• 495 Accesses

Abstract

Supported by the large quantity of mobile devices embedded with rich sensors, Mobile Crowdsensing (MCS) leverages these devices to sense and contribute data in order to extract intelligence and provide corresponding services. Since most MCS applications rely on high-quality sensing data, plenty of quality-aware incentive mechanisms, authentications mechanisms, preprocessing algorithms, or outlier detection on sensed data are proposed for quality management in MCS projects. In this chapter, we will introduce the data quality problem in MCS, together with existing solutions except compressive sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (2017) Ict facts and figures 2017. https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx

  2. Albers A, Krontiris I, Sonehara N, Echizen I (2017) Coupons as monetary incentives in participatory sensing. Ifip Adv Inf Commun Technol 399:226–237

    Article  Google Scholar 

  3. Anjomshoa F, Kantarci B (2018) SOBER-MCS: sociability-oriented and battery efficient recruitment for mobile crowd-sensing. Sensors 18(5):1593

    Article  Google Scholar 

  4. Ausubel LM, Milgrom P et al (2006) The lovely but lonely vickrey auction. Comb Auction 17:22–26

    Google Scholar 

  5. Azzam R, Mizouni R, Otrok H, Ouali A, Singh S (2016) Grs: a group-based recruitment system for mobile crowd sensing. J Netw Comput Appl 72:38–50

    Article  Google Scholar 

  6. Bajaj G, Singh P (2018) Load-balanced task allocation for improved system lifetime in mobile crowdsensing. In: IEEE MDM, Aalborg, Denmark

    Google Scholar 

  7. Bubeck S, Cesa-Bianchi N (2012) Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Found Trends Mach Learn 5(1):101–112

    Article  Google Scholar 

  8. Cao Q, Sirivianos M, Yang X, Pregueiro T (2012) Aiding the detection of fake accounts in large scale social online services. In: USENIX NSDI, San Jose, CA, USA

    Google Scholar 

  9. Capponi A, Fiandrino C, Kliazovich D, Bouvry P (2017a) Energy efficient data collection in opportunistic mobile crowdsensing architectures for smart cities. In: IEEE INFOCOM WKSHPS, Atlanta, GA

    Google Scholar 

  10. Capponi A, Fiandrino C, Kliazovich D, Bouvry P, Giordano S (2017b) A cost-effective distributed framework for data collection in cloud-based mobile crowd sensing architectures. IEEE Trans Sustain Comput 2(1):3–16

    Article  Google Scholar 

  11. Duan Z, Li W, Cai Z (2017) Distributed auctions for task assignment and scheduling in mobile crowdsensing systems. In: IEEE ICDCS, Atlanta, GA, USA

    Google Scholar 

  12. Fatemieh O, Chandra R, Gunter CA (2010) Secure collaborative sensing for crowd sourcing spectrum data in white space networks. In: IEEE DySPAN, Singapore

    Google Scholar 

  13. Fiandrino C, Anjomshoa F, Kantarci B, Kliazovich D, Bouvry P, Matthews JN (2017) Sociability-driven framework for data acquisition in mobile crowdsensing over fog computing platforms for smart cities. IEEE Trans Sustain Comput 2(4):345–358

    Article  Google Scholar 

  14. Ganti RK, Ye F, Lei H (2011) Mobile crowdsensing: current state and future challenges. IEEE Commun Mag 49(11):32–39

    Article  Google Scholar 

  15. Goncalves J, Ferreira D, Hosio S, Liu Y, Rogstadius J, Kukka H, Kostakos V (2013) Crowdsourcing on the spot: altruistic use of public displays, feasibility, performance, and behaviours. In: ACM UbiComp, Zurich, Switzerland

    Google Scholar 

  16. Guo B, Wang Z, Yu Z, Wang Y, Yen NY, Huang R, Zhou X (2015) Mobile crowd sensing and computing: the review of an emerging human-powered sensing paradigm. ACM Comput Surv 48(1):7:1–7:31

    Article  Google Scholar 

  17. Han K, Zhang C, Luo J (2016) Taming the uncertainty: budget limited robust crowdsensing through online learning. IEEE/ACM Trans Netw 24(3):1462–1475

    Article  Google Scholar 

  18. He Y, Li Y (2013) Physical activity recognition utilizing the built-in kinematic sensors of a smartphone. IJDSN 9

    Google Scholar 

  19. Hinton GE, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. ar**v:CoRR/abs/1503.02531

  20. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. ar**v:CoRR/abs/1704.04861

  21. ** H, Su L, Chen D, Nahrstedt K, Xu J (2015) Quality of information aware incentive mechanisms for mobile crowd sensing systems. In: ACM MobiHoc, Hangzhou, China

    Google Scholar 

  22. Kantarci B, Mouftah HT (2014) Trustworthy sensing for public safety in cloud-centric internet of things. Internet Things J IEEE 1(4):360–368

    Article  Google Scholar 

  23. Koutsopoulos I (2013) Optimal incentive-driven design of participatory sensing systems. In: IEEE INFOCOM, Turin, Italy

    Google Scholar 

  24. Krishnaswamy S, Gama J, Gaber MM (2012) Mobile data stream mining: from algorithms to applications. In: IEEE MDM, Bengaluru, India

    Google Scholar 

  25. Krontiris I, Albers A (2012) Monetary incentives in participatory sensing using multi-attributive auctions. Int J Parallel Emergent Distrib Syst 27(4):317–336

    Article  Google Scholar 

  26. Li J, Wang X, Yu R, Liu R (2015) Reputation-based incentives for data dissemination in mobile participatory sensing networks. Int J Distrib Sens Netw 2015:1–13

    Google Scholar 

  27. Liu S, Zheng Z, Wu F, Tang S, Chen G (2017) Context-aware data quality estimation in mobile crowdsensing. In: IEEE INFOCOM, Atlanta, GA, USA

    Google Scholar 

  28. Loc HN, Lee Y, Balan RK (2017) Deepmon: mobile gpu-based deep learning framework for continuous vision applications. MobiSys. Niagara Falls, NY, USA, pp 82–95

    Google Scholar 

  29. Luo T, Tan HP, **a L (2014) Profit-maximizing incentive for participatory sensing. In: IEEE INFOCOM, Toronto, Canada

    Google Scholar 

  30. Luo T, Kanhere SS, Huang J, Das SK, Wu F (2017) Sustainable incentives for mobile crowdsensing: Auctions, lotteries, and trust and reputation systems. IEEE Commun Mag 55(3):68–74

    Article  Google Scholar 

  31. Mathur A, Lane ND, Bhattacharya S, Boran A, Forlivesi C, Kawsar F (2017) Deepeye: resource efficient local execution of multiple deep vision models using wearable commodity hardware. MobiSys. Niagara Falls, NY, USA, pp 68–81

    Chapter  Google Scholar 

  32. Meng C, Jiang W, Li Y, Gao J, Su L, Ding H, Cheng Y (2015) Truth discovery on crowd sensing of correlated entities. In: ACM Sensys, Seoul, South Korea

    Google Scholar 

  33. Peng D, Wu F, Chen G (2015) Pay as how well you do: a quality based incentive mechanism for crowdsensing. In: IEEE SECON, Seattle, WA, USA

    Google Scholar 

  34. Pouryazdan M, Fiandrino C, Kantarci B, Soyata T, Kliazovich D, Bouvry P (2017a) Intelligent gaming for mobile crowd-sensing participants to acquire trustworthy big data in the internet of things. IEEE Access 5(99):22209–22223

    Article  Google Scholar 

  35. Pouryazdan M, Kantarci B, Soyata T, Foschini L, Song H (2017b) Quantifying user reputation scores, data trustworthiness, and user incentives in mobile crowd-sensing. IEEE Access 5(99):1382–1397

    Article  Google Scholar 

  36. Pouryazdan M, Kantarci B, Soyata T, Song H (2017c) Anchor-assisted and vote-based trustworthiness assurance in smart city crowdsensing. IEEE Access 4:529–541

    Article  Google Scholar 

  37. Ruan N, Gao L, Zhu H, Jia W, Li X, Hu Q (2016) Toward optimal dos-resistant authentication in crowdsensing networks via evolutionary game. In: IEEE ICDCS, Nara, Japan

    Google Scholar 

  38. Sheng H, Zhang S, Cao X, Fang Y, **ong Z (2017) Geometric occlusion analysis in depth estimation using integral guided filter for light-field image. IEEE Trans Image Process 26(12):5758–5771

    Article  MathSciNet  Google Scholar 

  39. Song Z, Liu CH, Wu J, Ma J, Wang W (2014) Qoi-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Trans Veh Technol 63(9):4618–4632

    Article  Google Scholar 

  40. Sun J, Ma H (2014) A behavior-based incentive mechanism for crowd sensing with budget constraints. In: IEEE ICC, Sydney, Australia

    Google Scholar 

  41. Talasila M, Curtmola R, Borcea C (2013) Improving location reliability in crowd sensed data with minimal efforts. In: IEEE WMNC, Dubai, United Arab Emirates

    Google Scholar 

  42. Wang B, Kong L, He L, Wu F, Yu J, Chen G (2018) I(TS, CS): detecting faulty location data in mobile crowdsensing. In: ICDCS, Vienna, Austria

    Google Scholar 

  43. Wang G, Wang B, Wang T, Nika A, Zheng H, Zhao BY (2016a) Defending against sybil devices in crowdsourced map** services. In: ACM MobiSys, Singapore

    Google Scholar 

  44. Wang W, Gao H, Liu CH, Leung KK (2016b) Credible and energy-aware participant selection with limited task budget for mobile crowd sensing. Ad Hoc Netw 43:56–70

    Article  Google Scholar 

  45. Weinsberg U, Balachandran A, Balachandran A, Balachandran A, Seshan S, Seshan S, Seshan S (2012) Care: content aware redundancy elimination for challenged networks. In: ACM HotNets workshop, Redmond, WA, USA

    Google Scholar 

  46. Wu J, Guo S, Huang H, Liu W, **ang Y (2018) Information and communications technologies for sustainable development goals: State-of-the-art, needs and perspectives. IEEE Commun Surv Tutor 20(3):2389–2406

    Article  Google Scholar 

  47. Wu Y, Wang Y, Hu W, Zhang X, Cao G (2016) Resource-aware photo crowdsourcing through disruption tolerant networks. In: IEEE ICDCS, Nara, Japan

    Google Scholar 

  48. **ong H, Zhang D, Wang L, Chaouchi H (2015a) Emc 3: energy-efficient data transfer in mobile crowdsensing under full coverage constraint. IEEE Trans Mob Comput 14(7):1355–1368

    Article  Google Scholar 

  49. **ong H, Zhang D, Wang L, Gibson JP, Zhu J (2015b) EEMC: enabling energy-efficient mobile crowdsensing with anonymous participants. ACM TIST 6(3):39:1–39:26

    Article  Google Scholar 

  50. Yürür Ö, Liu CH, Sheng Z, Leung VCM, Moreno W, Leung KK, (2016) Context-awareness for mobile sensing: a survey and future directions. IEEE Commun Surv Tutor 18(1):68–93

    Article  Google Scholar 

  51. Zhang D, Huang J, Li Y, Zhang F, Xu C, He T (2014) Exploring human mobility with multi-source data at extremely large metropolitan scales. In: ACM/IEEE MobiCom, Maui, HI, USA

    Google Scholar 

  52. Zhang S, Sheng H, Li C, Zhang J, **ong Z (2016) Robust depth estimation for light field via spinning parallelogram operator. Comput Vis Image Underst 145:148–159

    Article  Google Scholar 

  53. Zhang Y, Meratnia N, Havinga PJM (2010) Outlier detection techniques for wireless sensor networks: a survey. IEEE Commun Surv Tutor 12(2):159–170

    Article  Google Scholar 

  54. Zhao C, Yang X, Yu W, Yao X, Lin J, Li X (2017) Cheating-resilient incentive scheme for mobile crowdsensing systems. In: IEEE CCNC, Las Vegas, NV, USA

    Google Scholar 

  55. Zhou G, Fan Y, Cui R, Bian W, Zhu X, Gai K (2018) Rocket launching: a universal and efficient framework for training well-performing light net. AAAI. Louisiana, USA, New Orleans, pp 4580–4587

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linghe Kong .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kong, L., Wang, B., Chen, G. (2019). Mobile Crowdsensing. In: When Compressive Sensing Meets Mobile Crowdsensing. Springer, Singapore. https://doi.org/10.1007/978-981-13-7776-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7776-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7775-4

  • Online ISBN: 978-981-13-7776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation