Design and Health Monitoring of Tensegrity Structures: An Overview

  • Conference paper
  • First Online:
Reliability, Safety and Hazard Assessment for Risk-Based Technologies

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 1406 Accesses

Abstract

Tensegrity structures can be defined as structural mechanisms having separate tension and compression members, where compression members are discontinuous and float in a network of tension members. Before incorporating tensegrity into major construction works, stability and safety of tensegrity as a structure has to be studied and scrutinized properly. Being a recent design philosophy, there are not many elaborate literature reviews available on tensegrity structures pertaining to the field of civil engineering. This paper aims to bring together most of the research works done in design as well as health monitoring of tensegrity structures. So far, they have found practical application in stadium roofs, domes and bridges having demand of large column-free spaces. The studies relevant to design procedures involving form finding, structural stability and load analysis have been discussed. Very few researches, focusing on health monitoring of tensegrities, are available, which have also been discussed, thereafter highlighting the need of more research work in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Snelson, Tensegrity Masts (Shelter Publication, Bolinas, CA, 1973)

    Google Scholar 

  2. R.B. Fuller, Tensile-integrity structures, U.S. Patent 3,063,521, issued November 13, 1962

    Google Scholar 

  3. G. Tibert, Deployable tensegrity structures for space applications, Ph.D. dissertation, KTH (2002)

    Google Scholar 

  4. W. Gilewski, J. Kłosowska, P. Obara, Applications of tensegrity structures in civil engineering. Proc. Eng. 111, 242–248 (2015)

    Article  Google Scholar 

  5. S.M.L. Adriaenssens, M.R. Barnes, Tensegrity spline beam and grid shell structures. Eng. Struct. 23(1), 29–36 (2001)

    Article  Google Scholar 

  6. J. Quirant, M.N. Kazi-Aoual, R. Motro, Designing tensegrity systems: the case of a double layer grid. Eng. Struct. 25(9), 1121–1130 (2003)

    Article  Google Scholar 

  7. K. Kebiche, M.N. Kazi-Aoual, R. Motro, Geometrical non-linear analysis of tensegrity systems. Eng. Struct. 21(9), 864–876 (1999)

    Article  Google Scholar 

  8. H.C. Tran, J. Lee, Geometric and material nonlinear analysis of tensegrity structures. Acta. Mech. Sin. 27(6), 938–949 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Snelson, Snelson on the tensegrity invention. Int. J. Space Struct. 11(1–2), 43–48 (1996)

    Article  Google Scholar 

  10. B. Roth, W. Whiteley, Tensegrity frameworks. Trans. Am. Mat. Soc. 265(2), 419–446 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Schenk, Statically balanced tensegrity mechanisms-A literature review, Department of Bio-Mechanical Engineering, Delft University of Technology (2005)

    Google Scholar 

  12. H. Furuya, Concept of deployable tensegrity structures in space application. Int. J. Space Struct. 7(2), 143–151 (1992)

    Article  MathSciNet  Google Scholar 

  13. C. Sultan, M. Corless, R.E. Skelton, Linear dynamics of tensegrity structures. Eng. Struct. 24(6), 671–685 (2002)

    Article  MATH  Google Scholar 

  14. B. Moussa, N.B. Kahla, J.C. Pons, Evolution of natural frequencies in tensegrity systems: a case study. Int. J. Space Struct. 16(1), 57–73 (2001)

    Article  Google Scholar 

  15. N. Ashwear, A. Eriksson, Natural frequencies describe the pre-stress in tensegrity structures. Comput. Struct. 138, 162–171 (2014)

    Article  Google Scholar 

  16. N. Vassart, R. Motro, Multi-parametered form finding method: application to tensegrity systems. Int. J. Space Struct. 14(2), 147–154 (1999)

    Article  Google Scholar 

  17. A.G. Tibert, S. Pellegrino, Review of form-finding methods for tensegrity structures. Int. J. Space Struct. 26(3), 241–255 (2011)

    Article  Google Scholar 

  18. R. Connelly, M. Terrell, Globally rigid symmetric tensegrities. Struct. Topol. 1995 núm 21 (1995)

    Google Scholar 

  19. M. Ohsaki, J.Y. Zhang, Nonlinear programming approach to form-finding and folding analysis of tensegrity structures using fictitious material properties. Int. J. Solids Struct. 69, 1–10 (2015)

    Article  Google Scholar 

  20. R. Motro, Tensegrity systems and geodesic domes. Int. J. Space Struct. 5(3–4), 341–351 (1990)

    Article  Google Scholar 

  21. L. Zhang, B. Maurin, R. Motro, Form-finding of nonregular tensegrity systems. J. Struct. Eng. 132(9), 1435–1440 (2006)

    Article  Google Scholar 

  22. C. Sultan, Modeling, design, and control of tensegrity structures with applications (1999)

    Google Scholar 

  23. M. Masic, R.E. Skelton, P.E. Gil, Algebraic tensegrity form-finding. Int. J. Solids Struct. 42(16–17), 4833–4858 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. R.P. Raj, S.D. Guest, Using symmetry for tensegrity form-finding. J. Int. Assoc. Shell Spatial Struct. 47(3), 245–252 (2006)

    Google Scholar 

  25. R. Connelly, Rigidity and energy. Inventiones Mathematicae 66(1), 11–33 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Connelly, Rigidity, in Handbook of Convex Geometry, Part A (1993), pp. 223–271

    Chapter  Google Scholar 

  27. C. Sultan, M. Corless, R.E. Skelton, Reduced prestressability conditions for tensegrity structures, in 40th Structures, Structural Dynamics, and Materials Conference and Exhibit (1999), p. 1478

    Google Scholar 

  28. L.Y. Zhang, Y. Li, Y.P. Cao, X.Q. Feng, Stiffness matrix based form-finding method of tensegrity structures. Eng. Struct. 58, 36–48 (2014)

    Article  Google Scholar 

  29. H.C. Tran, J. Lee, Advanced form-finding of tensegrity structures. Comput. Struct. 88(3–4), 237–246 (2010)

    Article  Google Scholar 

  30. X. Xu, Y. Luo, Form-finding of non regular tensegrities using a genetic algorithm. Mech. Res. Commun. 37(1), 85–91 (2010)

    Article  MATH  Google Scholar 

  31. C. Paul, H. Lipson, F.J.V. Cuevas, Evolutionary form-finding of tensegrity structures, in Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation (ACM, New York, 2005), pp. 3–10

    Google Scholar 

  32. A. Micheletti, W. Williams, A marching procedure for form-finding for tensegrity structures. J. Mech. Mater. Struct. 2(5), 857–882 (2007)

    Article  Google Scholar 

  33. M. Pagitz, J.M.M. Tur, Finite element based form-finding algorithm for tensegrity structures. Int. J. Solids Struct. 46(17), 3235–3240 (2009)

    Article  MATH  Google Scholar 

  34. K. Koohestani, A computational framework for the form-finding and design of tensegrity structures. Mech. Res. Commun. 54, 41–49 (2013)

    Article  Google Scholar 

  35. R. Connelly, W. Whiteley, Second-order rigidity and prestress stability for tensegrity frameworks. SIAM J. Discrete Math. 9(3), 453–491 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Connelly, Tensegrity structures: why are they stable? in Rigidity Theory and Applications (Springer, Boston, 2002), pp. 47–54

    Google Scholar 

  37. S.D. Guest, The stiffness of tensegrity structures. IMA J. Appl. Math. 76(1), 57–66 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. R.E. Skelton, R. Adhikari, J.P. Pinaud, W. Chan, J.W. Helton, An introduction to the mechanics of tensegrity structures, in Decision and Control, 2001. Proceedings of the 40th IEEE Conference, vol. (5) (2001), pp. 4254–4259

    Google Scholar 

  39. J.Y. Zhang, M. Ohsaki, Stability conditions for tensegrity structures. Int. J. Solids Struct. 44(11–12), 3875–3886 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. J.Y. Zhang, S.D. Guest, M. Ohsaki, Symmetric prismatic tensegrity structures: Part I. Configuration and stability. Int. J. Solids Struct. 46(1), 1–14 (2009)

    Article  MATH  Google Scholar 

  41. K.W. Moored, H. Bart-Smith, Investigation of clustered actuation in tensegrity structures. Int. J. Solids Struct. 46(17), 3272–3281 (2009)

    Article  MATH  Google Scholar 

  42. K.A. Lazopoulos, Stability of an elastic tensegrity structure. Acta Mech. 179(1–2), 1–10 (2005)

    Article  MATH  Google Scholar 

  43. I.J. Oppenheim, W.O. Williams, Geometric effects in an elastic tensegrity structure. J. Elasticity Phys. Sci. solids 59(1–3), 51–65 (2000)

    Article  MATH  Google Scholar 

  44. H. Murakami, Static and dynamic analyses of tensegrity structures. Part 1. Nonlinear equations of motion. Int. J. Solids Struct. 38(20), 3599–3613 (2001)

    Article  MATH  Google Scholar 

  45. H. Murakami, Static and dynamic analyses of tensegrity structures. Part II. Quasi-static analysis. Int. J. Solids Struct. 38(20), 3615–3629 (2001)

    Article  Google Scholar 

  46. M. Arsenault, C.M. Gosselin, Kinematic, static, and dynamic analysis of a planar one-degree-of-freedom tensegrity mechanism. J. Mech. Des. 127(6), 1152–1160 (2005)

    Article  Google Scholar 

  47. M. Arsenault, C.M. Gosselin, Kinematic, static, and dynamic analysis of a spatial three-degree-of-freedom tensegrity mechanism. J. Mech. Des. 128(5), 1061–1069 (2006)

    Article  MATH  Google Scholar 

  48. A. Amendola, G. Carpentieri, M. De Oliveira, R.E. Skelton, F. Fraternali, Experimental investigation of the softening–stiffening response of tensegrity prisms under compressive loading. Compos. Struct. 117, 234–243 (2014)

    Article  Google Scholar 

  49. N.B. Kahla, K. Kebiche, Nonlinear elastoplastic analysis of tensegrity systems. Eng. Struct. 22(11), 1552–1566 (2000)

    Article  Google Scholar 

  50. A. Hanaor, M.K. Liao, Double-layer tensegrity grids: static load response. Part I: analytical study. J. Struct. Eng. 117(6), 1660–1674 (1991)

    Article  Google Scholar 

  51. S.W. Doebling, C.R. Farrar, M.B. Prime, D.W. Shevitz, Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review (1996)

    Google Scholar 

  52. H. Sohn, A review of structural health monitoring literature: 1996–2001, in LANL Report (2004)

    Google Scholar 

  53. E.P. Carden, P. Fanning, Vibration based condition monitoring: a review. Struct. Health Monit. 3(4), 355–377 (2004)

    Article  Google Scholar 

  54. S.W. Doebling, C.R. Farrar, M.B. Prime, A summary review of vibration-based damage identification methods. Shock Vibr. Digest 30(2), 91–105 (1998)

    Article  Google Scholar 

  55. Y.J. Yan, L. Cheng, Z.Y. Wu, L.H. Yam, Development in vibration-based structural damage detection technique. Mech. Syst. Signal Process. 21(5), 2198–2211 (2007)

    Article  Google Scholar 

  56. W. Fan, P. Qiao, Vibration-based damage identification methods: a review and comparative study. Struct. Health Monit. 10(2), 83–111 (2011)

    Article  Google Scholar 

  57. C.R. Farrar, S.W. Doebling, P.J. Cornwell, E.G. Straser, Variability of modal parameters measured on the Alamosa Canyon Bridge. No. LA-UR-96-3953; CONF-970233-7. Los Alamos National Lab., NM (United States), 1996

    Google Scholar 

  58. O.S. Salawu, Detection of structural damage through changes in frequency: a review. Eng. Struct. 19(9), 718–723 (1997)

    Article  Google Scholar 

  59. N. Ashwear, A. Eriksson, Influence of temperature on the vibration properties of tensegrity structures. Int. J. Mech. Sci. 99, 237–250 (2015)

    Article  Google Scholar 

  60. C. Sultan, Designing structures for dynamical properties via natural frequencies separation: Application to tensegrity structures design. Mech. Syst. Signal Process. 23(4), 1112–1122 (2009)

    Article  Google Scholar 

  61. S. Faroughi, J.M.M. Tur, Vibration properties in the design of tensegrity structure. J. Vib. Control 21(3), 611–624 (2015)

    Article  Google Scholar 

  62. N. Ashwear, A. Eriksson, Vibration health monitoring for tensegrity structures. Mech. Syst. Signal Process. 85, 625–637 (2017)

    Article  Google Scholar 

  63. R. Panigrahi, A. Gupta, S. Bhalla, Damage assessment of tensegrity structures using piezo transducers, in ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (2008), pp. 21–25

    Google Scholar 

  64. S. Bhalla, R. Panigrahi, A. Gupta, Damage assessment of tensegrity structures using piezo transducers. Meccanica 48(6), 1465–1478 (2013)

    Article  MATH  Google Scholar 

  65. M.G. Raja, S. Narayanan, Active control of tensegrity structures under random excitation. Smart Mater. Struct. 16(3), 809 (2007)

    Article  Google Scholar 

  66. A. Gupta, S. Bhalla, R. Panigrahi, Behaviour of foldable tensegrity structure, in Keynote paper, 3rd Specialty Conference on the Conceptual Approach to Structural Design (2005), pp. 9–16

    Google Scholar 

  67. R. Panigrahi, A. Gupta, S. Bhalla, Dismountable steel tensegrity grids as alternate roof structures. Steel Compos. Struct. 9(3), 239–253 (2009)

    Article  Google Scholar 

  68. R. Panigrahi, S. Bhalla, A. Gupta, Development and analysis of a prototype dismountable tensegrity structures for shelter purposes. Int. J. Earth Sci. Eng. 3(4), 561–578 (2010)

    Google Scholar 

  69. R. Panigrahi, S. Bhalla, A. Gupta, A low-cost variant of electro-mechanical impedance (EMI) technique for structural health monitoring. Exp. Tech. 34(2), 25–29 (2010)

    Article  Google Scholar 

  70. S.N. Panigrahi, C.S. Jog, M.L. Munjal, Multi-focus design of underwater noise control linings based on finite element analysis. Appl. Acoust. 69(12), 1141–1153 (2008)

    Article  Google Scholar 

  71. R. Panigrahi, A. Gupta, S. Bhalla, K. Arora, Application of artificial neural network for form finding of tensegrity structures, in IICAI (2005), pp. 1950–1962

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Aswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aswal, N., Sen, S. (2020). Design and Health Monitoring of Tensegrity Structures: An Overview. In: Varde, P., Prakash, R., Vinod, G. (eds) Reliability, Safety and Hazard Assessment for Risk-Based Technologies. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-9008-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9008-1_43

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9007-4

  • Online ISBN: 978-981-13-9008-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation