Siglecs that Associate with DAP12

  • Chapter
  • First Online:
Lectin in Host Defense Against Microbial Infections

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1204))

Abstract

Siglecs are a family of transmembrane receptor-like glycan-recognition proteins expressed primarily on leukocytes. Majority of Siglecs have an intracellular sequence motif called immunoreceptor tyrosine-based inhibitory motif (ITIM) and associate with Src homology region 2 domain-containing tyrosine phosphatase-1 (SHP-1), and negatively regulate tyrosine phosphorylation-mediated intracellular signaling events. On the other hand, some Siglecs have a positively charged amino acid residue in the transmembrane domain and associate with DNAX activation protein of 12 kDa (DAP12), which in turn recruits spleen tyrosine kinase (Syk). These DAP12-associated Siglecs play diverse functions. For example, Siglec-15 is conserved throughout vertebrate evolution and plays a role in bone homeostasis by regulating osteoclast development and function. Human Siglec-14 and -16 have inhibitory counterparts (Siglec-5 and -11, respectively), which show extremely high sequence similarity with them at the extracellular domain but interact with SHP-1. The DAP12-associated Siglec in such “paired receptor” configuration counteracts the pathogens that exploit the inhibitory counterpart. Polymorphisms (mutations) that render DAP12-associated inactive Siglecs are found in humans, and some of these appear to be associated with sensitivity or resistance of human hosts to bacterially induced conditions. Studies of mouse Siglec-H have revealed complex and intriguing functions it plays in regulating adaptive immunity. Many questions remain unanswered, and further molecular and genetic studies of DAP12-associated Siglecs will yield valuable insights with translational relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ali S, Fong J, Carlin A, Busch T, Linden R, Angata T, Areschoug T, Parast M, Varki N, Murray J, Nizet V, Varki A (2014) Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B Streptococcus. J Exp Med 211:1231–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angata T (2006) Molecular diversity and evolution of the Siglec family of cell-surface lectins. Mol Divers 10:555–566

    Article  CAS  PubMed  Google Scholar 

  • Angata T (2017) Polymorphisms and mutations in SIGLEC genes and their associations with diseases. J Jpn Biochem Soc 89:652–659

    CAS  Google Scholar 

  • Angata T, Varki A (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 102:439–470

    Article  CAS  PubMed  Google Scholar 

  • Angata T, Kerr S, Greaves D, Varki N, Crocker P, Varki A (2002) Cloning and characterization of human Siglec-11. A recently evolved signaling molecule that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia. J Biol Chem 277:24466–24474

    Article  CAS  PubMed  Google Scholar 

  • Angata T, Margulies E, Green E, Varki A (2004) Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proc Natl Acad Sci U S A 101:13251–13256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angata T, Hayakawa T, Yamanaka M, Varki A, Nakamura M (2006) Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J 20:1964–1973

    Article  CAS  PubMed  Google Scholar 

  • Angata T, Tabuchi Y, Nakamura K, Nakamura M (2007) Siglec-15: an immune system Siglec conserved throughout vertebrate evolution. Glycobiology 17:838–846

    Article  CAS  PubMed  Google Scholar 

  • Angata T, Ishii T, Motegi T, Oka R, Taylor R, Soto P, Chang Y, Secundino I, Gao C, Ohtsubo K, Kitazume S, Nizet V, Varki A, Gemma A, Kida K, Taniguchi N (2013) Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation. Cell Mol Life Sci 70:3199–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasius A, Colonna M (2006) Sampling and signaling in plasmacytoid dendritic cells: the potential roles of Siglec-H. Trends Immunol 27:255–260

    Article  CAS  PubMed  Google Scholar 

  • Blasius A, Vermi W, Krug A, Facchetti F, Cella M, Colonna M (2004) A cell-surface molecule selectively expressed on murine natural interferon-producing cells that blocks secretion of interferon-alpha. Blood 103:4201–4206

    Article  CAS  PubMed  Google Scholar 

  • Blasius A, Cella M, Maldonado J, Takai T, Colonna M (2006) Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood 107:2474–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaum BS (2017) The lectin self of complement factor H. Curr Opin Struct Biol 44:111–118

    Article  CAS  PubMed  Google Scholar 

  • Blaum BS, Hannan JP, Herbert AP, Kavanagh D, Uhrin D, Stehle T (2015) Structural basis for sialic acid-mediated self-recognition by complement factor H. Nat Chem Biol 11:77–82

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Lakner U, de Bono B, Traherne J, Trowsdale J, Barrow A (2008) SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counterpart SIGLEC11 and has functional and non-functional alleles in humans. Eur J Immunol 38:2303–2315

    Article  CAS  PubMed  Google Scholar 

  • Carlin A, Chang Y, Areschoug T, Lindahl G, Hurtado-Ziola N, King C, Varki A, Nizet V (2009) Group B Streptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5. J Exp Med 206:1691–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang L, Chen YJ, Fan CY, Tang CJ, Chen YH, Low PY, Ventura A, Lin CC, Chen YJ, Angata T (2017) Identification of Siglec ligands using a proximity labeling method. J Proteome Res 16:3929–3941

    Article  CAS  PubMed  Google Scholar 

  • Colley KJ, Kitajima K, Sato C (2014) Polysialic acid: biosynthesis, novel functions and applications. Crit Rev Biochem Mol Biol 49:498–532

    Article  CAS  PubMed  Google Scholar 

  • Cornish A, Freeman S, Forbes G, Ni J, Zhang M, Cepeda M, Gentz R, Augustus M, Carter K, Crocker P (1998) Characterization of siglec-5, a novel glycoprotein expressed on myeloid cells related to CD33. Blood 92:2123–2132

    Article  CAS  PubMed  Google Scholar 

  • Crocker P, Clark E, Filbin M, Gordon S, Jones Y, Kehrl J, Kelm S, le Douarin N, Powell L, Roder J, Schnaar R, Sgroi D, Stamenkovic K, Schauer R, Schachner M, van den Berg T, van der Merwe P, Watt S, Varki A (1998) Siglecs: a family of sialic-acid binding lectins [letter]. Glycobiology 8:v

    CAS  PubMed  Google Scholar 

  • Duong BH, Tian H, Ota T, Completo G, Han S, Vela JL, Ota M, Kubitz M, Bovin N, Paulson JC, Nemazee D (2010) Decoration of T-independent antigen with ligands for CD22 and Siglec-G can suppress immunity and induce B cell tolerance in vivo. J Exp Med 207:173–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graustein AD, Horne DJ, Fong JJ, Schwarz F, Mefford HC, Peterson GJ, Wells RD, Musvosvi M, Shey M, Hanekom WA, Hatherill M, Scriba TJ, Thuong NTT, Mai NTH, Caws M, Bang ND, Dunstan SJ, Thwaites GE, Varki A, Angata T, Hawn TR (2017) The SIGLEC14 null allele is associated with Mycobacterium tuberculosis- and BCG-induced clinical and immunologic outcomes. Tuberculosis (Edinb) 104:38–45

    Article  CAS  Google Scholar 

  • Hamerman JA, Lanier LL (2006) Inhibition of immune responses by ITAM-bearing receptors. Sci STKE re1

    Google Scholar 

  • Hamerman JA, Tchao NK, Lowell CA, Lanier LL (2005) Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nat Immunol 6:579–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayakawa T, Angata T, Lewis A, Mikkelsen T, Varki N, Varki A (2005) A human-specific gene in microglia. Science 309:1693

    CAS  PubMed  Google Scholar 

  • Hayakawa T, Khedri Z, Schwarz F, Landig C, Liang SY, Yu H, Chen X, Fujito NT, Satta Y, Varki A, Angata T (2017) Coevolution of Siglec-11 and Siglec-16 via gene conversion in primates. BMC Evol Biol 17:228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiruma Y, Hirai T, Tsuda E (2011) Siglec-15, a member of the sialic acid-binding lectin, is a novel regulator for osteoclast differentiation. Biochem Biophys Res Commun 409:424–429

    Article  CAS  PubMed  Google Scholar 

  • Hiruma Y, Tsuda E, Maeda N, Okada A, Kabasawa N, Miyamoto M, Hattori H, Fukuda C (2013) Impaired osteoclast differentiation and function and mild osteopetrosis development in Siglec-15-deficient mice. Bone 53:87–93

    Article  CAS  PubMed  Google Scholar 

  • Ishida-Kitagawa N, Tanaka K, Bao X, Kimura T, Miura T, Kitaoka Y, Hayashi K, Sato M, Maruoka M, Ogawa T, Miyoshi J, Takeya T (2012) Siglec-15 protein regulates formation of functional osteoclasts in concert with DNAX-activating protein of 12 kDa (DAP12). J Biol Chem 287:17493–17502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Julien S, Videira PA, Delannoy P (2012) Sialyl-tn in cancer: (how) did we miss the target? Biomolecules 2:435–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kameda Y, Takahata M, Komatsu M, Mikuni S, Hatakeyama S, Shimizu T, Angata T, Kinjo M, Minami A, Iwasaki N (2013) Siglec-15 regulates osteoclast differentiation by modulating RANKL-induced phosphatidylinositol 3-kinase/Akt and Erk pathways in association with signaling Adaptor DAP12. J Bone Miner Res 28:2463–2475

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y, Takahata M, Mikuni S, Shimizu T, Hamano H, Angata T, Hatakeyama S, Kinjo M, Iwasaki N (2015) Siglec-15 is a potential therapeutic target for postmenopausal osteoporosis. Bone 71:217–226

    Article  CAS  PubMed  Google Scholar 

  • Karlstetter M, Kopatz J, Aslanidis A, Shahraz A, Caramoy A, Linnartz-Gerlach B, Lin Y, Luckoff A, Fauser S, Duker K, Claude J, Wang Y, Ackermann J, Schmidt T, Hornung V, Skerka C, Langmann T, Neumann H (2017) Polysialic acid blocks mononuclear phagocyte reactivity, inhibits complement activation, and protects from vascular damage in the retina. EMBO Mol Med 9:154–166

    Article  CAS  PubMed  Google Scholar 

  • Kerrigan AM, Brown GD (2011) Syk-coupled C-type lectins in immunity. Trends Immunol 32:151–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi H, Kobayashi M, Kunisawa T, Imai K, Sayo A, Malissen B, Crocker PR, Sato K, Kiyama H (2017) Siglec-H is a microglia-specific marker that discriminates microglia from CNS-associated macrophages and CNS-infiltrating monocytes. Glia 65:1927–1943

    Article  PubMed  Google Scholar 

  • Kopatz J, Beutner C, Welle K, Bodea LG, Reinhardt J, Claude J, Linnartz-Gerlach B, Neumann H (2013) Siglec-h on activated microglia for recognition and engulfment of glioma cells. Glia 61:1122–1133

    Article  PubMed  Google Scholar 

  • Lajaunias F, Dayer J, Chizzolini C (2005) Constitutive repressor activity of CD33 on human monocytes requires sialic acid recognition and phosphoinositide 3-kinase-mediated intracellular signaling. Eur J Immunol 35:243–251

    Article  CAS  PubMed  Google Scholar 

  • Loschko J, Heink S, Hackl D, Dudziak D, Reindl W, Korn T, Krug AB (2011) Antigen targeting to plasmacytoid dendritic cells via Siglec-H inhibits Th cell-dependent autoimmunity. J Immunol 187:6346–6356

    Article  CAS  PubMed  Google Scholar 

  • Lowell CA (2011) Src-family and Syk kinases in activating and inhibitory pathways in innate immune cells: signaling cross talk. Cold Spring Harb Perspect Biol 3

    Google Scholar 

  • Macauley M, Crocker P, Paulson J (2014) Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 14:653–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meri S, Pangburn MK (1990) Discrimination between activators and nonactivators of the alternative pathway of complement: regulation via a sialic acid/polyanion binding site on factor H. Proc Natl Acad Sci U S A 87:3982–3986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogata S, Ho I, Chen A, Dubois D, Maklansky J, Singhal A, Hakomori S, Itzkowitz SH (1995) Tumor-associated sialylated antigens are constitutively expressed in normal human colonic mucosa. Cancer Res 55:1869–1874

    CAS  PubMed  Google Scholar 

  • Paloneva J, Kestila M, Wu J, Salminen A, Bohling T, Ruotsalainen V, Hakola P, Bakker AB, Phillips JH, Pekkarinen P, Lanier LL, Timonen T, Peltonen L (2000) Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat Genet 25:357–361

    Article  CAS  PubMed  Google Scholar 

  • Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J, Adolfsson R, Bianchin M, Bird T, Miranda R, Salmaggi A, Tranebjaerg L, Konttinen Y, Peltonen L (2002) Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet 71:656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paloneva J, Mandelin J, Kiialainen A, Bohling T, Prudlo J, Hakola P, Haltia M, Konttinen YT, Peltonen L (2003) DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features. J Exp Med 198:669–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul S, Taylor L, Stansbury E, McVicar D (2000) Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood 96:483–490

    Article  CAS  PubMed  Google Scholar 

  • Pillai S, Netravali I, Cariappa A, Mattoo H (2012) Siglecs and immune regulation. Annu Rev Immunol 30:357–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45

    Article  CAS  PubMed  Google Scholar 

  • Puttur F, Arnold-Schrauf C, Lahl K, Solmaz G, Lindenberg M, Mayer CT, Gohmert M, Swallow M, van Helt C, Schmitt H, Nitschke L, Lambrecht BN, Lang R, Messerle M, Sparwasser T (2013) Absence of Siglec-H in MCMV infection elevates interferon alpha production but does not enhance viral clearance. PLoS Pathog 9:e1003648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato C, Kitajima K (2013) Disialic, oligosialic and polysialic acids: distribution, functions and related disease. J Biochem 154:115–136

    Article  CAS  PubMed  Google Scholar 

  • Schmitt H, Sell S, Koch J, Seefried M, Sonnewald S, Daniel C, Winkler TH, Nitschke L (2016) Siglec-H protects from virus-triggered severe systemic autoimmunity. J Exp Med 213:1627–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz F, Landig CS, Siddiqui S, Secundino I, Olson J, Varki N, Nizet V, Varki A (2017) Paired Siglec receptors generate opposite inflammatory responses to a human-specific pathogen. EMBO J 36:751–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu T, Takahata M, Kameda Y, Endo T, Hamano H, Hiratsuka S, Ota M, Iwasaki N (2015) Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) mediates periarticular bone loss, but not joint destruction, in murine antigen-induced arthritis. Bone 79:65–70

    Article  CAS  PubMed  Google Scholar 

  • Shultz LD, Rajan TV, Greiner DL (1997) Severe defects in immunity and hematopoiesis caused by SHP-1 protein-tyrosine-phosphatase deficiency. Trends Biotechnol 15:302–307

    Article  CAS  PubMed  Google Scholar 

  • Stuible M, Moraitis A, Fortin A, Saragosa S, Kalbakji A, Filion M, Tremblay G (2014) Mechanism and function of monoclonal antibodies targeting siglec-15 for therapeutic inhibition of osteoclastic bone resorption. J Biol Chem 289:6498–6512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Fukaya T, Eizumi K, Sato Y, Sato K, Shibazaki A, Otsuka H, Hijikata A, Watanabe T, Ohara O, Kaisho T, Malissen B, Sato K (2011) Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo. Immunity 35:958–971

    Article  CAS  PubMed  Google Scholar 

  • Takamiya R, Ohtsubo K, Takamatsu S, Taniguchi N, Angata T (2013) The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-beta secretion from monocytes/macrophages through the DAP12-Syk pathway. Glycobiology 23:178–187

    Article  CAS  PubMed  Google Scholar 

  • Taylor V, Buckley C, Douglas M, Cody A, Simmons D, Freeman S (1999) The myeloid-specific sialic acid-binding receptor, CD33, associates with the protein-tyrosine phosphatases, SHP-1 and SHP-2. J Biol Chem 274:11505–11512

    Article  CAS  PubMed  Google Scholar 

  • Turnbull I, Colonna M (2007) Activating and inhibitory functions of DAP12. Nat Rev Immunol 7:155–161

    Article  CAS  PubMed  Google Scholar 

  • Ulyanova T, Blasioli J, Woodford-Thomas T, Thomas M (1999) The sialoadhesin CD33 is a myeloid-specific inhibitory receptor. Eur J Immunol 29:3440–3449

    Article  CAS  PubMed  Google Scholar 

  • Varki A (2011) Since there are PAMPs and DAMPs, there must be SAMPs? Glycan “self-associated molecular patterns” dampen innate immunity, but pathogens can mimic them. Glycobiology 21:1121–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varki A, Angata T (2006) Siglecs—the major subfamily of I-type lectins. Glycobiology 16:1R–27R

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chow R, Deng L, Anderson D, Weidner N, Godwin A, Bewtra C, Zlotnik A, Bui J, Varki A, Varki N (2011) Expression of Siglec-11 by human and chimpanzee ovarian stromal cells, with uniquely human ligands: implications for human ovarian physiology and pathology. Glycobiology 21:1038–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Mitra N, Cruz P, Deng L, Varki N, Angata T, Green E, Mullikin J, Hayakawa T, Varki A (2012a) Evolution of siglec-11 and siglec-16 genes in hominins. Mol Biol Evol 29:2073–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Mitra N, Secundino I, Banda K, Cruz P, Padler-Karavani V, Verhagen A, Reid C, Lari M, Rizzi E, Balsamo C, Corti G, de Bellis G, Longo L, Beggs W, Caramelli D, Tishkoff S, Hayakawa T, Green E, Mullikin J, Nizet V, Bui J, Varki A (2012b) Specific inactivation of two immunomodulatory SIGLEC genes during human evolution. Proc Natl Acad Sci U S A 109:9935–9940

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Lan C, Ren D, Chen GY (2016) Induction of Siglec-1 by endotoxin tolerance suppresses the innate immune response by promoting TGF-beta1 production. J Biol Chem 291:12370–12382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka M, Kato Y, Angata T, Narimatsu H (2009) Deletion polymorphism of SIGLEC14 and its functional implications. Glycobiology 19:841–846

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Raper A, Sugita N, Hingorani R, Salio M, Palmowski M, Cerundolo V, Crocker P (2006) Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood 107:3600–3608

    Article  CAS  PubMed  Google Scholar 

  • Zheng Q, Hou J, Zhou Y, Yang Y, **e B, Cao X (2015) Siglec1 suppresses antiviral innate immune response by inducing TBK1 degradation via the ubiquitin ligase TRIM27. Cell Res 25:1121–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoller M (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 11:254–267

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work in the author’s laboratory has been supported by intramural funding from Academia Sinica and extramural funding from the Ministry of Science and Technology, Taiwan [MOST 104-2311-B-001-017-MY3, 105-2627-M-007-001, and 106-2321-B-001-032].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Angata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Angata, T. (2020). Siglecs that Associate with DAP12. In: Hsieh, SL. (eds) Lectin in Host Defense Against Microbial Infections. Advances in Experimental Medicine and Biology, vol 1204. Springer, Singapore. https://doi.org/10.1007/978-981-15-1580-4_9

Download citation

Publish with us

Policies and ethics

Navigation