• 507 Accesses

Abstract

Glacial change is an important part of global change. Its evolutionary process directly reflects global climate change, and its data features high resolutions, a large amount of information, and high fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 91.00
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 114.00
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An W (2010) Study of target polarimetric decomposition and scattering characteristics acquisition based on polarimetric SAR. Academic thesis, Tsinghua University, Bei**g

    Google Scholar 

  • Beauducel B, Briole P, Froger JL (2000) Volcano-wide fringes in ERS synthetic aperture radar interferograms of ETNA (1992-1998): deformation or tropospheric effect? J Geophys Res 105:16391–16402

    Google Scholar 

  • Berger J, Krainer K, Mostler W (2004) Dynamics of an active rock glacier. Quat Res 62:233–242

    Google Scholar 

  • Cameron, WL, Leung LK (1990) Feature motivated polarization scattering matrix decomposition. In: IEEE international radar conference. IEEE, Arlington, VA, pp 549–557

    Google Scholar 

  • Cao B, Wang J, Zhang C et al (2011) Application of remote sensing technology in the study of modern glacier change. Remote Sen Technol Appl 26(1):52–58

    Google Scholar 

  • Cavalie O, Doin MP et al (2007) Ground motion measurement in the Lake Mead area, Nevada, by differential synthetic aperture radar interferometry time series analysis: probing the lithosphere rheological structure. J Geophys Res 112(B3). https://doi.org/10.1029/2006jb004344

  • Chen CW (2001) Statistical-cost network-flow approaches to two-dimensional phase unwrap** for radar interferometry. Doctoral dissertation, University of Stanford

    Google Scholar 

  • Chen CW, Zebker HA (2002) Phase unwrap** for large SAR interferograms: statistical segmentation and generalized network models. IEEE Trans GRS 40:1709–1719

    Google Scholar 

  • Cloude SR, Pottier E (1996) A review of target decomposition theorems in radar polarimetry. IEEE Trans Geosci Remote Sens 34:498–518

    Google Scholar 

  • Cloude SR, Pottier E (1997) An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans Geosci Remote Sens 35:68–78

    Google Scholar 

  • Costantini M (1998) A novel phase unwrap** method based on network programming. IEEE Trans GRS 36:813–821

    Google Scholar 

  • Ding Y (2002) Prediction of environmental change in Western China. Science Press, Bei**g, pp 166–187

    Google Scholar 

  • Duan J, Wang L, Ren J (2009) China’s glacial change in the past hundred years and its sensitivity to climate change. Prog Geogr 28(2):231–237

    Google Scholar 

  • Elliott JR, Biggs J et al (2008) InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. Geophys Res Lett. https://doi.org/10.1029/2008gl033659

  • Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using permanent scatters in differential SAR interferometry. IEEE Trans Geosci Remote Sens 38:2202–2212

    Google Scholar 

  • Fornaro G, Sansosti E (1999) A two-dimensional region growing least squares phase unwrap** algorithm for interferometric SAR processing. IEEE Trans GRS 37:2215–2226

    Google Scholar 

  • Fornaro G, Franceschetti G et al (1996) Robust phase-unwrap** techniques: a comparison. J Opt Soc Am A 13:2355–2366

    Google Scholar 

  • Freeman A, Durden SL (1998) A three-component scattering model for polarimetric SAR. IEEE Trans Geosci Remote Sens 36:963–973

    Google Scholar 

  • Gao X, Tang M, Feng S (2000) Some discussions about the relationship between glacier change and climate change. Plateau Meteorol 19:9–16

    Google Scholar 

  • Gao H, Chen H, Liu H et al (2009) Technological development of Earth observation satellites in foreign countries. Spacecraft Eng 18:84–92

    Google Scholar 

  • Giles A, Massom R, Warner R (2009) A method for sub-pixel scale feature tracking using RADARSAT image applied to the Mertz Glacier Tongue, East Antarctica. Remote Sens Environ 113:1691–1699

    Google Scholar 

  • Goldstein RM, Zebker HA, Werner CL (1988) Satellite radar interferometry: two-dimensional phase unwrap**. Radio Sci 23:713–720

    Google Scholar 

  • Hanssen R (2001) Radar interferometry: data interpretation and error analysis. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hooper AD, Bekaert D (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514–517:1–13

    Google Scholar 

  • Huang L (2010) SAR image matching and its application in glacial movement velocity acquisition. Academic thesis, Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, Bei**g

    Google Scholar 

  • Huang L, Li Z (2011) Comparison of SAR and optical data in deriving glacier velocity with feature tracking. Int J Remote Sens 32:2681–2698

    Google Scholar 

  • Huynen JR (1970) Phenomenological theory of radar target. Doctoral dissertation, Technical University of Delft, Netherlands

    Google Scholar 

  • ** G (2000) Research of interferometric SAR imaging algorithm. Academic thesis, Institute of Electronics, Chinese Academy of Sciences, Bei**g

    Google Scholar 

  • Jonathan LB, Andres R (2007) A review of remote sensing methods for glacier mass balance determination. Global Planet Change 59:138–148

    Google Scholar 

  • Kaab A (2005) Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sens Environ 94:463–474

    Google Scholar 

  • Kan H, Shan X, Zhang Y et al (2007) Correcting the impact of atmospheric vapor on repeat-track satellite-borne D-INSAR using NOAA-16/FY-IC and ASAR data. Chin J Geophys 50:707–713

    Google Scholar 

  • Konig M, Winther JG, Knudsen NT et al (2000) Equilibrium-and firm line detection with multi-polarization SAR-first results. In: Proceedings of EARSel-SIG-workshop Land Ice and Snow, Dresden FRG, pp 273–280

    Google Scholar 

  • Konig M, Winther JG, Knudsen NT et al (2001) Firn-line detection on Austre Okstinbreen, Norway, with airborne multipolarization SAR. J Glacial 47:251–257

    Google Scholar 

  • Kramer R, Loffeld O (1996) Phase unwrap** for SAR interferometry with Kalman filters. In: Proceedings of conference EUSAR, Konigswinter, Germany, pp 199–202

    Google Scholar 

  • Krogager E (1990) A new decomposition of the radar target scattering matrix. Electron Lett 26(18):1525–1526

    Google Scholar 

  • Li Z, Sun WX, Zeng QZ (1998) Measurements of Glacier variation in the Tibetan Plateau using landsat data. Remote Sens Environ 63:258–264

    Google Scholar 

  • Li Z, Sun WX, Zeng QZ (1999) Acquisition of Qinghai-Tibet Plateau glacier change information using comprehensive RS and GIS methods. Acta Geogr Sin 54:263–268

    Google Scholar 

  • Li XW, Guo HD, Li Z et al (2002) Interferometer radar’s analysis of land surface correlation characteristics and land type classification. Chin High Technol Lett 5:3–6

    Google Scholar 

  • Li ZW, Ding XL, Liu GX (2004) Modeling atmospheric effects on InSAR with meteorological and continuous GPS observations: algorithm and some test results. J Atmos Solar Terr Phys 66:907–917

    Google Scholar 

  • Li ZH, Muller JP, Cross P et al (2005) Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR integration. J Geophys Res 110:B03410. https://doi.org/10.1029/2004JB003446

    Article  Google Scholar 

  • Li Z, Huang L, Chen Q et al (2012a) Glacier snow line detection on a polarimetric SAR image. IEEE Geosci Remote Sens Lett 9:584–588

    Google Scholar 

  • Li Z, **ng Q, Liu SY et al (2012b) Monitoring thickness and volume changes of the Dongkemadi ice field on the Qinghai-Tibetan plateau (1969–2000) using shuttle radar topography mission and map data. Int J Digital Earth 5:516–532

    Google Scholar 

  • Lin Y, Simons M, Hetland E et al (2010) A multiscale approach to estimating topographically correlated propagation delays in radar interferograms. Geochem Geophys Geosyst 11(9):Q09002

    Google Scholar 

  • Liu Z (1999) Research of data intervention processing and DEM generation for satellite-borne synthetic aperture radars. The PLA Information Engineering University

    Google Scholar 

  • Mark MD (1992) Phase unwrap** by means of multigrid techniques for interferometric SAR. IEEE Trans GRS 34(3):728–738

    Google Scholar 

  • Massonnet D, Feigl KL, Rossi M et al (1994) Radar interferometry map** of deformation in the year after the Landers earthquake. Nature 369:227–230

    Google Scholar 

  • Massonnet D, Vadon H, Rossi M (1996) Reduction of the need for phase unwrap** in radar interferometry. IEEE Trans Geosci Remote Sens 34:489–497

    Google Scholar 

  • Max K, Jan-Gunnar W, Elisabeth I (2011) Measuring snow and glacier ice properties from satellite. Rev Geophys 39:1–27

    Google Scholar 

  • Paul F (2002) Comparison of TM-derived glacier areas with higher resolution data sets. In: Proceedings EARSeL workshop on remote sensing of Land Ice and Snow. European Association of Remote-Sensing Laboratories Special Interest Group Land Ice and Snow, Bern

    Google Scholar 

  • Paul AR, Scott H et al (2000) Synthetic aperture radar interferometry. Proc IEEE 88

    Google Scholar 

  • Qin D (1995) Physical process of ice-covered snow in Antarctica and modern climate and environment record. Science Press, Bei**g, p 202

    Google Scholar 

  • Qin D, Kang S (1997) Modern glacial process and global climate change. Earth Sci Front 4(1–2):85–94

    Google Scholar 

  • Remy D, Bonvalot S, Briole P et al (2003) Accurate measurements of tropospheric effects in volcanic areas from SAR interferometry data: application to Sakurajima volcano (Japan). Earth Planet Sci Lett 213:299–310

    Google Scholar 

  • Sarti F, Vadon H, Massornnet D (1999) A method for the automatic characterization of atmospheric artifacts in SAR interferograms by correlation of multiply interferograms over the same site. In: Proceedings of IGARRS’99, Hamburg, German, p 28

    Google Scholar 

  • Sarti F, Fruneau B, Cunha T (2000) Isolation of atmospheric artifacts in differential interferometry for ground displacement detection: comparison of different methods. In: Proceedings of the European Space Agency ERS-ENVISAT Symposium, Gothenburg, Sweden, pp 15–20

    Google Scholar 

  • Shen Y (2003) Glacier. China Meteorological Press, Bei**g, pp 23–26

    Google Scholar 

  • Shi Y (2001) Scenario estimation of the impact of climate warming and glacier shrinkage on water resources by 2050. J Glaciol Geocryol 23:333–341

    Google Scholar 

  • Shi Y, Huang M, Yao T et al (2000) Chinese glacier and environment—present, past and future. Science Press, Bei**g, pp 9–53

    Google Scholar 

  • Strozzi T, Luckman A, Murray T (2002) Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans Geosci Remote Sens 40:2384–2391

    Google Scholar 

  • Svoboda F, Paul F (2009) A new glacier inventory on southern Battin island, Canada, from ASTER data: applied methods, challenges and solutions. Ann Glaciol 50(53):l1–21

    Google Scholar 

  • Tang J (1997) Research of two-dimensional phase unwrap** algorithm for interferometric SAR. J Remote Sens 1:172–177

    Google Scholar 

  • Taylor M, Peltzer G (2006) Current slip rates on conjugate strike-slip faults in central Tibet using synthetic aperture radar interferometry. J Geophys Res Ill B12. https://doi.org/10.1029/2005jb004014

  • Touzi R, Charbonneau F (2002) Characterization of symmetric scattering using polarimetric SARs. IEEE Trans Geosci Remote Sens 40:2507–2516

    Google Scholar 

  • Wang S, Gong D (2001) Analysis of controversy over climate warming. Geogr Res 20(2):153–160

    Google Scholar 

  • Wang Z, Su Z (1990) Solidified reservoir—glacier resources. Popular Science Press, Bei**g, pp 1–10

    Google Scholar 

  • Wang C, Zhang H, Liu Z (2002) Satellite-borne InSAR. Science Press, Bei**g

    Google Scholar 

  • Wang P, Li Z, Li H et al (2012) Typical changes in glacier thickness and reserves in the Tianshan region in the past 50 years. Acta Geogr Sin 67(7):929–940

    Google Scholar 

  • Webley PW, Wadge G, James IN (2004) Determining radio wave delay by non-hydrostatic atmospheric modeling of water vapor over mountains. Phys Chem Earth 29:139–148

    Google Scholar 

  • Willis M, Melkonian A, Pritcharda M et al (2012) Ice loss rates at the Northern Patagonian Ice field derived using a decade of satellite remote sensing. Remote Sens Environ 117:184–198

    Google Scholar 

  • **ong T (2009) Research of key technologies for the application of polarimetric interferometry SAR. Academic thesis, Tsinghua University, Bei**g

    Google Scholar 

  • Yamaguchi Y, Moriyama T, Ishido M et al (2005) Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans Geosci Remote Sens 43:1699–1706

    Google Scholar 

  • Yamaguchi Y, Yajima Y, Yamada H (2006) A four-component decomposition of POLSAR images based on the coherency matrix. IEEE Geosci Remote Sens Lett 3:292–296

    Google Scholar 

  • Yao T (2004) Recent glacial retreat in high Asia in China and its impact on water resource in Northwest China. Science China, vol D (English version). https://doi.org/10.1360/03yd0256

  • Yao T, Shang T (1993) Glacier climate and environment on the Qinghai-Tibet Plateau: China-Japan glacier investigation on the Qinghai-Tibet Plateau in 1989. Science Press, Bei**g, pp 60–68

    Google Scholar 

  • Ye D, Lv J (2000) Adaptation to impact of global change in the future and sustainable development. Bull Chin Acad Sci 3:183–187

    Google Scholar 

  • Ye D, Fu C, Dong W (2002) Progress in and future trend of global change research. Adv Earth Sci 17(4):467–469

    Google Scholar 

  • Yue H (2002) Interferometric SAR phase unwrap** under noise conditions. Acta Geodaetica Cartogr Sin 31(2):151–156

    Google Scholar 

  • Zebker HA, Lu Y (1998) Phase unwrap** algorithms for radar interferometry: residue-cut, least-squares, and synthesis algorithms. J Opt Soc Am A 15:586–598

    Google Scholar 

  • Zebker HA, Werner CL, Rosen PA et al (1994) Accuracy of topographic maps derived from ERS-1 interferometric radar. IEEE Trans Geosci Remote Sens 32:823–836

    Google Scholar 

  • Zhan Z (2003) Research of phase unwrap** algorithm in radar interferometry measurement. Academic thesis, Wuhan University, Wuhan

    Google Scholar 

  • Zhang S (2002) Position and role of China in global change research. Acad J Suzhou Normal Spec Postsecondary Coll 17(1):65–67

    Google Scholar 

  • Zhang G, Wang J, Pan B (2010) Research progress of remote sensing monitoring of glacier change. Academic J Lanzhou Univ 46(6):1–9

    Google Scholar 

  • Zhao Z (2002) Application of genetic algorithm in InSAR phase unwrap**. Sci Surv Mapp. 27(3):37–39

    Google Scholar 

  • Zhou J, Li Z, Li X (2009) Regional correlation comparison and analysis of western glacier based on C- and L-band radar interferometry data. Remote sensing of land resources 2:9–13

    Google Scholar 

  • Zhou J, Li Z, **ng Q (2010) Study of methods of acquiring glacial boundary based on decorrelation characteristics of radar interferometry. J Glaciol Geocryol 32:133–138

    Google Scholar 

  • Zhou J, Li Z, Li X (2011) Movement estimation of the Dongkemadi Glacier in Qinghai-Tibetan Plateau using L- and C-band spaceborne SAR data. Int J Remote Sens 22:6911–6928

    Google Scholar 

  • Zhou JM, Li Z, He XB et al (2013) Glacier thickness change map** using InSAR methodology. IEEE Geosci Remote Sens Lett https://doi.org/10.1109/LGRS.2013.2245854

  • Zhu DY, Scheiber R, Zhu Z (2000) Impacts of an efficient topography adaptive filter on correlation estimation and phase unwrap**. ERSAR 319–322

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Guo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, H., Fu, W., Liu, G. (2019). Glacier Satellite. In: Scientific Satellite and Moon-Based Earth Observation for Global Change. Springer, Singapore. https://doi.org/10.1007/978-981-13-8031-0_13

Download citation

Publish with us

Policies and ethics

Navigation