Biotechnological Aspects of Nanoparticles Driven from Natural Products for Drug Delivery System and Other Applications

  • Chapter
  • First Online:
Bioactive Natural products in Drug Discovery

Abstract

Nanotechnology has emerged as one of the most promising technologies for synthesizing multifunctional particles for various applications in the fields of science and technology. Growing concern about sustainability and environment, nanoparticles from natural products are attaining worldwide attention. Various nanomaterials derived from natural products exhibit certain characteristics such as excellent biocompatibility and transparency and are light in weight, thus having promising applications in drug delivery systems, packaging, transportation, filtration, electronics, medical sector, textile industry and other areas. Nanoparticles increase stability and solubility of various drugs or phytochemicals by enhancing the absorption, bioavailability, retention and permeation in target tissues, etc. This book chapter aims to summarize current progress in various key areas relevant to field of nanomedicines synthesized from natural products and nano-based drug delivery systems through comprehensive scrutiny of the application and discovery of nanomaterials in improving both the efficacy of novel and old drugs (e.g. natural products) and complete diagnosis through disease marker molecules. The challenges and opportunities of various natural nanoparticles in drug delivery system from natural sources to their field’s trial to clinical applications are also discussed. In addition, we have included information regarding the other applications of nanoparticles driven from natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelwahab SI, Sheikh BY, Taha MM (2013) Thymoquinone-loaded nanostructured lipid carriers: preparation, gastroprotection, in vitro toxicity, and pharmacokinetic properties after extravascular administration. Int J Nanomedicine 8:2163–2172

    PubMed  PubMed Central  Google Scholar 

  • Abdollah E (2009) Applications of nanotechnology in oil and gas industry. Petrotech, New Delhi

    Google Scholar 

  • Abobatta WF (2018) Nanotechnology application in agriculture. Acta Scientific Agricult 2(6):99–102

    Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124(41):12108–12109

    CAS  PubMed  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003a) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828

    CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19(8):3550–3553

    CAS  Google Scholar 

  • Altemimi A, Lakhssassi N, Baharlouei A, Watson D, Lightfoot D (2017) Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plan Theory 6(4):42

    Google Scholar 

  • Arakaki A, Nakazawa H, Nemoto M, Mori T, Matsunaga T (2008) Formation of magnetite by bacteria and its application. J R Soc Interface 5(26):977–999

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aresta A, Calvano CD, Trapani A, Cellamare S, Zambonin CG, De Giglio E (2013) Development and analytical characterization of vitamin(s)-loaded chitosan nanoparticles for potential food packaging applications. J Nanopart Res 15:1592

    Google Scholar 

  • Arshad A (2017) Bacterial synthesis and applications of nanoparticles. Nano Sci Nano Technol 11(2):119

    Google Scholar 

  • Asif AAH, Hasan MZ (2018) Application of nanotechnology in modern textiles: a review. Int J Curr Eng Technol 8(2):227–231

    Google Scholar 

  • Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33(8):1582–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azizi S, Ahmad MB, Namvar F, Mohamad R (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277

    CAS  Google Scholar 

  • Azizi S, Namvar F, Mahdavi M, Ahmad MB, Mohamad R (2013) Biosynthesis of silver nanoparticles using brown marine macroalga, Sargussum muticum aqueous extract. Materials 6:5942–5950

    PubMed  PubMed Central  Google Scholar 

  • Bai HJ, Zhang ZM (2009) Microbial synthesis of semi- conductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mater Lett 63(9–10):764–766

    CAS  Google Scholar 

  • Bai HJ, Zhang ZM, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides.Biotechnology. Letters 28(14):1135–1139

    CAS  Google Scholar 

  • Bala I, Bhardwaj V, Hariharan S, Kharade SV, Roy N, RMN K (2006) Sustained release nanoparticulate formulation containing antioxidant-ellagic acid as potential prophylaxis system for oral administration. J Drug Target 14(1):27–34

    CAS  PubMed  Google Scholar 

  • Banfield JF, Zhang H (2001) Chapter 1: nanoparticles in the environment. In: Banfield JF, Navorotsky A (eds) Nanoparticles and the environment. Mineralogical Society of America, Washington, DC, pp 1–50

    Google Scholar 

  • Bansal V, Rautaray D, Bharde A (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15(23):2583–2589

    CAS  Google Scholar 

  • Barreto AC, Santiago VR, Freire RM (2013) Magnetic nano-system for cancer therapy using oncocalyxone a, an antitumor secondary metabolite isolated from a Brazilian plant. Int J Mol Sci 14(9):18269–18283

    PubMed  PubMed Central  Google Scholar 

  • Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7(3):191–204

    CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatu. Colloids Surf B 47(2):160–164

    CAS  Google Scholar 

  • Bhati S, Kumar V, Singh S, Singh J (2019) Synthesis, biological activities and docking studies of piperazine incorporated 1, 3, 4-oxadiazole derivatives. J Mol Struct

    Google Scholar 

  • Bhattacharjee S, van Opstal EJ, Alink GM, Marcelis AT, Zuilhof H, Rietjens IM (2013) Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells. J Nanopart Res 15:1695

    Google Scholar 

  • Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Botham KM, Mayes PA (2006) Biologic oxidation. In: Harper’s Illustrared biochemistry, 28th edn. Lange-McGraw Hill, London, p 47

    Google Scholar 

  • Campos CA, Gerschenson LN, Flores SK (2010) Development of edible films and coatings with antimicrobial activity. Food Bioprocess Technol 4(6):849–875

    Google Scholar 

  • Cerqueira MA, Costa MJ, Fucinos C, Pastrana LM, Vicente AA (2014) Development of active and nanotechnology-based smart edible packaging systems: physical-chemical characterization. Food Bioprocess Technol 7:1472–1482

    CAS  Google Scholar 

  • Chen J, Dong X, Zhao J, Tang G (2009) In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. J Appl Toxicol 29:330–337

    CAS  PubMed  Google Scholar 

  • Cho WS, Kang BC, Lee JK, Jeong J, Che JH, Seok SH (2013) Comparative absorption, distribution and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part Fibre Toxicol 10(9). https://doi.org/10.1186/1743-8977-10-9

  • Chu Z, Feng Y, Seeger S (2015) Oil/water separation with selective superantiwetting/superwetting surface materials. Angew Chem Int Ed 54(8):2328–2338

    CAS  Google Scholar 

  • Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37:2096–2126

    CAS  PubMed  Google Scholar 

  • Corradini E, de Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4(8):509–515

    CAS  Google Scholar 

  • Cota-Arriola O, Cortez-Rocha MO, Burgos-Hernandez A, Ezquerra-Brauer JM, Plascencia-Jatomea M (2013) Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: development of new strategies for microbial control in agriculture. J Sci Food Agric 93(7):1525–1536

    CAS  PubMed  Google Scholar 

  • Cubukcu M, Timur S, Anik U (2007) Examination of performance of glassy carbon paste electrode modified with gold nanoparticle and xanthine oxidase for xanthine and hypoxanthine detection. Talanta 74:434–439

    CAS  PubMed  Google Scholar 

  • Cunningham DP, Lundie LL Jr (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59(1):7–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338(6216):596–597

    CAS  Google Scholar 

  • Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M, Akbarzadeh A (2016) Application of gold nanoparticles in biomedical and drug delivery. Art Cells Nanomed Biotechnol 44(1):410–422

    CAS  Google Scholar 

  • Das M, Saxena N, Dwivedi PD (2008) Emerging trends of nanoparticles application in food technology: safety paradigms. Nanotoxicology 3(1):10–18

    Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133–149

    PubMed  PubMed Central  Google Scholar 

  • De La Torre-Roche R, Hawthorne J, Deng Y, **ng B, Cai W, Newman LA, Wang C, Ma X, White JC (2012) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47(21):12539–12547

    Google Scholar 

  • De Oliveira JL, Campos EVR, da Silva CMG, Pasquoto T, Lima R, Fraceto LF (2015) Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization and evaluation of herbicidal activity. J Agric Food Chem 63:422–432

    PubMed  Google Scholar 

  • Devadasu VR, Bhardwaj V, Kumar MN (2013) Can controversial nanotechnology promise drug delivery? Chem Rev 113(3):1686–1735

    CAS  PubMed  Google Scholar 

  • Dhayalan M, Denison MIJ, Jegadeeshwari LA, Krishnan K, Gandhi NN (2017) In vitro antioxidant, antimicrobial, cytotoxic potential of gold and silver nanoparticles prepared using Embelia ribes. Nat Prod Res 31:465–468

    CAS  PubMed  Google Scholar 

  • Dhewa T (2015) Nanotechnology applications in agriculture: an update. Oct J Env Res 3(2):204–211

    CAS  Google Scholar 

  • Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Meta 2(2):303–336

    CAS  Google Scholar 

  • Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 12:7291–7309

    PubMed  PubMed Central  Google Scholar 

  • Dong WG, Huang G (2002) Research on properties of nano polypropylene/TiO2 composite fiber. J Text Res 23:22–23

    CAS  Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1. https://doi.org/10.1016/j.jcis.2011.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duran N, Marcato PD, Alves OL, de Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3. https://doi.org/10.1186/1477-3155-3-8

  • Eatemadi A, Daraee H, Zarghami N, Melat Yar H, Akbarzadeh A (2016) Nanofiber: synthesis and biomedical applications. Art Cells Nanomed Biotechnol 44(1):111–121

    CAS  Google Scholar 

  • El-Naggar ME, Shaheen TI, Zaghloul S, El-Rafie MH, Hebeish A (2016) Antibacterial activities and UV protection of the in situ synthesized titanium oxide nanoparticles on cotton fabrics. Ind Eng Chem Res 55(10):2661–2668

    CAS  Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6(3):628–647

    CAS  Google Scholar 

  • Fakoori E, Karami H (2018) Preparation and characterization of ZnO-PP nanocomposite fibers and non-woven fabrics. J Textile Inst 109(9):1152–1158

    CAS  Google Scholar 

  • Faulstich L, Griffin S, Nasim MJ, Masood MI, Ali W, Alhamound S, Omran Y, Kim H, Kharma A, Schafer KH (2017) Nature’s hat-trick: can we use sulfur springs as ecological source for materials with agricultural and medical applications? Int Biodeterior Biodegrad 119:678–686

    CAS  Google Scholar 

  • Fawzy ZF, Yunsheng L, Shedeed SI, El-Bassiony AM (2018) Nanotechnology in agriculture - current and future situation. Res Rev J Agricult Allied Sci 7(2):73–76

    CAS  Google Scholar 

  • Felice F, Zambito Y, Belardinelli E (2013) Delivery of natural polyphenols by polymeric nanoparticles improves the resistance of endothelial progenitor cells to oxidative stress. Eur J Pharm Sci 50(3–4):393–399

    CAS  PubMed  Google Scholar 

  • Gashti MP, Pakdel E, Alimohammadi F (2016) Nanotechnology-based coating techniques for smart textiles. In: Active coatings for smart textiles. Woodhead Publishing, Sawston, pp 243–268

    Google Scholar 

  • Ge J, Wu R, Shi X, Yu H, Wang M, Li W (2002) Biodegradable polyurethane materials from bark and starch. II. Coating material for controlled-release fertilizer. J Appl Polym Sci 86:2948–2952

    CAS  Google Scholar 

  • Genick CC, Wright SK (2017) Biophysics: for HTS hit validation, chemical lead optimization, and beyond. Expert Opin Drug Discovery 12(9):897–907

    CAS  Google Scholar 

  • Ghasemzadeh G, Momenpour M, Omidi F, Hosseini MR, Ahani M, Barzegari A (2014) Applications of nanomaterials in water treatment and environmental remediation. Front Env Sci Eng 8(4):471–482

    CAS  Google Scholar 

  • Ghodake G, Lee DS (2011) Biological synthesis of gold nanoparticles using the aqueous extract of the brown algae Laminaria japonica. J Nanoelectron Optoelectron 6:268–271

    CAS  Google Scholar 

  • Gill AO, Holley RA (2004) Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Appl Environ Microbiol 70(10):5750–5755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gleiche M, Hoffschulz H, Lenhert S (2006) Nanotechnology in consumer products. Nanoforum report, pp 1–30

    Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792

    CAS  PubMed  Google Scholar 

  • Gomes C, Moreira RG, Castell-Perez E (2011) Poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. J Food Sci 76(2):16–24

    Google Scholar 

  • Govindhan M, Liu Z, Chen A (2016) Design and electrochemical study of platinum-based nanomaterials for sensitive detection of nitric oxide in biomedical applications. Nano 6(11):211

    Google Scholar 

  • Grebler S, Gazso A, Simko M, Fiedeler U, Nentwich M (2010) Nanotechnology in cosmetics. In: Nano trust dossiers. Institute of Technology Assessment of the Austrian Academy of Sciences, Vienna

    Google Scholar 

  • Griffin S, Masood MI, Nasim MJ, Sarfraz M, Ebokaiwe AP, Schafer K-H, Keck CM, Jacob C (2018) Natural nanoparticles: a particular matter inspired by nature. Antioxidants 7(3)

    Google Scholar 

  • Guin D, Manorama SV, Latha JNL, Singh S (2007) Photoreduction of silver on bare and colloidal TiO2 nanoparticle/nanotubes: synthesis, characterization and tested for antibacterial outcome. J Phys Chem C 111(36):13393–13397

    CAS  Google Scholar 

  • Gupta N, Fischer AR, van der Lans IA, Frewer LJ (2012) Factors influencing societal response of nanotechnology: an expert stakeholder analysis. J Nanopart Res 14(5):857

    PubMed  PubMed Central  Google Scholar 

  • Hamidi M, Mollaabbaszadeh M, Hajizadeh N (2014) Bioproduction of nanoparticles by microorganisms and their applications. Trend Life Sci 3(1):10–19

    Google Scholar 

  • Han R, Sun Y, Kang C, Sun H, Wei W (2017) Amphiphilic dendritic nanomicelle-mediated co-delivery of 5-fluorouracil and doxorubicin for enhanced therapeutic efficacy. J Drug Target 25:140–148

    CAS  PubMed  Google Scholar 

  • Han W, Yu YJ, Li NT, Wang LB (2011) Application and safety assessment for nano-composite materials in food packaging. Chin Sci Bull 56:1216–1225

    Google Scholar 

  • Haque M (2019) Nano fabrics in the 21st century: a review. Asian J Nanosci Mater 2(2, pp. 120–256):131–148

    CAS  Google Scholar 

  • Hasaneen MNA, Abdel-Aziz HMM, El-Bialy DMA, Omer AM (2014) Preparation of chitosan nanoparticles for loading with NPK fertilizer. Afr J Biotechnol 13(31):3158–3164

    CAS  Google Scholar 

  • Herzog B, Huglin D, Borsos E, Stehlin A, Luther H (2004) New UV absorbers for cosmetic sunscreens – a breakthrough for the photoprotection of human skin. Chimia 58:554–559

    CAS  Google Scholar 

  • Hideyuki Y, Naoharu I (2006) Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am J Physiol Cell Physiol 290:1495–1502

    Google Scholar 

  • Hou J, Zhou S (2008) Formulation and preparation of glycyrrhizic acid solid lipid nanoparticles. ACTA Academiae Medicinae Militaris Tertiae 30(11):1043–1045

    CAS  Google Scholar 

  • Ibrahim NA, Eid BM, Abdellatif FH (2018) Advanced materials and technologies for antimicrobial finishing of cellulosic textiles. In: Handbook of renewable materials for coloration and finishing, pp 301–356

    Google Scholar 

  • Ingle AP, Duran N, Rai M (2014) Bioactivity, mechanism of action and cytotoxicity of copper-based nanoparticles:a review. Appl Microbiol Biotechnol 98(3):1001–1009

    CAS  PubMed  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3(2):635–641

    CAS  PubMed  Google Scholar 

  • Jha AK, Prasad K, Prasad K (2009) A green low-cost biosynthesis of Sb2 O3 nanoparticles. Biochem Eng J 43(3):303–306

    CAS  Google Scholar 

  • Jia CJ, Schuth F (2011) Colloidal metal nanoparticles as a component of designed catalyst. Phys Chem Chem Phys 13:2457–2487

    CAS  PubMed  Google Scholar 

  • Jiang ZY, Xu LL, Lu MC, Chen ZY, Yuan ZW, Xu XL, Guo XK, Zhang XJ, Sun HP, You QD (2015) Structure–activity and structure–property relationship and exploratory in vivo evaluation of the nanomolar Keap1–Nrf2 protein–protein interaction inhibitor. J Med Chem 58(16):6410–6421

    CAS  PubMed  Google Scholar 

  • Jorgensen LV, Madsen HL, Thomsen MK, Dragsted LO, Skibsted LH (1999) Regeneration of phenolic antioxidants from phenoxyl radicals: an ESR and electrochemical study of antioxidant hierarchy. Free Radic Res 30(3):207–220

    CAS  PubMed  Google Scholar 

  • Kang C, Sun Y, Zhu J, Li W, Zhang A, Kuang T (2016) Delivery of nanoparticles for treatment of brain tumor. Curr Drug Metab 17:745–754

    CAS  PubMed  Google Scholar 

  • Kanmani P, Rhim JW (2014) Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem 148:162–169

    CAS  PubMed  Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK, Sharma AK (2013) Myconanotechnology in agriculture: a perspective. World J Microbiol Biotechnol 29:191–207

    CAS  PubMed  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71(1):133–137

    CAS  PubMed  Google Scholar 

  • Katoueizadeh E, Zebarjad SM, Janghorban K (2018) Synthesis and enhanced visible-light activity of N-doped TiO2 nano-additives applied over cotton textiles. J Mater Res Technol 7(3):204–211

    CAS  Google Scholar 

  • Kesselman E, Efrat R, Garti N, Danino D (2007) Formation of cubosomes as vehicles of biologically active substances. http://www.materials.technion.ac.il/ism/Docs/2007/Life-Abstracts/Poster/E_Kesselman.pdf

  • Khabibullin A, Bhangaonkar K, Mahoney C, Lu Z, Schmitt M, Sekizkardes AK et al (2016) Grafting PMMA brushes from α-alumina nanoparticles via SI-ATRP. ACS Appl Mater Interfaces 8(8):5458–5465

    CAS  PubMed  Google Scholar 

  • Kim D, Kim J, Park YI, Lee N, Hyeon T (2018) Recent development of inorganic nanoparticles for biomedical imaging. ACS Cent Sci 4(3):324–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kishimoto TK, Maldonado RA (2018) Nanoparticles for the induction of antigen-specific immunological tolerance. Front Immunol 9:230

    PubMed  PubMed Central  Google Scholar 

  • Kong X, Ohadi MM (2010) Applications of micro and nano technologies in the oil and gas industry-overview of the recent progress. In: Proceedings of the Abu Dhabi International Petroleum Exhibition Conference, Nov 1–4, Abu Dhabi, UAE, pp 1–4. doi:https://doi.org/10.2118/138241-MS.

  • Konishi Y, Ohno K, Saitoh N (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128(3):648–653

    CAS  PubMed  Google Scholar 

  • Konishi Y, Sukiyama T, Ohno K (2006) Intracellular recovery of gold by microbial reduction of AuCl−4ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81(1):24–29

    CAS  Google Scholar 

  • Kookana RS, ABA B, Reeves PT, Ashauer R, Beulke S, Chaudhry Q, Cornelis G, Fernandes TF, Gan J, Kah M, Lynch I, Ranville J, Sinclair C, Spurgeon D, Tiede K, Van der Brink PJ (2014) Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J Agric Food Chem 62(19):4227–4240

    CAS  PubMed  Google Scholar 

  • Kowshik M, Deshmuke N, Vogal W (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78(5):583–588

    CAS  PubMed  Google Scholar 

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta Part A 93:95–99

    CAS  Google Scholar 

  • Krol S (2012) Challenges in drug delivery to the brain: nature is against us. J Control Release 164(2):145–155

    CAS  PubMed  Google Scholar 

  • Kumar V, Singh S, Singh A, Subhose V, Prakash O (2019c) Assessment of heavy metal ions, essential metal ions, and antioxidant properties of the most common herbal drugs in Indian Ayurvedic hospital: for ensuring quality assurance of certain Ayurvedic drugs. Biocatal Agric Biotechnol 18:101018

    Google Scholar 

  • Kumar V, Singh S, Singh R (2019b) Phytochemical constituents of guggul gum and their biological qualities. Mini Rev Org Chem 16. https://doi.org/10.2174/1570193X16666190129161757

  • Kumar V, Singh S, Srivastava B, Bhadouria R, Singh R (2019a) Green synthesis of silver nanoparticles using leaf extract of holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities. J Environ Chem Engg 103094

    Google Scholar 

  • Kuppusamy P, Yousoff MM, Manian GP, Govindan N (2014) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications-an updated report. Saudi Pharm J. https://doi.org/10.1016/j.jsps

  • Kuswandi B, Wicaksono Y, Abdullah A, Heng LY, Ahmad M (2011) Smart packaging: sensors for monitoring of food quality and safety. Sens & Instrumen Food Qual 5(3):137–146

    Google Scholar 

  • La-Beck NM, Gabizon AA (2017) Nanoparticle interactions with the immune system: clinical implications for liposome-based cancer chemotherapy. Front Immunol 8:416

    PubMed  PubMed Central  Google Scholar 

  • Labrenz M, Druschel GK, Thomsen-Ebert T (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290(5497):1744–1747

    CAS  PubMed  Google Scholar 

  • Lahlou M (2013) The success of natural products in drug discovery. Pharmacol Pharm 4(3A):17–31

    Google Scholar 

  • Li F, Li X, Li B (2011a) Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin. J Magn Magn Mater 323(22):2770–2775

    CAS  Google Scholar 

  • Li Q-Y, Zu Y-G, Shi R-Z, Yao L-P (2006) Review-Camptothecin: current perspectives. Curr Med Chem 13:2021–2039

    CAS  PubMed  Google Scholar 

  • Li X, Xu H, Chen Z-S, Chen G (2011b) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. https://doi.org/10.1155/2011/270974

  • Li Y, **ao H, McClements DJ (2012) Encapsulation and delivery of crystalline hydrophobic nutraceuticals using nanoemulsions: factors affecting polymethoxyflavone solubility. Food Biophys 7(4):341–353

    PubMed  PubMed Central  Google Scholar 

  • Liu Q, Chen B, Wang Q, Shi X, **ao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9(3):1007–1010

    CAS  PubMed  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    CAS  PubMed  Google Scholar 

  • Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y (2014) Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res Int 2014:180549

    PubMed  PubMed Central  Google Scholar 

  • Long M, Zheng L, Tan B, Shu H (2016) Photocatalytic self-cleaning cotton fabrics with platinum (IV) chloride modified TiO2 and N-TiO2 coatings. Appl Surf Sci 386:434–441

    CAS  Google Scholar 

  • Longano D, Ditaranto N, Cioffi N, Di Niso F, Sibillano T, Ancona A, Conte A, Del Nobile MA, Sabbatini T, L. (2012) Analytical characterization of laser-generated copper-nanoparticles for antibacterial composite food packaging. Anal Bioanal Chem 403(4):1179–1186

    CAS  PubMed  Google Scholar 

  • Lopes CM, Fernandes JR, Martins LP (2013) Application of nanotechnology in agro food sector. Food Technol Biotechnol 51:183–197

    CAS  Google Scholar 

  • Lv F, Liang H, Yuan Q, Li C (2011) In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food- related microorganisms. Food Res Int 44:3057–3064

    CAS  Google Scholar 

  • Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125

    CAS  PubMed  Google Scholar 

  • Mahalik NP (2009) Processing and packaging automation systems: a review. Special issue on advances in food automation. Sens & Instrumen Food Qual 3:12–25

    Google Scholar 

  • Mahdavi M, Namvar F, Ahmad MB, Mohammad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18:5954–5964

    PubMed  PubMed Central  Google Scholar 

  • Maleki Dizaj S, Barzegar-Jalali M, Zarrintan MH, Adibkia K, Lotfipour F (2015) Calcium carbonate nanoparticles as cancer drug delivery system. Expert Opin Drug Deliv 12(10):1649–1660

    PubMed  Google Scholar 

  • Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29(1):1–13

    Google Scholar 

  • Marambio-Jones C, Hoek EM (2010) A review of the antimicrobial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(5):1531–1551

    CAS  Google Scholar 

  • Mathur S, Hoskins C (2017) Drug development: Lessons from nature. Biomed Reports 6(6):612–614

    CAS  Google Scholar 

  • Medero N (2013) Silver for your smelly socks??. http://sustainable-nano.com/2013/08/06/silver-for-your-smelly-socks/

  • Michael F (2010) Cosmetic Compositions for Hair Treatment Containing Dendrimers Or Dendrimer Conjugates - Patent 6068835

    Google Scholar 

  • Mirjalili M, Zohoori S (2016) Review for application of electrospinning and electrospun nanofibers technology in textile industry. J Nanostruct Chem 6(3):207–213

    CAS  Google Scholar 

  • Mishra R, Militky J, Baheti V, Huang J, Kale B, Venkataraman M et al (2014) The production, characterization and applications of nanoparticles in the textile industry. Text Prog 46(2):133–226

    Google Scholar 

  • Mishra S, Singh HB (2015) Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotechnol 99:1097–1107

    CAS  PubMed  Google Scholar 

  • Mody MR (2011) Cancer nanotechnology: recent trends and developments. Int J Med Up 6(1):3–7

    Google Scholar 

  • Moghaddam AB, Namvar F, Moniri M, Tahir PM, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20:16540–16565

    CAS  Google Scholar 

  • Mokhtari N, Daneshpajouh S, Seyedbagheri S (2009) Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: the effects of visible-light irradiation and the liquid mixing process. Mater Res Bull 44(6):1415–1421

    CAS  Google Scholar 

  • Morales ME, Gallardo V, Clares B, Garcia MB, Ruiz MA (2009) Study and description of hydrogels and organogels as vehicles for cosmetic active ingredients. J Cosmet Sci 60:627–636

    CAS  PubMed  Google Scholar 

  • Moreira FK, De Camargo LA, Marconcini JM, Mattoso LH (2013) Nutraceutically inspired pectin-Mg(OH)2 nanocomposites for bioactive packaging applications.J. Agric. Food Chem 61(29):7110–7119

    CAS  Google Scholar 

  • Morrow KJ, Bawa R, Wei C (2007) Recent advances in basic and clinical nanomedicine. Med Clin North Am 91:805–843

    CAS  PubMed  Google Scholar 

  • Mousav SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1(10):414–419

    Google Scholar 

  • Mukherjee P, Senapati S, Mandal D (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Bio Chem 3(5):461–463

    CAS  PubMed  Google Scholar 

  • Muller RH, Gohla S, Keck CM (2011) State of the art of nanocrystals–special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm 78(1):1–9

    PubMed  Google Scholar 

  • Muller RH, Radtke M, Wissing SA (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54(1):131–155

    Google Scholar 

  • Muqbil I, Masood A, Sarkar FH, Mohammad RM, Azmi AS (2011) Progress in nanotechnology-based approaches to enhance the potential of chemo-preventive agents. Cancers 3(1):428–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naderi MR, Danesh-Sharaki A (2013) Nanofertilizers and their role in sustainable agriculture. Int J Agric Crop Sci 5:2229–2232

    Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by lactobacillus strains. Cryst Growth Design 2(4):293–298

    CAS  Google Scholar 

  • Nair HB, Sung B, Yadav VR, Kannappan R, Chaturvedi MM, Aggarwal BB (2010) Delivery of anti-inflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochem Pharmacol 80(12):1833–1843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4:39–47

    CAS  Google Scholar 

  • Neethirajan S, Jayas DS, Sadistap S (2009) Carbon dioxide (CO2) sensors for the Agri-food industry-a review. Food Bioprocess Tech 2:115–121

    CAS  Google Scholar 

  • Ni S (2017) Nanoparticles carrying natural product for drug delivery. J Drug Delivery Therapeut 7(3):73–75

    CAS  Google Scholar 

  • Nikonov IN, Laptev GY, Folmanis YG, Folmanis GE, Kovalenko LV, Egorov IA, Fisinin VI, Tananaev IG (2011) Iron nanoparticles as a food additive for poultry. Dokl Biol Sci 1:328–331

    Google Scholar 

  • Obeid MA, Qaraghuli MMA, Alsaadi M, Alzahrani AR, Niwasabutra K, Ferro VA (2017) Delivering natural products and biotherapeutics to improve drug efficacy. TherDeliv 8(11):947–956

    CAS  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oehlke K, Adamiuk M, Behsnilian D, Graf V, Mayer-Miebach E, Walz E, Greiner R (2014) Potential bioavailability enhancement of bioactive compounds using food-grade engineered nanomaterials: a review of the existing evidence.Food. Funct 5(7):1341–1359

    CAS  Google Scholar 

  • Otunola GA, Afolayan AJ, Ajayi EO, Odeyemi SW (2017) Characterization, antibacterial and antioxidant properties of silver nanoparticles synthesized from aqueous extracts of Allium sativum, Zingiber officinale, and Capsicum frutescens. Pharmacogn Mag 13:201–208

    Google Scholar 

  • Ozer EA, Ozcan M, Didin M (2014) In: Barbosa-Canovas GV (ed) Food processing: strategies for quality assessment, vol 1. Springer, New York, p 477

    Google Scholar 

  • Padmavathi M (2013) Drug delivery system in nano greens. Int J Herb Med 1(3):56–60

    Google Scholar 

  • Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF, Tang MK, Sun JN, Ma DL, Han YF, Fong WF and Ko KM (2013). New perspectives on how to discover drugs from herbal medicines: CAM's outstanding contribution to modern therapeutics. Evidence-Based Complementary and Alternative Medicine

    Google Scholar 

  • Panacek A, Kvitek L, Prucek R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibac- terial activity. J Phys Chem B 110(33):16248–16253

    CAS  PubMed  Google Scholar 

  • Pant B, Park M, Kim HY, Park SJ (2016) Ag-ZnO photocatalyst anchored on carbon nanofibers: synthesis, characterization, and photocatalytic activities. Synth Met 220:533–537

    CAS  Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347

    CAS  PubMed  Google Scholar 

  • Paolo D (2004) Liposomal anticancer therapy: pharmacokinetic and clinical aspects. J Chemother 16(4):90–93

    PubMed  Google Scholar 

  • Park S, Lee S, Kim B, Lee S, Lee J, Sim S, Gu M, Yi J, Lee J (2012) Toxic effects of titanium dioxide nanoparticles on microbial activity and metabolic flux. Biotechnol Bioprocess Eng 17(2):276–282

    CAS  Google Scholar 

  • Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar Rodriguez-Torres M, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):71

    Google Scholar 

  • Peng LH, Xu SY, Shan YH (2014) Sequential release of salidroside and paeonol from a nanosphere-hydrogel system inhibits ultraviolet B-induced melanogenesis in Guinea pig skin. Int J Nanomedicine 9:1897–1908

    PubMed  PubMed Central  Google Scholar 

  • Petersen R (2008) Nanocrystals for use in topical cosmetic formulations and method of production thereof. Abbott GmbH and Co. US Patent 60/866233

    Google Scholar 

  • Pimtong-Ngam Y, Jiemsirilers S (2007) Preparation of tungsten oxide-tin oxide nanocomposites and their ethylene sensing characteristics. Sens Actuators A 139:7–11

    CAS  Google Scholar 

  • Pividori MI, Alegret S (2010) Micro and nanoparticles in biosensing systems for food safety and environmental monitoring. An example of converging technologies. Microchim Acta 170(3–4):227–242

    CAS  Google Scholar 

  • Pool H, Quintanar D, Figueroa JD, Bechara JEH, McClements DJ, Mendoza S (2012) Polymeric nanoparticles as oral delivery systems for encapsulation and release of polyphenolic compounds: impact on quercetin antioxidant activity and bioaccessibility. Food Biophys 7(3):276–288

    Google Scholar 

  • Popov KI, Filippov AN, Khurshudyan SA (2010) Food nanotechnologies. Russ J Gen Chem 80(3):630–642

    CAS  Google Scholar 

  • Prakash A, Sen S, Dixit R (2013a) The emerging usage and applications of nanotechnology in food processing industries: the new age of nanofood. Int J Pharm Sci Rev Res 22(1):107–111

    Google Scholar 

  • Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M (2013b) Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. For enhanced antibacterial activity against multi drug resistant clinical isolates. Colloid Surf B 108:255–259

    CAS  Google Scholar 

  • Prasad S, Phromnoi K, Yadav VR, Chaturvedi MM, Aggarwal BB (2010) Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta Med 76(11):10441063

    Google Scholar 

  • Pray L, Yaktine A (2009) Nanotechnology in food products: workshop summary. In: Food forum. Institute of Medicine, National Academic Press, Washington, D.C., p 146. http://www.nap.edu/catalog/12633.html

    Google Scholar 

  • Qian W-Y, Sun D-M, Zhu R-R, Du X-L, Liu H, Wang S-L (2012) pH-sensitive strontium carbonate nanoparticles as new anticancer vehicles for controlled etoposide release. Int J Nanomedicine 7:5781–5792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qie Y, Yuan H, Von Roemeling CA, Chen Y, Liu X, Shih KD, Knight JA, Tun HW, Wharen RE, Jiang W, Kim BY (2016) Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci Rep 6:26269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293

    CAS  PubMed  Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324

    CAS  Google Scholar 

  • Rameshkumar A, Sivasudha T, Jeyadevi R (2013) In vitro antioxidant and antimicrobial activities of Merremia emarginata using thio glycolic acid-capped cadmium telluride quantum dots. Colloids Surf B Biointerfaces 101:74–82

    CAS  PubMed  Google Scholar 

  • Rana S, Fangueiro R, Thakur VK, Joshi M, Thomas S, Fiedler B (2017) Nanomaterials from natural products for industrial applications. J Nanomater 4817653. https://doi.org/10.1155/2017/4817653

  • Rania B, Rainer MV, Muhammad N, Matthias R, Zoltan S, Christian WH (2007) Medicinal applications of fullerenes. Int J Nanomedicine 2:639–649

    Google Scholar 

  • Ravikumar S, Sreekanth TVM, Eom IY (2015) Interaction studies of greenly synthesized gold nanoparticles with bovine serum albumin (BSA) using fluorescence spectroscopy. J Nanosci Nanotechnol 15:9617–9623

    CAS  PubMed  Google Scholar 

  • Rivero PJ, Urrutia A, Goicoechea J, Arregui FJ (2015) Nanomaterials for functional textiles and fibers. Nanoscale Res Lett 10(1):501

    PubMed  PubMed Central  Google Scholar 

  • Rizvi SA, Saleh AM (2018) Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceut J 26(1):64–70

    Google Scholar 

  • Rosenholm JM, Zhang J, Linden M, Sahlgren C (2016) Mesoporous silica nanoparticles in tissue engineering–a perspective. Nanomedicine 11(4):391–402

    CAS  PubMed  Google Scholar 

  • Rubilar O, Rai M, Tortella G, Diez MC, Seabra AB, Duran N (2013) Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol Lett 35(9):1365–1375

    CAS  PubMed  Google Scholar 

  • Ruthradevi T, Akbar J, Kumar GS, Thamizhavel A, Kumar GA, Vatsa RK et al (2017) Investigations on nickel ferrite embedded calcium phosphate nanoparticles for biomedical applications. J Alloys Compd 695:3211–3219

    CAS  Google Scholar 

  • Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 2014:925494

    Google Scholar 

  • Saigusa M (2000) Broadcast application versus band application of polyolefin-coated fertilizer on green peppers grown on andisol. J Plant Nutr 23:1485–1493

    Google Scholar 

  • Santamaria CM, Woodruff A, Yang R, Kohane DS (2017) Drug delivery systems for prolonged duration local anesthesia. Mater Today 20(1):22–31

    CAS  Google Scholar 

  • Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of au and au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9(3):1–6

    Google Scholar 

  • Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R, Jacks T, Anderson DG (2012) Treating metastatic cancer with nanotechnology. Nat Rev Cancer 12:39–50

    CAS  Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic au-Ag alloy nanoparticles. Small 1(5):517–520

    CAS  PubMed  Google Scholar 

  • Senapati S, Mandal D, Ahmad A (2004) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Ind J Physics A 78(A)(1):101–105

    Google Scholar 

  • Shavit U, Reiss M, Shaviv A (2002) Wetting mechanisms of gel-based controlled-release fertilizers. J Controll Rel 88:71–83

    Google Scholar 

  • Shin J-Y, Yang Y, Heo P, Lee J-C, Kong B, Cho JY (2012) pH- responsive high-density lipoprotein-like nanoparticles to release paclitaxel at acidic pH in cancer chemotherapy. Int J Nanomedicine 7:2805–2816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sidhu GK, Singh S, Kumar V, Dhanjal DS, Datta S, Singh J (2019) Toxicity, monitoring and biodegradation of organophosphate pesticides: a review. Crit Rev Environ Sci Technol:1–53

    Google Scholar 

  • Singh NA (2017) Nanotechnology innovations, industrial applications and patents. Environ Chem Lett 15:185–191

    CAS  Google Scholar 

  • Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC (2016a) Microbial synthesis of flower-shaped gold nanoparticles. Arti Cells Nanomed Biotechnol 44(6):1469–1474

    CAS  Google Scholar 

  • Singh P, Kim Y-J, Zhang D, Yang D-C (2016b) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599

    CAS  PubMed  Google Scholar 

  • Singh R, Nalwa HS (2011) Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs. J Biomed Nanotechnol 7(4):489–503

    CAS  PubMed  Google Scholar 

  • Singh S, Kumar V, Kapoor D, Kumar S, Singh S, Dhanjal DS, Datta S, Samuel J, Dey P, Wang S, Prasad R (2019a) Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions. Physiol Plant

    Google Scholar 

  • Singh S, Kumar V, Romero R, Sharma K, Singh J (2019e) Applications of nanoparticles in wastewater treatment. In: Nanobiotechnology in bioformulations 2019. Springer, Cham, pp 395–418

    Google Scholar 

  • Singh S, Kumar V, Sidhu GK, Datta S, Dhanjal DS, Koul B, Singh J (2019b) Plant growth promoting rhizobacteria from heavy metal contaminated soil promote growth attributes of Pisum sativum L. Biocatal Agric Biotechnol 17:665–671

    Google Scholar 

  • Singh S, Kumar V, Singh J (2019c) Kinetic study of the biodegradation of glyphosate by indigenous soil bacterial isolates in presence of humic acid, Fe (III) and cu (II) ions. J Environ Chem Engg 103098

    Google Scholar 

  • Singh S, Kumar V, Singh S, Singh J (2019d) Influence of humic acid, iron and copper on microbial degradation of fungicide Carbendazim. Biocatal Agric Biotechnol 101196. https://doi.org/10.1016/j.bcab.2019.101196

  • Singh S, Singh BK, Yadav SM, Gupta AK (2015) Applications of nanotechnology in agricultural and their role in disease management. Res J Nanosci Nanotechnol 5:1–5

    Google Scholar 

  • Sinha A, Khare SK (2011) Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. cells. Bioresour Technol 102:4281–4284

    CAS  PubMed  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89

    CAS  PubMed  Google Scholar 

  • Spicer PT, Lynch ML, Visscher M, Hoath S (2003) Bicontinuous cubic liquid crystalline phase and cubosome personal care delivery systems. In: Rosen M (ed) Personal care delivery systems and formulations. Noyes Publishing, Berkshire, UK

    Google Scholar 

  • Spring S, Schleifer KH (1995) Diversity of magnetotactic bacteria. Syst Appl Microbiol 18(2):147–153

    Google Scholar 

  • Sreekanth TV, Ravikumar S, Eom IY (2014) Green synthesized silver nanoparticles using Nelumbo nucifera root extract for efficient protein binding, antioxidant and cytotoxicity activities. J Photochem Photobiol B 141:100–105

    CAS  PubMed  Google Scholar 

  • Sreekumar S (2016) Plants: the best synthesizer of pharmaceutically important secondary metabolites and nanoparticles. J Pharm Nanotechnol 4(3)

    Google Scholar 

  • Stan M, Lung I, Soran ML, Leostean C, Popa A, Stefan M, Lazar MD, Opris O, Silipas TD, Porav AS (2017) Removal of antibiotics from aqueous solutions by green synthesized magnetite nanoparticles with selected agro-waste extracts. Process Saf Environ 107:357–372

    CAS  Google Scholar 

  • Stan M, Popa A, Toloman D, Silipas TD, Vodnar DC (2016) Antibacterial and antioxidant activities of ZnO nanoparticles synthesized using extracts of Allium Sativum, Rosmarinus officinalis and Ocimum basilicum. Acta Metall Sin Engl 29:228–236

    CAS  Google Scholar 

  • Stan M, Popa A, Toloman D, Silipas T.D., Vodnar D.C, Katona G. 2015. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts. In AIP conference proceedings; AIP Publishing: College Park, MD 1700t

    Google Scholar 

  • Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44:5793–5805

    CAS  PubMed  Google Scholar 

  • Sweeney RY, Mao C, Gao X (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11(11):1553–1559

    CAS  PubMed  Google Scholar 

  • Takahashi M, Uechi S, Takara K, Asikin Y, Wada K (2009) Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. J Agric Food Chem 57(19):9141–9146

    CAS  PubMed  Google Scholar 

  • Tan Y, Xu K, Niu C, Liu C, Li Y, Wang P, Binks BP (2014) Triglyceride-water emulsions stabilised by starch-based nanoparticles. Food Hydrocoll 36:70–75

    CAS  Google Scholar 

  • Tarl WP, Jeffrey EG, Lynlee LL, Rokhaya F, Margaret B (2011) Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 63:470–491

    Google Scholar 

  • Teodorescu M, Lungu A, Stanescu PO, Neamtu C (2009) Preparation and properties of novel slow-release NPK agrochemical formulations based on poly (acrylic acid) hydrogels and liquid fertilizer. Ind Eng Chem Res 48:6527–6534

    CAS  Google Scholar 

  • Thakur S, Thakur S, Kumar R (2018) Bio-nanotechnology and its role in agriculture and food industry. J Mol Genet Med 12:324. https://doi.org/10.4172/1747-0862.1000324

    Article  Google Scholar 

  • Tonga GY, Saha K, Rotello VM (2014) Interfacing nanoparticles and biology: new strategies for biomedicine. Adv Mater 26(3):359–370

    CAS  PubMed  Google Scholar 

  • Tran C, Donaldson K, Stones V, Fernandez T, Ford A, Christofi N (2005) A sco** study to identify hazard data needs for addressing the risks presented by nanoparticles and nanotubes. Research Report. Institute of Occupational Medicine

    Google Scholar 

  • Tran S, DeGiovanni PJ, Piel B, Rai P (2017) Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med 6(1):44

    PubMed  PubMed Central  Google Scholar 

  • Truong-Phuoc L, Christoforidis KC, Vigneron F, Papaefthimiou V, Decher G, Keller N, Keller V (2016) Layer-by-layer photocatalytic assembly for solar light-activated self-decontaminating textiles. ACS Appl Mater Interfaces 8(50):34438–34445

    CAS  PubMed  Google Scholar 

  • Usenko CY, Harper SL, Tanguay RL (2007) In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon 45:1891–1898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valdes MG, Gonzalez ACV, Calzon JAG, DiazGarcia ME (2009) Analytical nanotechnology for food analysis. Microchim Acta 166(1–2):1–19

    CAS  Google Scholar 

  • Ventola CL (2017) Progress in nanomedicine: approved and investigational nanodrugs. Pharm Therap 42(12):742

    Google Scholar 

  • Vhanbatte SB, Landage SM, Wasif AI, Dansena B, Karche NV (2017) Nanotechnology for antimicrobial finishing of textiles. Int J Adv Res Eng Appl Sci 6(6):14–23

    Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418

    CAS  Google Scholar 

  • Vigneshwaran N, Prasad V, Arputharaj A, Bharimalla AK, Patil PG (2018) Nano-zinc oxide: prospects in the textile industry. Nanomat Wet Process Textiles:113–134

    Google Scholar 

  • Wang P, Yang J, Zhou B, Hu Y, **ng L, Xu F et al (2016) Antifouling manganese oxide nanoparticles: synthesis, characterization, and applications for enhanced MR imaging of tumors. ACS Appl Mater Interfaces 9(1):47–53

    PubMed  Google Scholar 

  • Wang X, Hsiao BS (2016) Electrospun nanofiber membranes. Curr Opin Chem Eng 12:62–81

    Google Scholar 

  • Wang Y, Dou L, He H, Zhang Y, Shen Q (2014) Multifunctional nanoparticles as nanocarrier for vincristine sulfate delivery to overcome tumor multidrug resistance. Mol Pharm 11:885–894

    CAS  PubMed  Google Scholar 

  • Watkins R, Wu L, Zhang C, Davis RM, Xu B (2015) Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine 10:6055–6074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber WM, Hunsaker LA, Abcouwer SF, Deck LM, Vander JDL (2005) Anti-oxidant activities of curcumin and related enones. Bioorg Med Chem 13(11):3811–3820

    CAS  PubMed  Google Scholar 

  • Wei A, Mehtala JG, Patri AK (2012) Challenges and opportunities in the advancement of nanomedicines. J Control Release 164(2):236–246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei L, Lu J, Xu H, Patel A, Chen ZS, Chen G (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 20(5):595–601

    CAS  PubMed  Google Scholar 

  • Windt WD, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Micro Biol Environ 7(3):314–325

    Google Scholar 

  • Wu X, Chen J, Wu M, Zhao JX (2015) Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics 5(4):322

    PubMed  PubMed Central  Google Scholar 

  • **e X, Tao Q, Zou Y (2011) PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J Agric Food Chem 59(17):9280–9289

    CAS  PubMed  Google Scholar 

  • **n Y, Yin M, Zhao L, Meng F, Luo L (2017) Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med 14(3):228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue M, Zhang L, Yang M (2015) Berberine-loaded solid lipid nanoparticles are concentrated in the liver and ameliorate hepatosteatosis in db/db mice. Int J Nanomedicine 10:5049–5057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79/82:513–516

    Google Scholar 

  • Yetisen AK, Qu H, Manbachi A, Butt H, Dokmeci MR, Hinestroza JP et al (2016) Nanotechnology in textiles. ACS Nano 10(3):3042–3068

    CAS  PubMed  Google Scholar 

  • Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE (2002) Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80(4):369–379

    CAS  PubMed  Google Scholar 

  • Yuan Y, Ding J, Xu J, Deng J, Guo J (2010) TiO2nanoparticles co-doped with silver and nitrogen for antibacterial application.J. Nanosci Nanotechnol 10(8):4868–4874

    CAS  Google Scholar 

  • Zhao GR, Zhang HM, Ye TX (2008) Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food Chem Toxicol 46(1):73–81

    CAS  PubMed  Google Scholar 

  • Zheng M, **e Z, Qu D, Li D, Du P, **g X, Sun Z (2013) On-off-on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect. ACS Appl Mater Interfaces 5(24):13242–13247

    CAS  PubMed  Google Scholar 

  • Zolnik BS, Gonzalez-Fernandez A, Sadrieh N, Dobrovolskaia MA (2010) Minireview: nanoparticles and the immune system. Endocrinology 151(2):458–465

    CAS  PubMed  Google Scholar 

  • Zu Y, Wu W, Zhao X (2014) Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique. Int J Pharm 471(1–2):366–376

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joginder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S. et al. (2020). Biotechnological Aspects of Nanoparticles Driven from Natural Products for Drug Delivery System and Other Applications. In: Singh, J., Meshram, V., Gupta, M. (eds) Bioactive Natural products in Drug Discovery. Springer, Singapore. https://doi.org/10.1007/978-981-15-1394-7_19

Download citation

Publish with us

Policies and ethics

Navigation