar 

  • Chandel AK, Singh OV (2011) Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of ‘biofuel’. Appl Microbiol Biotechnol 89:1289–1303

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, D’cruz I, Wang M, Leitch M, Xu CC (2010) Highly efficient liquefaction of woody biomass in hot-compressed alcohol-water co-solvents. Energy Fuel 24:4659–4667

    Article  CAS  Google Scholar 

  • Clark LV, Brummer JE, GÅ‚owacka K, Hall MC, Heo K, Peng J, Yamada T, Yoo JH, Yu CY, Zhao H, Long SP, Sacks EJ (2014) A footprint of past climate change on the diversity and population structure of Miscanthus sinensis. Ann Bot 114:97–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Correa AC, de Morais Teixeira E, Pessan LA, Mattoso LHC (2010) Cellulose nanofibers from curaua fibers. Cellulose 17:1183–1192

    Article  CAS  Google Scholar 

  • Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18:590–598

    Article  CAS  Google Scholar 

  • Dohleman FG, Long SP (2009) More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol 150:2104–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du S, Sun Y, Gamliel DP, Valla JA, Bollas GM (2014) Catalytic pyrolysis of Miscanthus × giganteus in a spouted bed reactor. Bioresour Technol 169:188–197

    Article  CAS  PubMed  Google Scholar 

  • Finch KBH, Richards RM, Richel A, Medvedovici AV, Gheorghe NG, Verziu M, Coman SM, Parvulescu VI (2012) Catalytic hydro processing of lignin under thermal and ultrasound conditions. Catal Today 196:3–10

    Article  CAS  Google Scholar 

  • Fontoura CF, Brandão LE, Gomes LL (2015) Elephant grass biorefineries: towards a cleaner Brazilian energy matrix? J Clean Prod 96:85–93

    Article  Google Scholar 

  • Fougere D, Nanda S, Clarke K, Kozinski JA, Li K (2016) Effect of acidic pretreatment on the chemistry and distribution of lignin in aspen wood and wheat straw substrates. Biomass Bioenergy 91:56–68

    Article  CAS  Google Scholar 

  • Ge X, Xu F, Vasco-Correa J, Li Y (2016) Giant reed: a competitive energy crop in comparison with miscanthus. Renew Sust Energ Rev 54:350–362

    Article  CAS  Google Scholar 

  • Greenhalf C, Nowakowski D, Yates N, Shield I, Bridgwater A (2013) The influence of harvest and storage on the properties of and fast pyrolysis products from Miscanthus x giganteus. Biomass Bioenergy 56:247–259

    Article  CAS  Google Scholar 

  • Gronwald M, Vos C, Helfrich M, Don A (2016) Stability of pyrochar and hydrochar in agricultural soil—a new field incubation method. Geoderma 284:85–92

    Article  CAS  Google Scholar 

  • Guo GL, Chen WH, Chen WH, Men LC, Hwang WS (2008) Characterization of dilute acid pre-treatment of silver grass for ethanol production. Bioresour Technol 99:6046–6053

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Zhang Y, Ha SJ, ** YS, Morgenroth E (2012) Combined biomimetic and inorganic acids hydrolysis of hemicellulose in Miscanthus for bioethanol production. Bioresour Technol 110:278–287

    Article  CAS  PubMed  Google Scholar 

  • Hafez I, Hassan EB (2015) Rapid liquefaction of giant miscanthus feedstock in ethanol–water system for production of biofuels. Energ Convers Manage 91:219–224

    Article  CAS  Google Scholar 

  • Hale SE, Lehmann J, Rutherford D, Zimmerman AR, Bachmann RT, Shitumbanuma V, O’Toole A, Sundqvist KL, Arp HPH, Cornelissen G (2012) Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ Sci Technol 46:2830–2838

    Article  CAS  PubMed  Google Scholar 

  • Han M, Kim Y, Koo BC, Choi GW (2011) Bioethanol production by Miscanthus as a lignocellulosic biomass: focus on high efficiency conversion to glucose and ethanol. Bioresources 6:1939–1953

    CAS  Google Scholar 

  • Heo HS, Park HJ, Yim JH, Sohn JM, Park J, Kim SS, Ryu C, Jeon J, Park YK (2010) Influence of operation variables on fast pyrolysis of Miscanthus sinensis var. purpurascens. Bioresour Technol 101:3672–3677

    Article  CAS  PubMed  Google Scholar 

  • Hodgson EM, Lister SJ, Bridgwater AV, Clifton-Brown J, Donnison IS (2010) Genotypic and environmentally derived variation in the cell wall composition of Miscanthus in relation to its use as a biomass feedstock. Biomass Bioenergy 34:652–660

    Article  CAS  Google Scholar 

  • Hodgson EM, Nowakowski DJ, Shield I, Riche A, Bridgwater AV, Clifton-Brown JC, Donnison IS (2011) Variation in Miscanthus chemical composition and implications for conversion by pyrolysis and thermo-chemical bio-refining for fuels and chemicals. Bioresour Technol 102:3411–3418

    Article  CAS  PubMed  Google Scholar 

  • Hodgson E, James AL, Ravella SR, Jones ST, Perkins W, Gallagher J (2016) Optimisation of slow-pyrolysis process conditions to maximise char yield and heavy metal adsorption of biochar produced from different feedstocks. Bioresour Technol 214:574–581

    Article  CAS  PubMed  Google Scholar 

  • Janus A, Pelfrêne A, Sahmer K, Heymans S, Deboffe C, Douay F, Waterlot C (2017) Value of biochars from Miscanthus x giganteus cultivated on contaminated soils to decrease the availability of metals in multicontinental aqueous solutions. Environ Sci Pollut Res 24:18204–18217

    Article  CAS  Google Scholar 

  • Jayaraman K, Gökalp I (2015) Pyrolysis, combustion and gasification characteristics of Miscanthus and sewage sludge. Energ Convers Manage 89:83–91

    Article  CAS  Google Scholar 

  • Jeguirim M, Trouve G (2009) Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis. Bioresour Technol 100:4026–4031

    Article  CAS  PubMed  Google Scholar 

  • Jenkins BM, Baxter LL, Miles TR Jr, Miles TR (1998) Combustion properties of biomass fuel processing technology. Fuel Process Technol 54:17–46

    Article  CAS  Google Scholar 

  • Johnson M, Tucker N, Barnes S, Kirwan K (2005) Improvement of the impact performance of a starch-based biopolymer via the incorporation of Miscanthus giganteus fibres. Ind Crop Prod 22:175–186

    Article  CAS  Google Scholar 

  • Kamio E, Takahashi S, Noda H, Fukuhara C, Okamura T (2006) Liquefaction of cellulose in hot compressed water under variable temperatures. Ind Eng Chem Res 45:4944–4953

    Article  CAS  Google Scholar 

  • Kang K, Nanda S, Sun G, Qiu L, Gu Y, Zhang T, Zhu M, Sun R (2019) Microwave-assisted hydrothermal carbonization of corn stalk for solid biofuel production: optimization of process parameters and characterization of hydrochar. Energy 186:115795

    Article  CAS  Google Scholar 

  • Karampinis E, Vamvuka D, Sfakiotakis S, Grammelis P, Itskos G, Kakaras E (2012) Comparative study of combustion properties of five energy crops and Greek lignite. Energy Fuel 26:869–878

    Article  CAS  Google Scholar 

  • Kim JY, Oh S, Hwang H, Moon YH, Choi JW (2014) Assessment of miscanthus biomass (Miscanthus sacchariflorus) for conversion and utilization of bio-oil by fluidized bed type fast pyrolysis. Energy 76:284–291

    Article  CAS  Google Scholar 

  • Kim H, Kim J, Kim M, Hyun S, Moon DH (2018) Sorption of sulfathiazole in the soil treated with giant Miscanthus-derived biochar: effect of biochar pyrolysis temperature, soil pH, and aging period. Environ Sci Pollut Res 25:25681–25689

    Article  CAS  Google Scholar 

  • Kwapinski W, Byrne CMP, Kryachko E, Wolfram P, Adley C, Leahy JJ, Novotny EH, Hayes MHB (2010) Biochar from biomass and waste. Waste Biomass Valor 1:177–189

    Article  CAS  Google Scholar 

  • Lee WC, Kuan WC (2015) Miscanthus as cellulosic biomass for bioethanol production. Biotechnol J 10:840–854

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361

    Article  Google Scholar 

  • Li HQ, Li CL, Sang T, Xu J (2013) Pre-treatment on Miscanthus lutarioriparious by liquid hot water for efficient ethanol production. Biotechnol Biofuels 6:76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Low T, Booth C, Sheppard A (2011) Weedy biofuels: what can be done? Curr Opin Environ Sustain 3:55–59

    Article  Google Scholar 

  • Luo H, Klein IM, Jiang Y, Zhu H, Liu B, Kenttämaa HI, Abu-Omar MM (2016) Total utilization of miscanthus biomass, lignin and carbohydrates. ACS Sustain Chem Eng 4:2316–2322

    Article  CAS  Google Scholar 

  • Luo Y, Dungait JA, Zhao X, Brookes PC, Durenkamp M, Li G, Lin Q (2017) Pyrolysis temperature during biochar production alters its subsequent utilisation by microorganisms in an acid arable soil. Land Degrad Dev 29:2183–2188

    Article  Google Scholar 

  • Madej J, Hilber I, Bucheli TD, Oleszczuk P (2016) Biochars with low polycyclic aromatic hydrocarbon concentrations achievable by pyrolysis under high carrier gas flows irrespective of oxygen content or feedstock. J Anal Appl Pyrolysis 122:365–369

    Article  CAS  Google Scholar 

  • Mayer P, Hilber I, Gouliarmou V, Hale SE, Cornelissen G, Bucheli TD (2016) How to determine the environmental exposure of PAHs originating from biochar. Environ Sci Technol 50:1941–1948

    Article  CAS  PubMed  Google Scholar 

  • Melligan F, Auccaise R, Novotny EH, Leahy JJ, Hayes MHB, Kwapinski W (2011) Pressurised pyrolysis of Miscanthus using a fixed bed reactor. Bioresour Technol 102:3466–3470

    Article  CAS  PubMed  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  CAS  Google Scholar 

  • Mohanty P, Nanda S, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate. J Anal Appl Pyrolysis 104:485–493

    Article  CAS  Google Scholar 

  • Murnen HK, Balan V, Chundawat SPS, Bals B, da Costa Sousa L, Dale BE (2008) Optimization of ammonia fiber expansion (AFEX) pre-treatment and enzymatic hydrolysis of Miscanthus x giganteus to fermentable sugars. Biotechnol Prog 23:846–850

    Article  Google Scholar 

  • Nanda S, Mohanty P, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Characterization of north American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Res 6:663–677

    Article  CAS  Google Scholar 

  • Nanda S, Azargohar R, Kozinski JA, Dalai AK (2014a) Characteristic studies on the pyrolysis products from hydrolyzed Canadian lignocellulosic feedstocks. Bioenergy Res 7:174–191

    Article  CAS  Google Scholar 

  • Nanda S, Dalai AK, Kozinski JA (2014b) Butanol and ethanol production from lignocellulosic feedstock: biomass pretreatment and bioconversion. Energ Sci Eng 2:138–148

    Article  CAS  Google Scholar 

  • Nanda S, Mohammad J, Reddy SN, Kozinski JA, Dalai AK (2014c) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conv Bioref 4:157–191

    Article  CAS  Google Scholar 

  • Nanda S, Mohanty P, Kozinski JA, Dalai AK (2014d) Physico-chemical properties of bio-oils from pyrolysis of lignocellulosic biomass with high and slow heating rate. Energy Environ Res 4:21–32

    Article  Google Scholar 

  • Nanda S, Azargohar R, Dalai AK, Kozinski JA (2015a) An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew Sust Energ Rev 50:925–941

    Article  CAS  Google Scholar 

  • Nanda S, Maley J, Kozinski JA, Dalai AK (2015b) Physico-chemical evolution in lignocellulosic feedstocks during hydrothermal pretreatment and delignification. J Biobased Mater Bioenerg 9:295–308

    Article  CAS  Google Scholar 

  • Nanda S, Dalai AK, Berruti F, Kozinski JA (2016a) Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valor 7:201–235

    Article  CAS  Google Scholar 

  • Nanda S, Dalai AK, Kozinski JA (2016b) Supercritical water gasification of timothy grass as an energy crop in the presence of alkali carbonate and hydroxide catalysts. Biomass Bioenergy 95:378–387

    Article  CAS  Google Scholar 

  • Nanda S, Kozinski JA, Dalai AK (2016c) Lignocellulosic biomass: a review of conversion technologies and fuel products. Curr Biochem Eng 3:24–36

    Article  CAS  Google Scholar 

  • Nanda S, Reddy SN, Mitra SK, Kozinski JA (2016d) The progressive routes for carbon capture and sequestration. Energ Sci Eng 4:99–122

    Article  CAS  Google Scholar 

  • Nanda S, Dalai AK, Kozinski JA (2017a) Butanol from renewable biomass: highlights on downstream processing and recovery techniques. In: Mondal P, Dalai AK (eds) Sustainable utilization of natural resources. CRC Press, Florida, USA, pp 187–211

    Chapter  Google Scholar 

  • Nanda S, Golemi-Kotra D, McDermott JC, Dalai AK, Gökalp I, Kozinski JA (2017b) Fermentative production of butanol: perspectives on synthetic biology. New Biotechnol 37:210–221

    Article  CAS  Google Scholar 

  • Nanda S, Gong M, Hunter HN, Dalai AK, Gökalp I, Kozinski JA (2017c) An assessment of pinecone gasification in subcritical, near-critical and supercritical water. Fuel Process Technol 168:84–96

    Article  CAS  Google Scholar 

  • Nanda S, Rana R, Zheng Y, Kozinski JA, Dalai AK (2017d) Insights on pathways for hydrogen generation from ethanol. Sustain Energ Fuel 1:1232–1245

    Article  CAS  Google Scholar 

  • Nanda S, Dalai AK, Pant KK, Gökalp I, Kozinski JA (2018) An appraisal on biochar functionality and utility in agronomy. In: Konur O (ed) Bioenergy and biofuels. CRC Press, Florida, USA, pp 389–409

    Chapter  Google Scholar 

  • Nanda S, Rana R, Hunter HN, Fang Z, Dalai AK, Kozinski JA (2019) Hydrothermal catalytic processing of waste cooking oil for hydrogen-rich syngas production. Chem Eng Sci 195:935–945

    Article  CAS  Google Scholar 

  • Niu Y, Tan H, Hui S (2016) Ash-related issues during biomass combustion: alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Prog Energy Combust Sci 52:1–61

    Article  Google Scholar 

  • Nsanganwimana F, Pourrut B, Mench M, Douay F (2014) Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J Environ Manag 143:123–134

    Article  CAS  Google Scholar 

  • Oginni O, Singh K, Zondlo JW (2017) Pyrolysis of dedicated bioenergy crops grown on reclaimed mine land in West Virginia. J Anal Appl Pyrolysis 123:319–329

    Article  CAS  Google Scholar 

  • Okolie JA, Nanda S, Dalai AK, Kozinski JA (2019a) Optimization and modeling of process parameters during hydrothermal gasification of biomass model compounds to generate hydrogen-rich gas products. Int J Hydrogen Energ. https://doi.org/10.1016/j.ijhydene.2019.05.132

  • Okolie JA, Rana R, Nanda S, Dalai AK, Kozinski JA (2019b) Supercritical water gasification of biomass: a state-of-the-art review of process parameters, reaction mechanisms and catalysis. Sustain Energ Fuel 3:578–598

    Article  CAS  Google Scholar 

  • Osman AI, Abdelkader A, Johnston CR, Morgan K, Rooney DW (2017) Thermal investigation and kinetic modeling of lignocellulosic biomass combustion for energy production and other applications. Ind Eng Chem Res 56:12119–12130

    Article  CAS  Google Scholar 

  • Pang J, Zheng M, Wang A, Sun R, Wang H, Jiang Y, Zhang T (2014) Catalytic conversion of concentrated Miscanthus in water for ethylene glycol production. AICHE J 60:2254–2262

    Article  CAS  Google Scholar 

  • Pham XP, Piriou C, Salvador S, Valette J, Van de Steene L (2018) Oxidative pyrolysis of pine wood, wheat straw and Miscanthus pellets in a fixed bed. Fuel Process Technol 178:226–235

    Article  CAS  Google Scholar 

  • Rana R, Nanda S, Kozinski JA, Dalai AK (2018) Investigating the applicability of Athabasca bitumen as a feedstock for hydrogen production through catalytic supercritical water gasification. J Environ Chem Eng 6:182–189

    Article  CAS  Google Scholar 

  • Rana R, Nanda S, Maclennan A, Hu Y, Kozinski JA, Dalai AK (2019) Comparative evaluation for catalytic gasification of petroleum coke and asphaltene in subcritical and supercritical water. J Energ Chem 31:107–118

    Article  Google Scholar 

  • Reddy SN, Nanda S, Dalai AK, Kozinski JA (2014) Supercritical water gasification of biomass for hydrogen production. Int J Hydrogen Energ 39:6912–6926

    Article  CAS  Google Scholar 

  • Reddy SN, Nanda S, Hegde UG, Hicks MC, Kozinski JA (2015) Ignition of hydrothermal flames. RSC Adv 5:36404–36422

    Article  CAS  Google Scholar 

  • Reddy SN, Nanda S, Kozinski JA (2016) Supercritical water gasification of glycerol and methanol mixtures as model waste residues from biodiesel refinery. Chem Eng Res Des 113:17–27

    Article  CAS  Google Scholar 

  • Reddy SN, Nanda S, Hegde UG, Hicks MC, Kozinski JA (2017) Ignition of n-propanol–air hydrothermal flames during supercritical water oxidation. Proc Combust Inst 36:2503–2511

    Article  CAS  Google Scholar 

  • Robbins MP, Evans G, Valentine J, Donnison IS, Allison GG (2012) New opportunities for the exploitation of energy crops by thermochemical conversion in northern Europe and the UK. Prog Energy Combust Sci 38:138–155

    Article  Google Scholar 

  • Sarangi PK, Nanda S (2018) Recent developments and challenges of acetone-butanol-ethanol fermentation. In: Sarangi PK, Nanda S, Mohanty P (eds) Recent advancements in biofuels and bioenergy utilization. Springer Nature, Singapore, pp 111–123

    Chapter  Google Scholar 

  • Sarangi PK, Nanda S (2019) Recent advances in consolidated bioprocessing for microbe-assisted biofuel production. In: Nanda S, Sarangi PK, Vo DVN (eds) Fuel processing and energy utilization. CRC Press, Florida, USA, pp 141–157

    Chapter  Google Scholar 

  • Shooshtarian S, Anderson JA, Armstrong GW, Luckert MKM (2018) Growing hybrid poplar in western Canada for use as a biofuel feedstock: a financial analysis of coppice and single-stem management. Biomass Bioenergy 113:45–54

    Article  Google Scholar 

  • Su Y, Song K, Zhang P, Su Y, Cheng J, Chen X (2017) Progress of microalgae biofuel’s commercialization. Renew Sust Energ Rev 74:402–411

    Article  Google Scholar 

  • Trazzi PA, Leahy JJ, Hayes MHB, Kwapinski W (2016) Adsorption and desorption of phosphate on biochars. J Environ Chem Eng 4:37–46

    Article  CAS  Google Scholar 

  • van der Weijde T, Kiesel A, Iqbal Y, Muylle H, Dolstra O, Visser RGF, Lewandowski I, Trindade LM (2016) Evaluation of Miscanthus sinensis biomass quality as feedstock for conversion into different bioenergy products. GCB Bioenergy 9:176–190

    Article  CAS  Google Scholar 

  • Villaverde JJ, Ligero P, de Vega A (2010) Miscanthus x giganteus as a source of bio based products through organosolv fractionation: a mini review. Open Agric J 4:102–110

    Article  Google Scholar 

  • Wafiq A, Reichel D, Hanafy M (2016) Pressure influence on pyrolysis product properties of raw and torrefied Miscanthus: role of particle structure. Fuel 179:156–167

    Article  CAS  Google Scholar 

  • Xue G, Kwapinska M, Horvat A, Li Z, Dooley S, Kwapinski W, Leahy JJ (2014a) Gasification of Miscanthus x giganteus in an air-blown bubbling fluidized bed: a preliminary study of performance and agglomeration. Energy Fuel 28:1121–1131

    Article  CAS  Google Scholar 

  • Xue G, Kwapinska M, Kwapinski W, Czajka KM, Kennedy J, Leahy JJ (2014b) Impact of torrefaction on properties of Miscanthus giganteus relevant. Fuel 121:189–197

    Article  CAS  Google Scholar 

  • Yang X, Wang H, Strong PJ, Xu S, Liu S, Lu K, Sheng K, Guo J, Che L, He L, Ok YS, Yuan G, Shen Y, Chen X (2017) Thermal properties of biochars derived from waste biomass generated by agricultural and forestry sectors. Energies 10:469

    Article  CAS  Google Scholar 

  • Yi YB, Lee JW, Chung CH (2015) Conversion of plant materials into hydroxymethylfurfural using ionic liquids. Environ Chem Lett 13:173–190

    Article  CAS  Google Scholar 

  • Yorgun S, ÅžimÅŸek YE (2008) Catalytic pyrolysis of Miscanthus × giganteus over activated alumina. Bioresour Technol 99:8095–8100

    Article  CAS  PubMed  Google Scholar 

  • Yu G, Afzal W, Yang F, Padmanabhan S, Liu Z, **e H, Shafy MA, Bell AT, Prausnitz JM (2013) Pre-treatment of Miscanthus×giganteus using aqueous ammonia with hydrogen peroxide to increase enzymatic hydrolysis to sugars. J Chem Technol Biotechnol 89:698–706

    Article  CAS  Google Scholar 

  • Yu TE, English BC, He L, Larson JA, Calcagno J, Fu JS, Wilson B (2016) Analyzing economic and environmental performance of switchgrass biofuel supply chains. Bioenergy Res 9:566–577

    Article  CAS  Google Scholar 

  • Zacher AH, Olarte MV, Santosa DM, Elliott DC, Jones SB (2014) A review and perspective of recent bio-oil hydrotreating research. Green Chem 16:491–515

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonil Nanda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Nanda, S., Berruti, F. (2020). A Review of Thermochemical and Biochemical Conversion of Miscanthus to Biofuels. In: Nanda, S., N. Vo, DV., Sarangi, P. (eds) Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals. Springer, Singapore. https://doi.org/10.1007/978-981-15-1804-1_9

Download citation

Publish with us

Policies and ethics

Navigation