Structural Approaches

  • Chapter
  • First Online:
Document Image Analysis
  • 444 Accesses

Abstract

This chapter discusses a detailed study on several different (but, major) structural approaches for graphical symbol recognition, retrieval, and spotting. It first provides a quick review of the common methods used in both approaches. In this framework, a comprehensive idea on graph-based graphical symbol recognition techniques is explained, where the use of spatial relations is focused. In other words, effect of spatial relations (under the purview of graph-based pattern recognition) is analyzed by taking a series of tests on graphical symbol recognition, retrieval, and spotting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://mathieu.delalandre.free.fr/projects/sesyd/.

References

  1. W.H. Tsai, K.S. Fu, Attributed grammar: a tool for combining syntactic and statistical approaches to pattern recognition. IEEE Trans. Syst. Man Cybern. 10(12), 873–885 (1980)

    Article  MATH  Google Scholar 

  2. J. Lladós, E. Valveny, G. Sánchez, E. Martí, Symbol recognition: current advances and perspectives, in Graphics Recognition - Algorithms and Applications, ed. by D. Blostein, Y.-B. Kwon, Lecture Notes, in Computer Science, vol. 2390, (Springer, Berlin, 2002), pp. 104–127

    Google Scholar 

  3. B.T. Messmer, H. Bunke, Automatic learning and recognition of graphical symbols, in engineering drawings, in Graphics Recognition-Methods and Applications, ed. by R. Kasturi, K. Tombre, Lecture Notes, in Computer Science, vol. 1072, (Springer, Berlin, 1996), pp. 123–134

    Google Scholar 

  4. J.-Y. Ramel, G. Boissier, H. Emptoz, A structural representation adapted to handwritten symbol recognition, in Proceedings of 3rd International Workshop on Graphics Recognition, Jaipur (India) (1999), pp. 259–266

    Google Scholar 

  5. K.C. Santosh, Reconnaissance graphique en utilisant les relations spatiales et analyse de la forme. (Graphics Recognition using Spatial Relations and Shape Analysis). Ph.D. thesis, University of Lorraine, France (2011)

    Google Scholar 

  6. K.C. Santosh, L. Wendling, B. Lamiroy, Bor: Bag-of-relations for symbol retrieval. Int. J. Pattern Recognit Artif Intell. 28(06), 1450017 (2014)

    Article  Google Scholar 

  7. K.C. Santosh, L. Wendling, Graphical Symbol Recognition (Wiley, 2015), pp. 1–22

    Google Scholar 

  8. K.C. Santosh, Complex and composite graphical symbol recognition and retrieval: a quick review, in Recent Trends in Image Processing and Pattern Recognition, Revised Selected Papers, ed. by K.C. Santosh, M. Hangarge, V. Bevilacqua, A. Negi. Communications in Computer and Information. Science 709, 3–15 (2017)

    Google Scholar 

  9. K. Mikolajczyk, C. Schmid, A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  10. D.S. Doermann, An introduction to vectorization and segmentation, in Graphics Recognition—Algorithms and Systems, ed. by K. Tombre, A.K. Chhabra. Lecture Notes in Computer Science, vol. 1389 (Springer, 1998), pp. 1–8

    Google Scholar 

  11. J.Y. Chiang, S.C. Tue, Y.C. Leu, A new algorithm for line image vectorization. Pattern Recogn. 31(10), 1541–1549 (1998)

    Article  Google Scholar 

  12. Y. Zheng, H. Li, D. Doermann, A parallel-line detection algorithm based on HMM decoding. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 777–792 (2005)

    Article  Google Scholar 

  13. D. Dori, Vector-based arc segmentation in the machine drawing understanding system environment. IEEE Trans. Pattern Anal. Mach. Intell. 17(11), 1057–1068 (1995)

    Article  Google Scholar 

  14. Ph. Dosch, G. Masini, K. Tombre, Improving arc detection in graphics recognition, in Proceedings of the 15th International Conference on Pattern Recognition, Barcelona (Spain), vol. 2 (2000), pp. 243–246

    Google Scholar 

  15. B. Lamiroy, Y. Guebbas, Robust and precise circular arc detection, in Graphics Recognition. Achievements, Challenges, and Evolution, 8th International Workshop, GREC 2009, La Rochelle, France, July 22-23, 2009. Selected Papers, ed. by J.-M. Ogier, L. Wenyin, J. Lladós. Lecture Notes in Computer Science, vol. 6020 (Springer, 2010), pp. 49–60

    Google Scholar 

  16. R. Kasturi, S. Bow, J. Gattiker, J. Shah, W. El-Masri, U. Mokate, S. Honnenahalli, A system for recognition and description of graphics, in Proceedings of 9th International Conference on Pattern Recognition, Rome (Italy) (1988), pp. 255–259

    Google Scholar 

  17. C.C. Shih, R. Kasturi, Extraction of graphical primitives from images of paper based line drawings. Mach. Vis. Appl. 2, 103–113 (1989)

    Article  Google Scholar 

  18. D. Lysak, R. Kasturi, Interpretation of Line Drawings with Multiple Views 1, 220–222 (1990)

    Google Scholar 

  19. P. Kultanen, E. Oja, L. Xu, Randomized Hough Transform (RHT) in engineering drawing vectorization system, in Proceedings of IAPR Workshop on Machine Vision Applications, Tokyo (Japan) (1990), pp. 173–176

    Google Scholar 

  20. D. Dori, Orthogonal zig-zag: an algorithm for vectorizing engineering drawings compared with hough transform. Adv. Eng. Softw. 28(1), 11–24 (1997)

    Article  Google Scholar 

  21. L. Lam, S.-W. Lee, C.Y. Suen, Thinning methodologies - a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14(9), 869–885 (1992)

    Article  Google Scholar 

  22. G. Sanniti di Baja, Well-shaped, stable, and reversible skeletons from the (3,4)-distance transform. J. Vis. Commun. Image Represent. 5(1), 107–115 (1994)

    Article  Google Scholar 

  23. C.S. Fahn, J.F. Wang, J.Y. Lee, A topology-based component extractor for understanding electronic circuit diagrams. Comput. Vis. Graph. Image Process. 44, 119–138 (1988)

    Article  Google Scholar 

  24. R. Kasturi, S.T. Bow, W. El-Masri, J. Shah, J.R. Gattiker, U.B. Mokate, A system for interpretation of line drawings. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 978–992 (1990)

    Article  Google Scholar 

  25. R.D.T. Janssen, A.M. Vossepoel, Adaptive vectorization of line drawing images. Comput. Vis. Image Underst. 65(1), 38–56 (1997)

    Article  Google Scholar 

  26. X. Hilaire, K. Tombre, Robust and accurate vectorization of line drawings. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 890–904 (2006)

    Article  Google Scholar 

  27. D. Antoine, S. Collin, K. Tombre, Analysis of technical documents: the REDRAW system, in Pre-proceedings of IAPR Workshop on Syntactic and Structural Pattern Recognition, Murray Hill, NJ (USA) (1990), pp. 1–20

    Google Scholar 

  28. I. Chai, D. Dori, Orthogonal zig-zag: an efficient method for extracting lines from engineering drawings, in Visual Form, ed. by C. Arcelli, L.P. Cordella, G. Sanniti di Baja (Plenum Press, New York and London, 1992), pp. 127–136

    Chapter  Google Scholar 

  29. D. Dori, W. Liu, Sparse pixel vectorization: an algorithm and its performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 21(3), 202–215 (1999)

    Article  Google Scholar 

  30. T.J. Davis, Fast decomposition of digital curves into polygons using the haar transform. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 786–790 (1999)

    Article  Google Scholar 

  31. P.L. Rosin, Techniques for assessing polygonal approximation of curves. IEEE Trans. Pattern Anal. Mach. Intell. 19(6), 659–666 (1997)

    Article  Google Scholar 

  32. P.Y. Yin, A new method of polygonal approximation using genetic algorithm. Pattern Recogn. Lett. 19, 1017–1026 (1998)

    Article  MATH  Google Scholar 

  33. P.Y. Yin, A tabu search approach to polygonal approximation of digital curves. Int. J. Pattern Recognit Artif Intell. 14(2), 243–255 (2000)

    Article  Google Scholar 

  34. U. Ramer, An iterative procedure for the polygonal approximation of plane curves. Comput. Graph. Image Process. 1, 244–256 (1972)

    Article  Google Scholar 

  35. K. Wall, P. Danielsson, A fast sequential method for polygonal approximation of digitized curves. Comput. Vis. Graph. Image Process. 28, 220–227 (1984)

    Article  Google Scholar 

  36. J. Sklansky, V. Gonzalez, Fast polygonal approximation of digitized curves. Pattern Recogn. 12, 327–331 (1980)

    Article  Google Scholar 

  37. J.C. Perez, E. Vidal, Optimum polygonal approximation of digitized curves. Pattern Recogn. Lett. 15(8), 743–750 (1994)

    Article  MATH  Google Scholar 

  38. A. Kolesnikov, P. Fränti, Data reduction of large vector graphics. Pattern Recogn. 38, 381–394 (2005)

    Article  MATH  Google Scholar 

  39. M. Salotti, An efficient algorithm for the optimal polygonal approximation of digitized curves. Pattern Recogn. Lett. 22(2), 215–221 (2001)

    Article  MATH  Google Scholar 

  40. P.L. Rosin, G.A. West, Segmentation of edges into lines and arcs. Image Vis. Comput. 7(2), 109–114 (1989)

    Article  Google Scholar 

  41. C.-H. Teh, R.T. Chin, On the detection of dominant points on digital curves. IEEE Trans. Pattern Anal. Mach. Intell. 11(8), 859–872 (1989)

    Article  Google Scholar 

  42. W.-Y. Wu, M.-J.J. Wang, Detecting the dominant points by the curvature-based polygonal approximation 55, 79–88 (1993)

    Google Scholar 

  43. N. Ansari, K.W. Huang, Non-parametric dominant point detection. Pattern Recogn. 24(9), 849–862 (1991)

    Article  Google Scholar 

  44. J.-P. Salmon, L. Wendling, ARG based on arcs and segments to improve the symbol recognition by genetic algorithm, in Graphics Recognition. Recent Advances and New Opportunities, ed. by W. Liu, J. Lladós, J.-M. Ogier. Lecture Notes in Computer Science, vol. 5046 (Springer, 2007), pp. 80–90

    Google Scholar 

  45. D. Elliman, Tif2vec, an algorithm for arc segmentation in engineering drawings, in Graphics Recognition Algorithms and Applications, ed. by D. Blostein, Y.-B. Kwon. Lecture Notes in Computer Science, vol. 2390 (Springer, 2002), pages 350–358

    Google Scholar 

  46. R.S. Conker, A dual plane variation of the hough transform for detecting non-concentric circles of different radii. Comput. Vis. Graph. Image Process. 43, 115–132 (1988)

    Article  Google Scholar 

  47. V.F. Leavers, The dynamic generalized hough transform: its relationship to the probabilistic hough transforms and an application to the concurrent detection of circles and ellipses. CVGIP 56(3), 381–398 (1992)

    Article  MATH  Google Scholar 

  48. W. Liu, D. Dori, Incremental arc segmentation algorithm and its evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 20(4), 424–431 (1998)

    Article  Google Scholar 

  49. J. Song, M.R. Lyu, S. Cai, Effective multiresolution arc segmentation: algorithms and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1491–1506 (2004)

    Article  Google Scholar 

  50. L.P. Cordella, M. Vento, Symbol recognition in documents: a collection of techniques? Int. J. Doc. Anal. Recogn. 3(2), 73–88 (2000)

    Article  Google Scholar 

  51. K. Tombre, D. Dori, Interpretation of engineering drawings, in Handbook of Character Recognition and Document Image Analysis, ed. by H. Bunke, P.S.P. Wang. chapter 17 (World Scientific, 1997), pp. 457–484

    Google Scholar 

  52. K. Tombre, Analysis of engineering drawings: state of the art and challenges, in Proceedings of 2nd International Workshop on Graphics Recognition, Nancy (France) (1997), pp. 54–61

    Google Scholar 

  53. L. Wenyin, J. Zhai, D. Dori,. Extended summary of the arc segmentation contest, in Graphics Recognition Algorithms and Applications, ed. by D. Blostein, Y.-B. Kwon. Lecture Notes in Computer Science, volume 2390 (Springer, 2002), pp. 343–349

    Google Scholar 

  54. X. Hilaire, RANVEC and the arc segmentation contest, in Graphics Recognition – Algorithms and Applications, ed. by D. Blostein, Y.-B. Kwon. Lecture Notes in Computer Science, vol. 2390 (Springer, 2002), pp. 359–364

    Google Scholar 

  55. L. Wenyin, Report of the arc segmentation contest, in Graphics Recognition, Recent Advances and Perspectives, ed. by J. Lladós, Y.-B. Kwon. Lecture Notes in Computer Science, vol. 3088 (Springer, 2004), pp. 364–367

    Google Scholar 

  56. M. Tooley, D. Wyatt, Aircraft engineering principles and practice (Principles, Operation and Maintenance (Butterworth-Heinemann, Aircraft Electrical and Electronic Systems, 2008)

    Google Scholar 

  57. P.M. Devaux, D.B. Lysak, R. Kasturi, A complete system for the intelligent interpretation of engineering drawings. Int. J. Doc. Anal. Recogn. 2(2/3), 120–131 (1999)

    Article  Google Scholar 

  58. P. Dosch, K. Tombre, C. Ah-Soon, G. Masini, A complete system for analysis of architectural drawings. Int. J. Doc. Anal. Recogn. 3(2), 102–116 (2000)

    Article  Google Scholar 

  59. J. Rendek, G. Masini, Ph. Dosch, K. Tombre, The search for genericity in graphics recognition applications: design issues of the Qgar software system, in Proceedings of the 6th IAPR International Workshop on Document Analysis Systems, Florence, (Italy). Lecture Notes in Computer Science, vol. 3163 (2004), pp. 366–377

    Chapter  Google Scholar 

  60. H.S.M. Al-Khaffaf, A. Zawawi Talib, M. Azam Osman, Final report of grec’11 arc segmentation contest: performance evaluation on multi-resolution scanned documents, in Proceedings of IAPR International Workshop on Graphics Recognition, ed. by Y.-B. Kwon, J.-M. Ogier. Lecture Notes in Computer Science, vol. 7423 (Springer, 2013), pp. 187–197

    Google Scholar 

  61. W. Jian**, K. Chen, X. Gao, Fast and accurate circle detection using gradient-direction-based segmentation. J. Opt. Soc. Am. A 30(6), 1184–1192 (2013)

    Article  Google Scholar 

  62. R.O. Duda, P. Hart, Use of the hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)

    Article  MATH  Google Scholar 

  63. X. Lei, E. Oja, P. Kultanen, A new curve detection method: randomized hough transform (rht). Pattern Recogn. Lett. 11(5), 331–338 (1990)

    Article  MATH  Google Scholar 

  64. A. Ajdari Rad, K. Faez, N. Qaragozlou, Fast circle detection using gradient pair vectors, in Proceedings of the Seventh International Conference on Digital Image Computing: Techniques and Applications, ed. by C. Sun, H. Talbot, S. Ourselin, T. Adriaansen (CSIRO Publishing, 2003), pp. 879–888

    Google Scholar 

  65. K. Chen, W. Jian**, One-dimensional voting scheme for circle and arc detection. J. Opt. Soc. Am. A 31(12), 2593–2602 (2014)

    Article  Google Scholar 

  66. S. Saqib Bukhari, H.S.M. Al-Khaffaf, F. Shafait, M. Azam Osman, A. Zawawi Talib, T.M. Breuel, Final report of grec’13 arc and line segmentation contest, in Graphics Recognition. Current Trends and Challenges, ed. by B. Lamiroy, J.-M. Ogier. Lecture Notes in Computer Science, vol. 8746 (Springer, 2014), pp. 234–239

    Google Scholar 

  67. J. Song, F. Su, C.-L. Tai, S. Cai, An object-oriented progressive-simplification based vectorization system for engineering drawings: model, algorithm, and performance. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1048–1060 (2002)

    Article  Google Scholar 

  68. G. Retz-Schmidt, Various Views on Spatial Prepositions. AI Magazine (1988), pp. 95–104

    Google Scholar 

  69. M. Bar, S. Ullman, Spatial context in recognition. Perception 25, 324–352 (1993)

    Google Scholar 

  70. I. Biederman, Perceiving real-world scenes. Science 177(43), 77–80 (1972)

    Article  Google Scholar 

  71. C.B. Cave, S.M. Kosslyn, The role of parts and spatial relations in object identification. Perception 22(2), 229–248 (1993)

    Article  Google Scholar 

  72. J.H. Vandenbrande, A.A.G. Requicha, Spatial reasoning for the automatic recognition of machinable features in solid models. IEEE Trans. Pattern Anal. Mach. Intell. 15(12), 1269–1285 (1993)

    Article  Google Scholar 

  73. J. Silva Centeno, Segmentation of thematic maps using colour and spatial attributes, in GREC (1997), pp. 233–239

    Google Scholar 

  74. T. Gevers, A.W.M. Smeulders, \(\varSigma \)nigma: an image retrieval system. Proc. IAPR Int. Conf. Pattern Recognit. 2, 697–700 (1992)

    Google Scholar 

  75. S.-H. Lee, F.-J. Hsu, Spatial reasoning and similarity retrieval of images using 2D C-string knowledge representation. Pattern Recogn. 25(3), 305–318 (1992)

    Article  Google Scholar 

  76. G. Heidemann, Combining spatial and colour information for content based image retrieval. Comput. Vis. Image Underst. 94, 234–270 (2004)

    Article  Google Scholar 

  77. S. Medasani, R. Krishnapuram, A fuzzy approach to content-based image retrieval, in Proceedings of FUZZ-IEEE (1997), pp. 1251–1260

    Google Scholar 

  78. P.H. Winston, The Psychology of Computer Vision (McGraw-Hill, New York, 1975)

    Google Scholar 

  79. J. Freeman, The modelling of spatial relations. Comput. Graph. Image Process. 4, 156–171 (1975)

    Article  Google Scholar 

  80. J. Renz, B. Nebel, Spatial reasoning with topological information, in An Interdisciplinary Approach to Representing and Processing Spatial Knowledge (Springer, ed. by Spatial Cognition (UK, London, 1998), pp. 351–372

    Google Scholar 

  81. M.F. Worboys, GIS - A Computing Perspective (Taylor and Francis, 1995)

    Google Scholar 

  82. K. Miyajima, A. Ralescu, Spatial organization in 2D segmented images: representation and recognition of primitive spatial relations. Fuzzy Sets Syst. 2(65), 225–236 (1994)

    Article  Google Scholar 

  83. D. Mitra, A class of star-algebras for point-based qualitative reasoning in two-dimensional space, in Fifteenth International Florida Artificial Intelligence Research Society Conference (2002), pp. 486–491

    Google Scholar 

  84. J. Renz, D. Mitra, Qualitative direction calculi with arbitrary granularity, in Proceedings of the Pacific Rim International Conferences on Artificial Intelligence (2004), pp. 65–74

    Google Scholar 

  85. X. Wang, J.M. Keller, Human-based spatial relationship generalization through neural/fuzzy approaches. Fuzzy Sets Syst. 101, 5–20 (1999)

    Article  Google Scholar 

  86. E. Jungert, Qualitative spatial reasoning for determination of object relations using symbolic interval projections, in IEEE Symposium on Visual Languages (1993), pp. 24–27

    Google Scholar 

  87. R.K. Goyal, M.J. Egenhofer, Similarity of cardinal directions, in Advances in Spatial and Temporal Databases. Lecture Notes in Computer Science 2121, 36–55 (2001)

    Article  MATH  Google Scholar 

  88. S. Dutta, Approximate spatial reasoning: integrating qualitative and quantitative constraints. Int. J. Approx. Reason. 5, 307–331 (1991)

    Article  Google Scholar 

  89. S.M.R. Dehak, Inference Quantitative des Relations Spatiales Directionnelles. Ph.d. thesis, École Nationale Supérieure des Télécommunications (2002)

    Google Scholar 

  90. L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  91. M.J. Egenhofer, A. Rashid, Shariff, Metric details for natural-language spatial relations. ACM Trans. Inf. Syst. 16(4), 295–321 (1998)

    Article  Google Scholar 

  92. I. Bloch, Fuzzy relative position between objects in image processing: a morphological approach. IEEE Trans. Pattern Anal. Mach. Intell. 21(7), 657–664 (1999)

    Article  Google Scholar 

  93. P. Matsakis, L. Wendling, A new way to represent the relative position between areal objects. IEEE Trans. Pattern Anal. Mach. Intell. 21(7), 634–643 (1999)

    Article  Google Scholar 

  94. A. Morris, A framework for modeling uncertainty in spatial databases. Trans. GIS 7, 83–101 (2003)

    Article  Google Scholar 

  95. H. Bunke, K. Riesen, Recent advances in graph-based pattern recognition with applications in document analysis. Pattern Recogn. 44(5), 1057–1067 (2011)

    Article  MATH  Google Scholar 

  96. L.R. Foulds, Graph Theory Applications. Universitext (1979) (Springer, New York, 1992)

    Google Scholar 

  97. J. Lladós, G. Sánchez, Graph matching versus graph parsing in graphics recognition - a combined approach. Int. J. Pattern Recognit Artif Intell. 18(3), 455–473 (2004)

    Article  Google Scholar 

  98. A. Robles-Kelly, E.R. Hancock, String edit distance, random walks and graph matching. Int. J. Pattern Recognit. Artif. Intell. 18(03), 315–327 (2004)

    Article  MATH  Google Scholar 

  99. H. Bunke, B.T. Messmer, Recent advances in graph matching. Int. J. Pattern Recognit. Artif. Intell. 11(01), 169–203 (1997)

    Article  Google Scholar 

  100. P. Foggia, G. Percannella, M. Vento, Graph matching and learning in pattern recognition in the last 10 years. Int. J. Pattern Recognit. Artif. Intell. 28(1), 1450001 (2014)

    Article  MathSciNet  Google Scholar 

  101. H.P. Morevec, Towards automatic visual obstacle avoidance, in Proceedings of International Joint Conference on Artificial Intelligence (1977), pp. 584–584

    Google Scholar 

  102. D.G. Lowe, Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  MathSciNet  Google Scholar 

  103. M. Rusiñol, J. Lladós, Word and symbol spotting using spatial organization of local descriptors, in Proceedings of International Workshop on Document Analysis Systems (2008), pp. 489–496

    Google Scholar 

  104. K. Mikolajczyk, C. Schmid, Scale and affine invariant interest point detectors. Int. J. Comput. Vision 60(1), 63–86 (2004)

    Article  Google Scholar 

  105. A. Rosenfeld, Adjacency in digital pictures. Inf. Control 26(1), 24–33 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  106. F.C.A. Groen, A.C. Sanderson, J.F. Schlag, Symbol recognition in electrical diagrams using probabilistic graph matching. Pattern Recogn. Lett. 3, 343–350 (1985)

    Article  Google Scholar 

  107. S.W. Lee, J.H. Kim, F.C.A. Groen, Translation- rotation- and scale invariant recognition of hand-drawn symbols in schematic diagrams. Int. J. Pattern Recognit. Artif. Intell. 4(1), 1–25 (1990)

    Article  Google Scholar 

  108. H. Bunke, B.T. Messmer, Efficient attributed graph matching and its application to image analysis, in Proceedings of 8th International Conference on Image Analysis and Processing, San Remo (Italy), ed. by C. Braccini, L. De Floriani, G. Vernazza. Lecture Notes in Computer Science, vol. 974 (1995), pp. 45–55

    Chapter  Google Scholar 

  109. B. Gun Park, K. Mu Lee, S. Uk Lee, J. Hak Lee, Recognition of partially occluded objects using probabilistic ARG (attributed relational graph)-based matching. Comput. Vis. Image Underst. 90(3), 217–241 (2003)

    Article  MATH  Google Scholar 

  110. D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty years of graph matching in pattern recognition. Int. J. Pattern Recognit. Artif. Intell. 18(3), 265–298 (2004)

    Article  Google Scholar 

  111. J. Lladós, J. López-Krahe, E. Martí, A system to understand hand-drawn floor plans using subgraph isomorphism and hough transform. Mach. Vis. Appl. 10(3), 150–158 (1997)

    Article  Google Scholar 

  112. J. Lladós, E. Martí, J.J. Villanueva, Symbol recognition by error-tolerant subgraph matching between region adjacency graphs. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1137–1143 (2001)

    Article  Google Scholar 

  113. C. Ah-Soon, K. Tombre, Architectural symbol recognition using a network of constraints. Pattern Recogn. Lett. 22(2), 231–248 (2001)

    Article  MATH  Google Scholar 

  114. E. Valveny, E. Martí, A model for image generation and symbol recognition through the deformation of lineal shapes. Pattern Recogn. Lett. 24(15), 2857–2867 (2003)

    Article  Google Scholar 

  115. M. Delalandre, E. Valveny, J. Lladós, Performance evaluation of symbol recognition and spotting systems: an overview, in Proceedings of International Workshop on Document Analysis Systems, ed. by K. Kise, H. Sako (IEEE Computer Society, 2008), pp. 497–505

    Google Scholar 

  116. S. Jouili, S. Tabbone, Towards performance evaluation of graph-based representation, in Proceedings of the IAPR Graph-Based Representations in Pattern Recognition (2011), pp. 72–81

    Chapter  MATH  Google Scholar 

  117. S. Jouili, S. Tabbone, Hypergraph-based image retrieval for graph-based representation. Pattern Recogn. 45(11), 4054–4068 (2012)

    Article  Google Scholar 

  118. K. Tombre, S. Tabbone, Ph. Dosch, Musings on symbol recognition, in Proceedings of 6th IAPR International Workshop on Graphics Recognition, Hong Kong (2005), pp. 23–34

    Google Scholar 

  119. A.T. Berztiss, A backtrack procedure for isomorphism of directed graphs. J. ACM 20(3), 365–377 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  120. J.R. Ullmann, An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)

    Article  MathSciNet  Google Scholar 

  121. J.L. Balcazar, J. Diaz, J. Gabarro, Structural Complexity II, EATCS Monographs on Theorical Computer Science (Springer, Berlin, 1990)

    Google Scholar 

  122. L. Burak Kara, T.F. Stahovich, An image-based, trainable symbol recognizer for hand-drawn sketches. Comput. Graph. 29(4), 501–517 (2005)

    Article  Google Scholar 

  123. W.S. Lee, L. Burak Kara, T.F. Stahovich, An efficient graph-based recognizer for hand-drawn symbols. Comput. Graph. 31(4), 554–567 (2007)

    Article  Google Scholar 

  124. B.T. Messmer, H. Bunke, Efficient subgraph isomorphism detection: a decomposition approach. IEEE Trans. Knowl. Data Eng. 12(2), 307–323 (2000)

    Article  Google Scholar 

  125. X. **aogang, S. Zhengxing, P. Binbin, J. **angyu, L. Wenyin, An online composite graphics recognition approach based on matching of spatial relation graphs. Int. J. Doc. Anal. Recogn. 7(1), 44–55 (2004)

    Article  Google Scholar 

  126. L. Wenyin, W. Qian, X. **, Smart sketchpad - an on-line graphics recognition system, in Proceedings of the 6th International Conference on Document Analysis and Recognition, Seattle, WA (USA) (2001), pp. 1050–1054

    Google Scholar 

  127. Y. Liu, L. Wenyin, C. Jiang, A structural approach to recognizing incomplete graphic objects, in Proceedings of the 17th International Conference on Pattern Recognition, Cambridge (UK) (2004), pp. 371–375

    Google Scholar 

  128. L.G. Shapiro, R. Haralick, Structural description and inexact matching. IEEE Trans. Pattern Anal. Mach. Intell. 3(5), 504–519 (1981)

    Article  Google Scholar 

  129. B.T. Messmer, H. Bunke, Efficient error-tolerant subgraph isomorphism detection, in Shape, Structure and Pattern Recognition (Post-proceedings of IAPR Workshop on Syntactic and Structural Pattern Recognition, Nahariya, Israel), ed. by D. Dori, A. Bruckstein (World Scientific, 1995), pp. 231–240

    Google Scholar 

  130. B.T. Messmer, H. Bunke, A new algorithm for error-tolerant subgraph isomorphism detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(5), 493–504 (1998)

    Article  Google Scholar 

  131. Ph. Dosch, J. Lladós, Vectorial signatures for symbol discrimination, in Proceedings of 5th IAPR International Workshop on Graphics Recognition, Barcelona (Spain) (2003), pp. 159–169

    Google Scholar 

  132. M. Rusiñol, J. Lladós, Symbol spotting in technical drawings using vectorial signatures, in Proceedings of 6th IAPR International Workshop on Graphics Recognition, Hong Kong (2005), pp. 35–45

    Google Scholar 

  133. L. Wenyin, W. Zhang, L. Yan, An interactive example-driven approach to graphics recognition in engineering drawings. Int. J. Doc. Anal. Recogn. 9(1), 13–29 (2007)

    Article  Google Scholar 

  134. M. Muzzamil Luqman, Fuzzy Multilevel Graph Embedding for Recognition, Indexing and Retrieval of Graphic Document Images. Ph.D. thesis, Francois Rabelais University of Tours France and Autonoma University of Barcelona Spain (2012)

    Google Scholar 

  135. M. Muzzamil Luqman, J.-Y. Ramel, J. Lladós, T. Brouard, Fuzzy multilevel graph embedding. Pattern Recognit. 46(2), 551–565 (2013)

    Article  MATH  Google Scholar 

  136. A. Dutta, J. Lladós, U. Pal, A symbol spotting approach in graphical documents by hashing serialized graphs. Pattern Recogn. 46(3), 752–768 (2013)

    Article  Google Scholar 

  137. R. Mohr, T.C. Henderson, Arc and path consistency revisited. Artif. Intell. 28, 225–233 (1986)

    Article  Google Scholar 

  138. A.H. Habacha, Reconnaissance de symboles techniques et analyse contextuelle de schémas. Ph.d. thesis, Institut National Polytechnique de Lorraine, Vandœuvre-lès-Nancy, June 1993

    Google Scholar 

  139. R.C. Wilson, E.R. Hancock, Structural matching by discrete relaxation. IEEE Trans. Pattern Anal. Mach. Intell. 19(6), 634–648 (1997)

    Article  Google Scholar 

  140. O.D. Faugeras, M. Berthod, Improving consistency and reducing ambiguity in stochastic labeling: an optimization approach. IEEE Trans. Pattern Anal. Mach. Intell. 3, 412–423 (1981)

    Article  MATH  Google Scholar 

  141. W.J. Christmas, J. Kittler, M. Petrou, Structural matching in computer vision using probabilistic relaxation. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 749–764 (1995)

    Article  Google Scholar 

  142. A. Kostin, J. Kittler, W. Christmas, Object recognition by symmetrised graph matching using relaxation labelling with an inhibitory mechanism. Pattern Recogn. Lett. 26(3), 381–393 (2005)

    Article  Google Scholar 

  143. S. Mesadini, R. Khrishnapuram, Y. Choi, Graph matching by relaxation of fuzzy assigments. IEEE Trans. Fuzzy Syst. 9(1), 173–182 (2001)

    Article  Google Scholar 

  144. R. Balasubramaniam, R. Krishnapuram, S. Medasani, S.H. Jung, M.-Y.S. Choi, Content-based image retrieval based on a fuzzy approach. IEEE Trans. Knowl. Data Eng. 16(10), 1185–1199 (2004)

    Article  Google Scholar 

  145. R.C. Wilson, E.R. Hancock, Pattern vectors from algebraic graph theory. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1112–1124 (2005)

    Article  Google Scholar 

  146. M. Coustaty, K. Bertet, M. Visani, J.-M. Ogier, A new adaptive structural signature for symbol recognition by using a galois lattice as a classifier. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 41(4), 1136–1148 (2011)

    Article  Google Scholar 

  147. M. Visani, K. Bertet, J.-M. Ogier, Navigala: an original symbol classifier based on navigation through a galois lattice. Int. J. Pattern Recognit. Artif. Intell. 25(04), 449–473 (2011)

    Article  MathSciNet  Google Scholar 

  148. A. Boumaiza, S. Tabbone, Symbol recognition using a galois lattice of frequent graphical patterns, in IAPR International Workshop on Document Analysis Systems, ed. by M. Blumenstein, U. Pal, S. Uchida (IEEE, 2012), pp. 165–169

    Google Scholar 

  149. A. Boumaiza, S. Tabbone, A novel approach for graphics recognition based on galois lattice and bag of words representation, in Proceedings of International Conference on Document Analysis and Recognition (2011), pp. 829–833

    Google Scholar 

  150. M. Rusiñol, J. Lladós, G. Sánchez, Symbol spotting in vectorized technical drawings through a lookup table of region strings. Pattern Anal. Appl. 13(3), 321–331 (2010)

    Article  MathSciNet  Google Scholar 

  151. M. Rusiñol, J. Lladós, Symbol Spotting in Digital Libraries: Focused Retrieval over Graphic-Rich Document Collections (Springer, London, 2010)

    Book  MATH  Google Scholar 

  152. P. Garnesson, G. Giraudon, Spatial context in an image analysis system, in Proceedings of European Conference on Computer Vision (Springer, London, UK, 1990), pp. 579–582

    Google Scholar 

  153. T.V. Pham, A.W.M. Smeulders, Learning spatial relations in object recognition. Pattern Recogn. Lett. 27(14), 1673–1684 (2006)

    Article  Google Scholar 

  154. M.J. Egenhofer, J.R. Herring, categorizing binary topological relations between regions, lines, and points in geographic databases, in University of Maine, Research Report (1991)

    Google Scholar 

  155. D.J. Peuquet, Z. CI-**ang, An algorithm to determine the directional relationship between arbitrarily-shaped polygons in the plane. Pattern Recognit. 20(1), 65–74 (1987)

    Article  Google Scholar 

  156. D. Papadias, Y. Theodoridis, Spatial relations, minimum bounding rectangles, and spatial data structures. Int. J. Geogr. Inf. Sci. 11(2), 111–138 (1997)

    Article  Google Scholar 

  157. K.C. Santosh, L. Wendling, B. Lamiroy, New ways to handle spatial relations through angle plus mbr theory on raster documents, in Proceedings of IAPR International Workshop on Graphics Recognition (La Rochelle, France, 2009), pp. 291–302

    Google Scholar 

  158. K.C. Santosh, L. Wendling, B. Lamiroy, Unified pairwise spatial relations: an application to graphical symbol retrieval, in Proceedings of IAPR International Workshop on Graphics Recognition (2009), pp. 163–174

    Google Scholar 

  159. K.C. Santosh, B. Lamiroy, L. Wendling, Symbol recognition using spatial relations. Pattern Recogn. Lett. 33(3), 331–341 (2012)

    Article  Google Scholar 

  160. J. Silva Centeno, Segmentation of thematic maps using colour and spatial attributes, in Proceedings of 2nd International Workshop on Graphics Recognition, Nancy (France) (1997), pp. 233–239

    Google Scholar 

  161. T. Gevers, A.W.M. Smeulders, \(\varSigma \)nigma: an image retrieval system, vol. 2, pp. 697–700 (1992)

    Google Scholar 

  162. M. Rusiñol, A. Borràs, J. Lladós, Relational indexing of vectorial primitives for symbol spotting in line-drawing images. Pattern Recogn. Lett. 31(3), 188–201 (2010)

    Article  Google Scholar 

  163. S. Yoon, Y. Lee, G. Kim, Y. Choi, New paradigm for segmentation and recognition of handwritten numeral string, in Proceedings of International Conference on Document Analysis and Recognition (2001), pp. 205–209

    Google Scholar 

  164. K.C. Santosh, B. Lamiroy, L. Wendling, Spatio-structural symbol description with statistical feature add-on, in Graphics Recognition. New Trends and Challenges, ed. by Y.-B. Kwon, J.-M. Ogier. Lecture Notes in Computer Science, vol. 7423 (Springer, 2011), pp. 228–237

    Google Scholar 

  165. K.C. Santosh, B. Lamiroy, L. Wendling, Integrating vocabulary clustering with spatial relations for symbol recognition. Int. J. Doc. Anal. Recogn. 17(1), 61–78 (2014)

    Article  Google Scholar 

  166. K.C. Santosh, B. Lamiroy, J.-P. Ropers, Inductive logic programming for symbol recognition, in Proceedings of International Conference on Document Analysis and Recognition (IEEE Computer Society, 2009), pp. 1330–1334

    Google Scholar 

  167. S. Aksoy, Spatial relationship models for image information mining (2009)

    Google Scholar 

  168. S. Yang, Symbol recognition via statistical integration of pixel-level constraint histograms: a new descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 278–281 (2005)

    Article  Google Scholar 

  169. W. Zhang, L. Wenyin, K. Zhang, Symbol recognition with kernel density matching. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2020–2024 (2006)

    Article  Google Scholar 

  170. R. Hartmut Güting, Geo-relational algebra: A model and query language for geometric database systems, in Proceedings of the International Conference on Extending Database Technology: Advances in Database Technology (1988), pp. 506–527

    Google Scholar 

  171. M.J. Egenhofer, R. Franzosa, Point-set topological spatial relations. Int. J. Geogr. Inf. Syst. 5(2), 161–174 (1991)

    Article  Google Scholar 

  172. D. Pullar, M.J. Egenhofer, Towards formal definitions of topological relations among spatial objects, in The Third International Symposium on Spatial Data Handling, ed. by D. Marble (1988), pp. 225–242

    Google Scholar 

  173. M. Delalandre, E. Valveny, T. Pridmore, D. Karatzas, Generation of synthetic documents for performance evaluation of symbol recognition and spotting systems. Int. J. Doc. Anal. Recogn. 13(3), 187–207 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Santosh .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santosh, K.C. (2018). Structural Approaches. In: Document Image Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-13-2339-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2339-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2338-6

  • Online ISBN: 978-981-13-2339-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation