Sustainable Forestry Under Changing Climate

  • Chapter
  • First Online:
Sustainable Agriculture, Forest and Environmental Management

Abstract

Climatic perturbation is the major event in the present era that has put the survivality of human civilization under severe threat. Forests are natural boon for us to combat the mega event of climate change. Apart from mitigating climate change, the forests are providing livelihood for community stakeholders, meet up energy demand, provide fodder and fuel and produce various non-timber forest products (NTFPs). Consideration of different multidimensional role of forest is essential for survivality of human civilization. As per the Intergovernmental Panel on Climate Change (IPCC), mitigating climate change through forest appears to be up to 14.0% at various sectors. On the other hand, forests are supporting livelihood security for more than 300 million people of India and meet the energy demand of rural India up to 40.0%, and to provide support for domesticated animals up to one-third. But the existence of forest is under threat due to the rapid growth of human civilization, resource dependency and unsustainable use of forest resources. Therefore, climate change is showing its impact over forests at various levels such as in the form of productive traits, C (carbon) dynamics, vegetation shift and depletion of soil resources. To combat such problems, sustainable forest management (SFM) is a suitable answer as it addresses multidimensional way by reducing resource dependency on one hand and promoting livelihood option for forest dwellers on the other hand. This chapter deals with SFM practices under the changing scenario of climate change. SFM promotes increase in forest cover which further helps to combat and adapt to climate change events. In this way SFM becomes an integrated approach of sustainable management and conservation of natural resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFOLU:

Agriculture forestry and other land use

C:

Carbon

CO2 :

Carbon dioxide

FAO:

Food and Agriculture Organization

FOLU:

Forestry and other land use

GHGs:

Greenhouse gases

IPCC:

Intergovernmental Panel on Climate Change

N:

Nitrogen

NFP:

National Forest Policy

NTFPs:

Non-timber forest products

OC:

Organic carbon

OM:

Organic matter

REDD:

Reducing emissions from deforestation and forest degradation

SFM:

Sustainable forest management

References

  • Ackerman F (2009) Financing the climate mitigation and adaptation measures in develo** countries. Stockholm Environment Institute, Working Paper WP-US-0910, pp 1–17

    Google Scholar 

  • Aggarwal A, Paul V, Das S (2009) Forest resources degradation, livelihoods and climate change in Green India: looking back to change track. The Energy and Resources Institute, Delhi

    Google Scholar 

  • Ahenkan A, Boon E (2010) Climate change adaptation through sustainable forest management: A case study of communities around the Sui River Forest Reserve, Ghana. 18th Commonwealth Forestry conference

    Google Scholar 

  • Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Alig RJ, Adams D, Joyce L, Sohngen B (2004) Climate change impacts and adaptation in forestry: responses by trees and markets. Choices 19(3):1–7

    Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259(4):660–684

    Article  Google Scholar 

  • Anderson-Teixeira KJ, Snyder PK, Twine TE, Cuadra SV, Costa MH, DeLucia EH (2012) Climate-regulation services of natural and agricultural ecoregions of the Americas. Nat Clim Chang 2(3):177–181

    Article  Google Scholar 

  • Angelsen A (2009) Realizing REDD+: National Strategy and Policy Options. Center for International Forestry Research (CIFOR), Bogor, 362 p

    Google Scholar 

  • Anonymous (2008) ENVIS Newsletter July–December 2008, Volume II. http://www.hpenvis.nic.in

  • Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441

    Article  Google Scholar 

  • Banerjee A, Jhariya MK, Yadav DK, Raj A (2018) Micro-remediation of metals: a new frontier in bioremediation. In: Hussain C (ed) Handbook of environmental materials management. Springer. ISBN: 978-3-319-58538-3. https://doi.org/10.1007/978-3-319-58538-3_10-1

    Google Scholar 

  • Bassow SL, McConnaughay KDM, Bazzaz FA (1994) The response of temperate tree seedlings grown in elevated CO2 to extreme temperature events. Ecol Appl 4:593–603

    Article  Google Scholar 

  • Bauer IE, Apps MJ, Bhatti JS, Lal R (2006) Climate change and terrestrial ecosystem management: knowledge gaps and research needs. In: Bhatti J, Lal R, Apps M, Price M (eds) Climate change and managed ecosystems. Taylor and Francis, CRC Press, Boca Raton, pp 411–426

    Google Scholar 

  • Becker M, Nieminen TM, Geremia F (1994) Short-term variations and long-term changes in oak productivity in northeastern France. The role of climate and atmospheric CO2. Ann des Sci For 51:477–492

    Article  Google Scholar 

  • Berndes G, Abt B, Asikainen A, Cowie A, Dale V, Egnell G, Lindner M, Marelli L, Pare D, **oud K, Yeh S (2016) Forest biomass, carbon neutrality and climate change mitigation. From Science to Policy 3. European Forest Institute, p 28

    Google Scholar 

  • Bernier P, Schone D (2009) Adapting forests and their management to climate change: an overview. Unasylva 60:5–11

    Google Scholar 

  • Blok D, Sass-Klaassen U, Schaepman-Strub G, Heijmans MMPD, Sauren P, Berendse F (2011) What are the main climate drivers for shrub growth in Northeastern Siberian tundra? Biogeosciences 8(5):1169–1179

    Article  Google Scholar 

  • Bradley I, Moffat AJ, Vanguelova E, Fallon P, Harris J (2005) Impacts of climate change on soil functions. Defra project, Report SP0538, London

    Google Scholar 

  • Brown S, Sathaye J, Cannel M, Kauppi PE (1996) Mitigation of carbon emissions to the atmosphere by forest management. Commonwealth For Rev 75(1):80–91

    Google Scholar 

  • Bruce JP, Lee H, Hates EF (1996) Climate change 1995: economic and social dimensions of climate change. Contribution of working group III to the second assessment report of IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Bugmann H, Pfister C (2000) Impacts of interannual climate variability on past and future forest composition. Reg Environ Chang 1(3):112–125

    Google Scholar 

  • Busch J, Lubowski RN, Godoy F, Steininger M, Yusuf AA, Austin K, Hewson J, Juhn D, Farid M, Boltz F (2012) Structuring economic incentives to reduce emissions from deforestation within Indonesia. Proc Natl Acad Sci USA 109(4):1062–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camarero JJ, Gazol A, Sancho-Benages S, Sanguesa-Barreda G (2015) Know your limits? Climate extremes impact the range of Scots pine in unexpected places. Ann Bot 116:917–927

    Google Scholar 

  • Campbell J (2009) Islandness: vulnerability and resilience in Oceania. Shima 3(1):85–97

    Google Scholar 

  • Campbell EM, Saunders SC, Coates KD, Meidinger DV, MacKinnon A, O’Neil GA, MacKillop DJ, DeLong SC, Morgan DG (2009) Ecological resilience and complexity: a theoretical framework for understanding and managing British Columbia’s forest ecosystems in a changing climate. BC. Min. For. Range, For. Sci. Prog., Victoria, BC

    Google Scholar 

  • CCFM (2009) Vulnerability of Canada’s tree species to climate change and management options for adaptation: An overview for policy makers and practitioners. Canadian Council of Forest Ministers (CCFM), Ottawa. Available at: www.ccmf.org

  • Chadha KL, Awasthi RP (2005) The apple improvement: production and post-harvest management. Malhotra Publishing House, New Delhi, pp 16–23

    Google Scholar 

  • Chaturvedi RK, Gopalakrishnan R, Jayaraman M, Bala G, Joshi NV, Sukumar R, Ravindranath NH (2010) Impact of climate change on Indian forests: a dynamic vegetation modeling approach. Mitig Adapt Strat Glob Chang 16(2):119–142

    Article  Google Scholar 

  • Clough Y, Barkmann J, Juhrbandt J, Kessler M, Wanger TC, Anshary A, Buchori D, Cicuzza D, Darras K, Putra DD, Erasmi S, Pitopang R, Schmidt C, Schulze CH, Seidel D, Steffan-Dewenter I, Stenchly K, Vidal S, Weist M, Wielgoss AC, Tscharntke T (2011) Combining high biodiversity with high yields in tropical agroforests. Proc Natl Acad Sci USA 108(20):8311–8316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136

    Article  Google Scholar 

  • D’Aprile F, Tapper N, Marchetti M (2015) Forestry under climate change. Is time a tool for sustainable forest management? Open J For 5:329–336. https://doi.org/10.4236/ojf.2015.54028

    Article  Google Scholar 

  • Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM (2001) Climate change and forest disturbances. Bioscience 51(9):723–734

    Article  Google Scholar 

  • Das HP (2004) Adaptation strategies required to reduce vulnerability in agriculture and forestry to climate change, climate variability and climate extremes. In: World Meteorological Organization (WMO) (ed) Management strategies in agriculture and forestry for mitigation of greenhouse gas emissions and adaptation to climate variability and climate change. Report of CAgM Working Group. Technical Note No. 202, WMO No. 969. WMO, Geneva, pp 41–92

    Google Scholar 

  • Datta R, Baraniya D, Wang YF, Kelkar A, Moulick A, Meena RS, Yadav GS, Ceccherini MT, Formanek P (2017) Multi-function role as nutrient and scavenger off free radical in soil. Sustain MDPI 9:402. https://doi.org/10.3390/su9081402

    Article  CAS  Google Scholar 

  • Deb JC, Phinn S, Butt N, McAlpine CA (2017) The impact of climate change on the distribution of two threatened Dipterocarp trees. Ecol Evol 7:2238–2248

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Legum Res 39(4):590–594

    Google Scholar 

  • Di Nitto D, Neukermans G, Koedam N, Defever H, Pattyn F, Kairo JG, Dahdouh-Guebas F (2014) Mangroves facing climate change: landward migration potential in response to projected scenarios of sea level rise. Biogeosciences 11:857–871

    Article  Google Scholar 

  • Diaz S, Hector A, Wardle DA (2009) Biodiversity in forest carbon sequestration initiatives: not just a side benefit. Curr Opin Environ Sust 1(1):55–60

    Article  Google Scholar 

  • DoEST (2012) State strategy & action plan on climate change. Department of Environment, Science & Technology, Government of Himachal Pradesh, Shimla

    Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4(5):293–297

    Article  CAS  Google Scholar 

  • FAO (2005) Adaptation of forest ecosystems and the forest sector to climate change. Forests and Climate Change Working Paper No. 2. FAO/Swiss Agency for Development and Cooperation, Rome

    Google Scholar 

  • FAO (2006) Global Forest Resources Assessment- Progress towards sustainable forest management. FAO Forestry Paper 147. Food and Agriculture Organisation of the United Nations, Rome

    Google Scholar 

  • FAO (2009) Situacion de los bosques del mundo 2009. FAO, Rome

    Google Scholar 

  • FAO (2010) Global forest resources assessment 2010: Full report. FAO Forestry Paper 163, Rome

    Google Scholar 

  • FAO (2016) Food and agriculture in the 2030 Agenda for Sustainable Development. http://www.fao.org/sustainable-development-goals/en/

  • FAOSTAT (2013) FAOSTAT database. Food and Agriculture Organization of the United Nations. Available at: http://faostat.fao.org/

  • Faria T, Schwanz P, Polle A, Pereira JS, Chaves MM (1999) Responses of photosynthetic and defense systems to high temperature stress in Quercus suber L. seedlings grown under elevated CO2. Plant Biol 1:365–371

    Article  CAS  Google Scholar 

  • Feeley KJ, Wright SJ, Nur Supardi MN, Kassim AR, Davies SJ (2007) Decelerating growth in tropical forest trees. Ecol Lett 10:461–469

    Article  PubMed  Google Scholar 

  • Fischlin A, Midgley GF, Price JT, Leemans R, Gopal B, Turley C, Rounsevell MDA, Dube OP, Tarazona J, Velichko AA (2007) Ecosystems, their properties, goods, and services. In: Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds)]. Cambridge University Press, Cambridge/New York, pp 211–272

    Google Scholar 

  • FSI (2013) State of Forest Report. Forest survey of India, Ministry of Environment and Forests, Dehradun

    Google Scholar 

  • Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate change effects on plant disease: genomes to ecosystems. Ann Rev Phytopath 44:489–509

    Article  CAS  Google Scholar 

  • Gielen B, Calfapietra C, Sabatti M, Ceulemans R (2001) Leaf area dynamics in a closed poplar plantation under free-air carbon dioxide enrichment. Tree Physiol 21:1245–1255

    Article  CAS  PubMed  Google Scholar 

  • GoI (2015) Report of the Fourteenth Finance Commission. Government of India. http://finmin.nic.in/14fincomm/14fcreng.pdf. Accessed 12 Mar 2015

  • Gonzalez-Espinosa M, Meave JA, Lorea-Hernandez FG, Ibarra-Manriquez G, Newton AC (eds) (2011) The Red List of Mexican Cloud Forest Trees. Fauna & Flora International, Cambridge

    Google Scholar 

  • Gopalakrishnan R, Jayaraman M, Govindasamy B, Ravindranath NH (2011) Climate change and Indian forests. Curr Sci 101(3):348–355

    Google Scholar 

  • Gulati V (2009) From apple to kiwi, a journey of returns. http://www.commodityonline.com/news/From-apple-to-kiwi-%96-a-journey-of-returns-14070-3-1.html

  • Heal G (2000) Nature and the marketplace, capturing the value of ecosystem services. Island Press, Washington, DC, pp 1–2

    Google Scholar 

  • Henneberry TJ (2007) Integrated systems for control of the Pink Bollworm Pectinophora gossypiella in cotton. In: Vreysen MJB, Robinson AS, Hendrichs J (eds) Area-wide control of insect pests. Springer, Dordrecht

    Google Scholar 

  • Hennon PE, D’Amore DV, Wittwer DT, Caouette JP (2008) Yellow-cedar decline: conserving a climate-sensitive tree species as Alaska warms. In: Deal RL (tech. ed) Integrated restoration of forested ecosystems to achieve multi-resource benefits: Proceedings of the 2007 national silviculture workshop. Gen. Tech. Rep. PNW-GTR-733. USDA Forest Service, Pacific Northwest Research Station, Portland, pp 233–245

    Google Scholar 

  • Hogg EH, Brandt JP, Michaelian M (2008) Impacts of a regional drought on the productivity, dieback and biomass of western Canadian aspen forests. Can J For Res 38(6):1373–1384

    Article  Google Scholar 

  • Huntingford C, Zelazowski P, Galbraith D, Mercado LM, Sitch S, Fisher R, Lomas M, Walker AP, Jones CD, Booth BBB, Malhi Y, Hemming D, Kay G, Good P, Lewis SL, Phillips OL, Atkin OK, Lloyd J, Gloor E, Zaragoza-Castells J, Meir P, Betts R, Harris PP, Nobre C, Marengo J, Cox PM (2013) Simulated resilience of tropical rainforests to CO2-induced climate change. Nat Geosci 6:268–273

    Article  CAS  Google Scholar 

  • Hussain M, Kubiske ME, Connor KF (2001) Germination of CO2- enriched Pinus taeda L. seeds and seedling growth responses to CO2 enrichment. Funct Ecol 15:344–350

    Article  Google Scholar 

  • ICFRE (2001) Forest Statistics, India 1987–2001. Indian Council of Forestry Research and Education, Dehradun

    Google Scholar 

  • Ince PJ, Kramp AD, Skog KE, Yoo DI, Sample VA (2011) Modeling future U.S. forest sector market and trade impacts of expansion in wood energy consumption. J For Econ 17:142–156

    Google Scholar 

  • Innes J, Joyce LA, Kellomaki S, Louman B, Ogden A, Parrotta J, Thompson I, Ayres M, Ong C, Santoso H, Sohngen B, Wreford A (2009) Management for adaptation. In: Seppala R, Buck A, Katila P (eds) Adaptation of forests and people to climate change: a global assessment report, World Series Volume 22. IUFRO Helsinki, pp 135–186

    Google Scholar 

  • IPCC (2002) Climate and biodiversity, IPCC technical paper V. In: Habiba G, Avelino S, Robert T (eds) Watson and David Jon Dokken, Intergovernmental Panel on Climate Change

    Google Scholar 

  • IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation and vulnerability. synthesis report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland

    Google Scholar 

  • Irland LC, Adams D, Alig RJ, Betz CJ, Chen CC, Hutchins M, Mccarl BA, Skog K, Sohngen BL (2001) Assessing socioeconomic impacts of climate change on U.S. forests, wood-product markets, and forest recreation. BioScience 51(9):753–764

    Article  Google Scholar 

  • IUCN (2008) Ecosystem-based adaptation: an approach for building resilience and reducing risk for local communities and ecosystems. Submission to the Chair of the AWG-LCA with respect to the Shared Vision and Enhanced Action on Adaptation. International Union for the Conservation of Nature

    Google Scholar 

  • Jhariya MK (2014) Effect of forest fire on microbial biomass, storage and sequestration of carbon in a tropical deciduous forest of Chhattisgarh. Ph.D. thesis. I.G.K.V., Raipur, Chhattisgarh, p 259

    Google Scholar 

  • Jhariya MK (2017) Vegetation ecology and carbon sequestration potential of shrubs in tropics of Chhattisgarh, India. Environ Monit Assess 189(10):518. https://doi.org/10.1007/s10661-017-6246-2

    Article  CAS  PubMed  Google Scholar 

  • Jhariya MK, Raj A (2014) Human Welfare from Biodiversity. Agrobios Newsletter XIII(9):89-91

    Google Scholar 

  • Jhariya MK, Yadav DK (2017) Invasive alien species: challenges, threats and management. In: Rawat SK, Narain S (eds) Agriculture technology for sustaining rural growth. Biotech Books, New Delhi, pp 263–285. ISBN: 978-81-7622-381-2

    Google Scholar 

  • Jhariya MK, Yadav DK (2018) Biomass and carbon storage pattern in natural and plantation forest ecosystem of Chhattisgarh, India. J For Environ Sci 34(1):1–11. https://doi.org/10.7747/JFES.2018.34.1.1

    Article  Google Scholar 

  • Jhariya MK, Bargali SS, Raj A (2015) Possibilities and perspectives of agroforestry in Chhattisgarh. In: Zlatic M (ed) Precious forests-precious earth. InTech, Croatia, pp 237–257. https://doi.org/10.5772/60841. ISBN: 978-953-51-2175-6, 286 pages

    Chapter  Google Scholar 

  • Jhariya MK, Banerjee A, Yadav DK, Raj A (2018) Leguminous trees an innovative tool for soil sustainability. In: Meena RS, Das A, Yadav GS, Lal R (eds) Legumes for soil health and sustainable management. Springer, ISBN 978-981-13-0253-4 (eBook), ISBN: 978-981-13-0252-7 (Hardcover). https://doi.org/10.1007/978-981-13-0253-4_10

    Chapter  Google Scholar 

  • Jones RW, O'Brien CW, Ruiz-Montoya L, Gomez-Gomez B (2008) Insect diversity on tropical montane forests: diversity and spatial distribution of weevils (Coleoptera: Curculionidae) inhabiting leaf litter in southern Mexico. Ann Entomol Soc Am 101:128–139

    Article  Google Scholar 

  • Jorgenson MT, Racine CH, Walters JC, Osterkamp TE (2001) Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Clim Change 48(4):551–571

    Article  CAS  Google Scholar 

  • Jump AS, Hunt JM, Penuelas J (2006) Rapid climate change-related growth decline at the southern range-edge of Fagus sylvatica. Glob Chang Biol 12:2163–2174

    Article  Google Scholar 

  • Karnosky DF, Pregitzer KS, Zak DR, Kubiske ME, Hendrey GR, Weinstein D, Nosal M, Percy KE (2005) Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant Cell Environ 28:965–981

    Article  CAS  Google Scholar 

  • Keenan RJ (2015) Climate change impacts and adaptation in forest management: a review. Ann For Sci 72(2):145–167

    Article  Google Scholar 

  • Khanduri SK, Mandal R (2005) National forest policy and wood production- an introspection. Planning commission, Government of India, New Delhi

    Google Scholar 

  • Kumar S, Meena RS, Pandey A, Seema (2017) Soil acidity management and an economics response of lime and sulfur on sesame in an alley crop** system. Int J Curr Microb Appl Sci 6(3):2566-2573

    Article  CAS  Google Scholar 

  • Lafortezza R, Sanesi G, Chen J (2013) Large-scale effects of forest management in Mediterranean landscapes of Europe. iFor 6:342–346. https://doi.org/10.3832/ifor0960-006

    Article  Google Scholar 

  • Larson AM (2011) Forest tenure reform in the age of climate change: lessons for REDD+. Glob Environ Chang 21:540–549

    Article  Google Scholar 

  • Le Quere C, Andres RJ, Boden T, Conway T, Houghton RA, House JI, Marland G, Peters GP, van der Werf GR, Ahlström A, Andrew RM, Bopp L, Canadell JG, Ciais P, Doney SC, Enright C, Friedlingstein P, Huntingford C, Jain AK, Jourdain C, Kato E, Keeling RF, Klein Goldewijk K, Levis S, Levy P, Lomas M, Poulter B, Raupach MR, Schwinger J, Sitch S, Stocker BD, Viovy N, Zaehle S, Zeng N (2013) The global carbon budget 1959–2011. Earth Syst Sci Data 5:165–185

    Article  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89(2):371–379

    Article  PubMed  Google Scholar 

  • Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771

    Article  CAS  PubMed  Google Scholar 

  • Levina E, Tirpak D (2006) Adaptation to climate change: key terms. OECD/IEA, Paris

    Google Scholar 

  • Lucier A, Ayres M, Karnosky D, Thompson I, Loehle C, Percy K, Sohngen B (2009) Forest responses and vulnerabilities to recent climate change. In: Seppala R, Buck A, Katila P (eds) Adaptation of forests and people to climate change. IUFRO World Series 22

    Google Scholar 

  • Lukac M, Calfapietra C, Godbold D (2003) Production, turnover and mycorrhizal Colonization of root systems of three Populus species grown under elevated CO2 (POPFACE). Glob Chang Biol 9:838–848

    Article  Google Scholar 

  • Macchi M, Oviedo G, Gotheil S, Cross K, Boedhihartono A, Wolfangel C, Howell M (2008) Indigenous and traditional peoples and climate change. IUCN, Gland, 66 p

    Google Scholar 

  • Malhi Y, Timmons Roberts J, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate change, deforestation, and the fate of the Amazon. Science 319(5860):169–172

    Article  CAS  PubMed  Google Scholar 

  • MEA (2005) Ecosystems and human well-being: current state and trends: findings of the condition and Trends Working Group, vol 1 [Hassan R, Scholes R, Ash N (eds)]. Millennium Ecosystem Assessment (MEA), Island Press, Washington, DC, 917 p

    Google Scholar 

  • Meena RS, Yadav RS, Reager ML, De N, Meena VS, Verma JP, Verma SK, Kansotia BC (2015) Temperature use efficiency and yield of groundnut varieties in response to sowing dates and fertility levels in Western Dry Zone of India. Am J Exp Agric 7(3):170–177

    CAS  Google Scholar 

  • Meena H, Meena RS, Singh B, Kumar S (2016) Response of bio-regulators to morphology and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] under different sowing environments. J Appl Nat Sci 8(2):715–718

    Article  CAS  Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Meleshko VP, Semenov SM (2008) Assessment report on climate change and its consequences in the Russian Federation: general summary. Federal Service for Hydrometeorology and Environmental Monitoring of Russia (Roshydromet), RIHMI-WDC, Obninsk, 24 p

    Google Scholar 

  • Menendez R (2007) How are insects responding to global warming? Tijdschrift voor Entomologie 150:355–365

    Google Scholar 

  • Merian P, Bert D, Lebourgeois F (2013) An approach for quantifying and correcting sample size-related bias in population estimates of climate-tree growth relationships. For Sci 59:444–452. https://doi.org/10.5849/forsci.12-047

    Article  Google Scholar 

  • Millar CI, Skog KE, Mckinley DC, Birdsey RA, Swanston C, Hines SJ, Woodall CW, Reinhart ED, Peterson DL, Vose JM (2012) Adaptation and mitigation. In: Vose JM, Peterson DL, Patel-Weynand T (eds) Effects of climatic variability and change on forest ecosystems: a comprehensive science synthesis for the US forest sector, USDA For. Serv., Gen. Tech. Rep. PNW-GTR-870. Pacific Northwest Research Station, Portland, pp 7–95

    Google Scholar 

  • MoEF (2006) Report of the National Forest Commission, New Delhi, India. Ministry of Environment & Forests, Government of India

    Google Scholar 

  • MoEF and MoTA (2010) Report National Committee on Forest Rights Act. A joint committee of Ministry of Environment and Forests and Ministry of Tribal Affairs, GoI, 246 p

    Google Scholar 

  • Monserud RA, Yang Y, Huang S, Tchebakova N (2008) Potential change in lodgepole pine site index and distribution under climate change in Alberta. Can J For Res 38:343–352

    Article  Google Scholar 

  • Mortsch LD (2006) Impact of climate change on agriculture, forestry and wetlands. In: Bhatti J, Lal R, Apps M, Price M (eds) Climate change and managed ecosystems. Taylor and Francis, CRC Press, Boca Raton, pp 45–67

    Google Scholar 

  • MoTA (2015) Status report on implementation of the Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006 [for the period ending 31.01.2015]. Ministry of Tribal Affairs, GoI

    Google Scholar 

  • Murray C, Marmorek DR (2004) Adaptive management: a spoonful of rigour helps the uncertainty go down. In: 16th international annual meeting of the society for ecological restoration, Victoria, British Columbia, Canada, 2004

    Google Scholar 

  • Nepstad DC, Stickler CM, Soares-Filho B, Merry F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tip** point. Philos Trans Royal Soc B- Biol Sci 363(1498):1737–1746

    Article  Google Scholar 

  • Newton A, Oldfield S (2008) Red listing the world’s tree species: a review of recent progress. Endanger Species Res 6:137–147

    Article  Google Scholar 

  • Norby RJ, Gunderson CA, Wullschleger SD, O’Neill EG, McCracken MK (1992) Productivity and compensatory response of yellow popular trees in elevated CO2. Nature 357:322–324

    Article  Google Scholar 

  • Norby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG (2004) Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proc Natl Acad Sci USA 101:9689–9693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJ, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102(50):18052–18056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norby RJ, Rustad LE, Dukes JS, Ojima DS, Parton WJ, Del Grosso SJ, McMurtrie RE, Pepper DA (2007) Ecosystem responses to warming and interacting global change factors. In: Canadell JG, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world. The IGBP Series. Springer-Verlag, Berlin/Heidelberg, pp 23–36

    Chapter  Google Scholar 

  • NSSO (2001) Results of the National Sample Survey for the Household Sector, New Delhi, India. National Sample Survey Organization, Government of India

    Google Scholar 

  • Oechel WC, Strain BR (1985) Native species responses to increased atmospheric carbon dioxide concentration. In: Strain BR, Cure JD (eds) Direct effects of increasing carbon dioxide on vegetation. DOE/ER-0238, U.S. Department of Energy, Washington, DC, pp 117–154

    Google Scholar 

  • Ogawa-Onishi Y, Berry PM (2013) Ecological impacts of climate change in Japan: the importance of integrating local and international publications. Biol Conserv 157:361–371

    Article  Google Scholar 

  • Oksanen E, Sober J, Karnosky DF (2001) Impacts of elevated CO2 and/or O3 on leaf ultrastructure of aspen (Populus tremuloides) and birch (Betula papyrifera) in the Aspen FACE experiment. Environ Pollut 115:437–446

    Article  CAS  PubMed  Google Scholar 

  • Ollinger S, Goodale C, Hayhoe K, Jenkins JP (2008) Potential effects of climate change and rising CO2 on ecosystem processes in northeastern U.S. forests. Mitig Adapt Strat Glob Chang 13(5):467–485

    Article  Google Scholar 

  • Osman-Elasha B, Parrotta J, Adger N, Brockhaus M, Pierce Colfer CJ, Sohngen B, Dafalla T, Joyce LA, Nkem J, Robledo C (2009). Future socioeconomic impacts and vulnerabilities. In: Seppala R, Buck A, Katila P (eds) Adaptation of forests and people to climate change. IUFRO World Series 22

    Google Scholar 

  • Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol 17(2):798–818

    Article  Google Scholar 

  • Painkra GP, Bhagat PK, Jhariya MK, Yadav DK (2016) Beekee** for poverty alleviation and livelihood security in Chhattisgarh, India. In: Narain S, Rawat SK (eds) Innovative technology for sustainable agriculture development. Biotech Books, New Delhi, pp 429–453. ISBN: 978-81-7622-375-1

    Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Patosaari P (2007) Forests and climate change: mitigation and adaptation through sustainable forest management. In: 60th annual DPI/NGO conference “Climate Change: How it Impacts Us All” roundtable on co** with climate change: best land use practices United Nations, New York, 6 September 2007

    Google Scholar 

  • Pirlot P, Delreux T, Farcy C (2018) Forests: a multi-sectoral and multi-level approach to sustainable forest management. In: Adelle C, Biedenkopf K, Torney D (eds) European Union External Environmental Policy. The European Union in International Affairs. Palgrave Macmillan, Cham, pp 167–187

    Chapter  Google Scholar 

  • Planning Commission (2013) Twelfth Five Year Plan (2012–2017): faster, more inclusive and sustainable growth. Volume I. Sage, New Delhi

    Google Scholar 

  • Polley HW, Johnson HB, Derner JD (2002) Soil and plant water dynamics in a C3/C4 grassland exposed to a subambient to superambient carbon dioxide gradient. Glob Chang Biol 8:1118–1129

    Article  Google Scholar 

  • Pramanika M, Paudel U, Mondal B, Chakraborti S, Debd P (2018) Predicting climate change impacts on the distribution of the threatened Garcinia indica in the Western Ghats, India. Clim Risk Manage 19:94–105

    Article  Google Scholar 

  • Pretzsch H, Biber P, Schutze G, Uhl E, Rotzer T (2014) Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat Commun 5: Article ID: 4967. https://doi.org/10.1038/ncomms5967

  • Putz FE, Zuidema PA, Synnott T, Pena-Claros M, Pinard MA, Sheil D, Vanclay JK, Sist P, Gourlet-Fleury S, Griscom B, Palmer J, Zagt R (2012) Sustaining conservation values in selectively logged tropical forests: the attained and the attainable. Conserv Lett 5(4):296–303

    Article  Google Scholar 

  • Qin Z, Zhuang Q, Zhu X, Cai X, Zhang X (2011) Carbon consequences and agricultural implications of growing biofuel crops on marginal agricultural lands in China. Environ Sci Tech 45(24):10765–10772

    Article  CAS  Google Scholar 

  • Raj A, Jhariya MK, Bargali SS (2018a) Climate smart agriculture and carbon sequestration. In: Pandey CB, Gaur MK, Goyal RK (eds) Climate change and agroforestry: adaptation mitigation and livelihood security. New India Publishing Agency (NIPA), New Delhi, pp 1–19. ISBN: 9789-386546067

    Google Scholar 

  • Raj A, Jhariya MK, Harne SS (2018b) Threats to biodiversity and conservation strategies. In: Sood KK, Mahajan V (eds) Forests, climate change and biodiversity. Kalyani Publisher, pp 304–320. 381 p

    Google Scholar 

  • Ramirez F, Kallarackal J (2015) Response of trees to CO2 increase. In: Responses of fruit trees to global climate change, Springer briefs in plant science. Springer, Cham, pp 3–7

    Google Scholar 

  • Resco de Dios V, Fischer C, Colinas C (2007) Climate change effects on Mediterranean forests and preventive measures. New For 33:29–40

    Article  Google Scholar 

  • Roden JS, Ball MC (1996) The effect of elevated (CO2) on growth and photosynthesis of two eucalyptus species exposed to high temperatures and water deficits. Plant Physiol 111:909–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Calcerrada J, Sancho-Knapik D, Martin-StPaul NK, Limousin JM, McDowell NG, Gil-Pelegrin E (2017) Drought-induced oak decline-factors involved, physiological dysfunctions, and potential attenuation by forestry practices. In: Gil-Pelegrín E, Peguero-Pina J, Sancho-Knapik D (eds) Oaks physiological ecology. exploring the functional diversity of genus Quercus L. Tree physiology, Vol 7. Springer, Cham

    Google Scholar 

  • Royo AA, Knight KS (2012) White ash (Fraxinus americana) decline and mortality: the role of site nutrition and stress history. For Ecol Manage 286:8–15

    Article  Google Scholar 

  • Salick J, Ross N (2009) Traditional peoples and climate change. Glob Environ Chang 19(2):137–139

    Article  Google Scholar 

  • Sanchez Chavez O (2009) El pago por servicios ambientales del Fondo Nacional de Financiamiento Forestal (FONAFIFO), un mecanismo para lograr la adaptación al cambio climático en Costa Rica. In: Sepulveda C, Ibrahim M (eds) Políticas y sistemas de incentivos para el fomento y adopción de buenas prácticas agrícolas, como una medida de adaptacion al cambio climatico en America Central. Serie técnica No. 37, CATIE, Turrialba, Costa Rica

    Google Scholar 

  • Sasaki N, Asner GP, Knorr W, Durst PB, Priyadi HR, Putz FE (2011) Approaches to classifying and restoring degraded tropical forests for the anticipated REDD+ climate change mitigation mechanism. iFor-Biogeosci For 4(1):1–6

    Article  Google Scholar 

  • Saxe H, Ellsworth DS, Heath J (1998) Tree and forest functioning in an enriched CO2 atmosphere. New Phytol 139:395–436

    Article  Google Scholar 

  • Sedmak R, Scheer L (2015) Properties and prediction accuracy of a sigmoid function of time-determinate growth. iFor 8:631–637. https://doi.org/10.3832/ifor1243-007

    Article  Google Scholar 

  • Singh NR, Jhariya MK (2016) Agroforestry and agrihorticulture for higher income and resource conservation. In: Narain S, Rawat SK (eds) Innovative technology for sustainable agriculture development. Biotech Books, New Delhi, pp 125–145, ISBN: 978-81-7622-375-1

    Google Scholar 

  • Singh CP, Panigrahy S, Thapliyal A, Kimothi MM, Soni P, Parihar JS (2012) Monitoring the alpine treeline shift in parts of the Indian Himalayas using remote sensing. Curr Sci 102(4):559–562

    Google Scholar 

  • Smith AR, Lukac M, Bambrick M, Miglietta F, Godbold DL (2013) Tree species diversity interacts with elevated CO2 to induce a greater root system response. Glob Chang Biol 19:217–228

    Article  PubMed  Google Scholar 

  • Stiling P, Moon D, Hymus G, Drake B (2004) Differential effects of elevated CO2 on acorn density, weight, germination, and predation among three oak species in a scrub-oak forest. Glob Chang Biol 10:228–232

    Article  Google Scholar 

  • Stone JMR, Bhatti JS, Lal R (2006) Impacts of climate change on agriculture, forest and wetland ecosystems: synthesis and summary. In: Bhatti J, Lal R, Apps M, Price M (eds) Climate change and managed ecosystems. Taylor and Francis, CRC Press, Boca Raton, pp 399–409

    Google Scholar 

  • Telwala Y, Brook BW, Manish K, Pandit MK (2013) Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS One 8(2):e57103. https://doi.org/10.1371/journal.pone.0057103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson LJ, Macfadyen S, Hoffmann AA (2010) Predicting the effects of climate change on natural enemies of agricultural pests. Biol Control 52(3):296–306

    Article  Google Scholar 

  • UN (2017) The UN strategies plan for forests 2017–2030. http://www.un.org/esa/forests/documents/un-strategic-plan-for-forests-2030/index.html

  • UN (United Nations) (2015) Transforming our world: the 2030 agenda for sustainable development. Retrieved from https://sustainabledevelopment.un.org/post2015/transformingourworld

  • UNEP (2012) Summary for policy makers highlights the findings of the Fifth Global Environment Outlook (GEO-5) report. United Nations Environment Programme (UNEP), Nairobi, 20 p

    Google Scholar 

  • Varma D, Meena RS, Kumar S (2017) Response of mungbean to fertility and lime levels under soil acidity in an alley crop** system in Vindhyan Region, India. Int J Chem Stud 5(2):384–389

    Google Scholar 

  • Verchot LV, Van Noordwijk M, Kandji S, Tomich T, Ong C, Albrecht A, Mackensen J, Bantilan C, Anupama KV, Palm C (2007) Climate change: linking adaptation and mitigation through agroforestry. Mitig Adapt Strat Glob Chang 12(5):901–918

    Article  Google Scholar 

  • Verma SK, Singh SB, Prasad SK, Meena RN, Meena RS (2015) Influence of irrigation regimes and weed management practices on water use and nutrient uptake in wheat (Triticum aestivum L. Emend. Fiori and Paol.). Bangladesh J Bot 44(3):437–442

    Article  Google Scholar 

  • Vignola R, Locatelli B, Martinez C, Imbach P (2009) Ecosystem-based adaptation to climate change: what role for policy-makers, society and scientists? Mitig Adapt Strat Glob Chang 14:691–696

    Article  Google Scholar 

  • Vitt DH, Halsey LA, Zoltai SC (2000) The changing landscape of Canada’s western boreal forest: the current dynamics of permafrost. Can J For Res 30:283–287

    Article  Google Scholar 

  • Wang XW, Zhao M, Mao ZJ, Zhu SY, Zhang DL, Zhao XZ (2008) Combination of elevated CO2 concentration and elevated temperature and elevated temperature only promote photosynthesis of Quercus mongolica seedlings. Russ J Plant Physiol 55:54–58

    Article  CAS  Google Scholar 

  • Whittaker RH (1975) Communities and ecosystems. MacMillan, New York, 385 p

    Google Scholar 

  • Williamson TB, Colombo SJ, Duinker PN, Gray PA, Hennessey RJ, Houle D, Johnston MH, Ogden AE, Spittlehouse DL (2009) Climate change and Canada’s forests: from impacts to adaptation. Sustainable Forest Management Network and Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, 104 p

    Google Scholar 

  • World Bank (2006) India: unlocking opportunities for forest dependent people. Agriculture and rural development sector unit South Asia region. World Bank, New Delhi

    Google Scholar 

  • Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agric Sci 87(9):1165–1169

    CAS  Google Scholar 

  • Yadav GS, Lal R, Meena RS, Babu S, Das A, Bhomik SN, Datta M, Layak J, Saha P (2017a) Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double crop** of rice in North Eastern Region of India. Ecology India. http://www.sciencedirect.com/science/article/pii/S1470160X17305617

  • Yohannes M, Mebratu K (2009) Local innovation in climate-change adaptation by Ethiopian pastoralists: PROLINNOVA-Ethiopia and Pastoralist Forum Ethiopia (PFE), Final report. Addis Ababa, Ethiopia

    Google Scholar 

  • Zhang Y, Duan B, Qiao Y, Wang K, Korpelainen H, Li C (2008) Leaf photosynthesis of Betula albosinensis seedlings as affected by elevated CO2 and planting density. For Ecol Manage 255:1937–1944

    Article  Google Scholar 

  • Zhang N, Yasunari T, Ohta T (2011) Dynamics of the larch taiga-permafrost coupled system in Siberia under climate change. Environ Res Lett 6(2):024003. https://doi.org/10.1088/1748-9326/6/2/024003

    Article  Google Scholar 

  • Zuidema PA, Baker PJ, Groenendijk P, Schippers P, van der Sleen P, Vlam M, Sterck F (2013) Tropical forests and global change: filling knowledge gaps. Trend Plant Sci 18(8):413–419

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jhariya, M.K., Yadav, D.K., Banerjee, A., Raj, A., Meena, R.S. (2019). Sustainable Forestry Under Changing Climate. In: Jhariya, M., Banerjee, A., Meena, R., Yadav, D. (eds) Sustainable Agriculture, Forest and Environmental Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-6830-1_9

Download citation

Publish with us

Policies and ethics

Navigation