Research on Fracture Initiation Mechanisms of Hydraulic Fracturing Guided by Multi-radial Boreholes

  • Conference paper
  • First Online:
Proceedings of the International Petroleum and Petrochemical Technology Conference 2019 (IPPTC 2019)

Included in the following conference series:

  • 335 Accesses

Abstract

At present, the technology of hydraulic fracturing guided by radial boreholes has gradually been applied to the development of low permeability reservoirs, but the related fracture initiation mechanism is insufficient. In order to clarify the fracture initiation mechanism under the guidance of radial boreholes, it is necessary to study the stress distribution around wellbore with the existence of radial boreholes. The effects of in situ geo-stress, wellbore internal pressure and fracturing fluid percolation effect on geo-stress field distribution are taken into account, a mechanical model of multi-radial boreholes with any number, vertical depth and azimuth angle (the angle between the radial borehole and the horizontal maximum geo-stress) is established. By using Matlab to carry out sample analysis of the model, the influence of various parameters on the maximum principal stress have been studied, and the fracture initiation position has been predicted by combining with tensile fracture criterion. Studies have shown that the maximum principal stress increases with the increase of the horizonal geo-stress difference and the diameter of the radial borehole. When the horizonal geo-stress difference is small, the maximum principal stress increases first and then decreases with the increase of the azimuth angle; when the horizonal geo-stress difference is large, the maximum principal stress decreases with the increase of the azimuth angle. When multi-radial boreholes existing, the maximum principal stress increases with the increase in the number of radial boreholes and the decrease in the vertical spacing between radial boreholes. The maximum principal stress generally decreases as the phase angle (angle between radial boreholes) increases, but anomalous phenomena occur when the horizonal geo-stress difference is small and the radial borehole diameter is large. This study provides theoretical support for guiding fracture by multi-radial boreholes. In order to make the radial boreholes better guide the fracture, the optimal design should be optimized by optimizing the azimuth angle of the borehole, increasing the diameter of the borehole, reducing the borehole spacing, increasing the number of radial boreholes, and reducing the phase angle between boreholes.

Copyright 2019, IPPTC Organizing Committee.

This paper was prepared for presentation at the 2019 International Petroleum and Petrochemical Technology Conference in Bei**g, China, 27–29, March, 2019.

This paper was selected for presentation by the IPPTC Committee following review of information contained in an abstract submitted by the author(s). Contents of the paper, as presented, have not been reviewed by the IPPTC Technical Committee and are subject to correction by the author(s). The material does not necessarily reflect any position of the IPPTC Technical Committee, its members. Papers presented at the Conference are subject to publication review by Professional Team of Petroleum Engineering of the IPPTC Technical Committee. Electronic reproduction, distribution, or storage of any part of this paper for commercial purposes without the written consent of Shaanxi Petroleum Society is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may not be copied. The abstract must contain conspicuous acknowledgment of IPPTC. Contact email: paper@ipptc.org.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Fallahzadeh, S.H., Shadizadeh, S.R.: A new model for analyzing hydraulic fracture initiation in perforation tunnels. Energy Sour. 35(1), 9–21 (2013)

    Article  Google Scholar 

  • Guo, T., Liu, B., Qu, Z., et al.: Study on initiation mechanisms of hydraulic fracture guided by vertical multi-radial boreholes. Rock Mech. Rock Eng. 50(7), 1767–1785 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan-qing Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Yx., Qu, Zq., Guo, Tk., Bai, Y., Wang, Jw. (2020). Research on Fracture Initiation Mechanisms of Hydraulic Fracturing Guided by Multi-radial Boreholes. In: Lin, J. (eds) Proceedings of the International Petroleum and Petrochemical Technology Conference 2019. IPPTC 2019. Springer, Singapore. https://doi.org/10.1007/978-981-15-0860-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0860-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0859-2

  • Online ISBN: 978-981-15-0860-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation