Cyanobacterial Enzymes for Bioalkane Production

  • Chapter
  • First Online:
Synthetic Biology of Cyanobacteria

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1080))

Abstract

Cyanobacterial biosynthesis of alkanes is an attractive way of producing substitutes for petroleum-based fuels. Key enzymes for bioalkane production in cyanobacteria are acyl-ACP reductase (AAR) and aldehyde-deformylating oxygenase (ADO). AAR catalyzes the reduction of the fatty acyl-ACP/CoA substrates to fatty aldehydes, which are then converted into alkanes/alkenes by ADO. These enzymes have been widely used for biofuel production by metabolic engineering of cyanobacteria and other organisms. However, both proteins, particularly ADO, have low enzymatic activities, and their catalytic activities are desired to be improved for use in biofuel production. Recently, progress has been made in the basic sciences and in the application of AAR and ADO in alkane production. This chapter provides an overview of recent advances in the study of the structure and function of AAR and ADO, protein engineering of these enzymes for improving activity and modifying substrate specificities, and examples of metabolic engineering of cyanobacteria and other organisms using AAR and ADO for biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328

    Article  PubMed  CAS  Google Scholar 

  2. Kolattukudy PE (1968) Biosynthesis of surface lipids. Biosynthesis of long-chain hydrocarbons and waxy esters is discussed. Science 159:498–505

    Article  PubMed  CAS  Google Scholar 

  3. Marsh EN, Waugh MW (2013) Aldehyde decarbonylases: enigmatic enzymes of hydrocarbon biosynthesis. ACS Catal 3:2515–2521

    Article  CAS  Google Scholar 

  4. Buist PH (2007) Exotic biomodification of fatty acids. Nat Prod Rep 24:1110–1127

    Article  PubMed  CAS  Google Scholar 

  5. Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S, Wajnberg E, Fricaux T, Taquet N, Blomquist GJ, Feyereisen R (2012) An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci U S A 109:14858–14863

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    Article  PubMed  CAS  Google Scholar 

  7. Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562

    Article  PubMed  CAS  Google Scholar 

  8. Warui DM, Li N, Norgaard H, Krebs C, Bollinger JM Jr, Booker SJ (2011) Detection of formate, rather than carbon monoxide, as the stoichiometric coproduct in conversion of fatty aldehydes to alkanes by a cyanobacterial aldehyde decarbonylase. J Am Chem Soc 133:3316–3319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Li N, Chang WC, Warui DM, Booker SJ, Krebs C, Bollinger JM Jr (2012) Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases. Biochemistry 51:7908–7916

    Article  PubMed  CAS  Google Scholar 

  10. Eser BE, Das D, Han J, Jones PR, Marsh EN (2012) Correction to oxygen-independent alkane formation by non-heme iron-dependent cyanobacterial aldehyde decarbonylase: investigation of kinetics and requirement for an external electron donor. Biochemistry 51:5703

    Article  PubMed  CAS  Google Scholar 

  11. Andre C, Kim SW, Yu XH, Shanklin J (2013) Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2. Proc Natl Acad Sci U S A 110:3191–3196

    Article  PubMed  PubMed Central  Google Scholar 

  12. Coates RC, Podell S, Korobeynikov A, Lapidus A, Pevzner P, Sherman DH, Allen EE, Gerwick L, Gerwick WH (2014) Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS One 9:e85140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Winters K, Parker PL, Van Baalen C (1969) Hydrocarbons of blue-green algae: geochemical significance. Science 163:467–468

    Article  PubMed  CAS  Google Scholar 

  14. Mendez-Perez D, Begemann MB, Pfleger BF (2011) Modular synthase-encoding gene involved in a-olefin biosynthesis in Synechococcus sp. strain PCC 7002. Appl Environ Microbiol 77:4264–4267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Klähn S, Baumgartner D, Pfreundt U, Voigt K, Schon V, Steglich C, Hess WR (2014) Alkane biosynthesis genes in cyanobacteria and their transcriptional organization. Front Bioeng Biotechnol 2:24

    Article  PubMed  PubMed Central  Google Scholar 

  16. Khara B, Menon N, Levy C, Mansell D, Das D, Marsh EN, Leys D, Scrutton NS (2013) Production of propane and other short-chain alkanes by structure-based engineering of ligand specificity in aldehyde-deformylating oxygenase. Chembiochem 14:1204–1208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Buer BC, Paul B, Das D, Stuckey JA, Marsh EN (2014) Insights into substrate and metal binding from the crystal structure of cyanobacterial aldehyde deformylating oxygenase with substrate bound. ACS Chem Biol 9:2584–2593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Jia C, Li M, Li J, Zhang J, Zhang H, Cao P, Pan X, Lu X, Chang W (2015) Structural insights into the catalytic mechanism of aldehyde-deformylating oxygenases. Protein Cell 6:55–67

    Article  PubMed  CAS  Google Scholar 

  19. Wang Q, Bao L, Jia C, Li M, Li JJ, Lu X (2017) Identification of residues important for the activity of aldehyde-deformylating oxygenase through investigation into the structure-activity relationship. BMC Biotechnol 17:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Park AK, Kim IS, Jeon BW, Roh SJ, Ryu MY, Baek HR, Jo SW, Kim YS, Park H, Lee JH, Yoon HS, Kim HW (2016) Crystal structures of aldehyde deformylating oxygenase from Limnothrix sp. KNUA012 and Oscillatoria sp. KNUA011. Biochem Biophys Res Commun 477:395–400

    Article  PubMed  CAS  Google Scholar 

  21. Krebs C, Bollinger JM Jr, Booker SJ (2011) Cyanobacterial alkane biosynthesis further expands the catalytic repertoire of the ferritin-like ‘di-iron-carboxylate’ proteins. Curr Opin Chem Biol 15:291–303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Das D, Eser BE, Han J, Sciore A, Marsh EN (2011) Oxygen-independent decarbonylation of aldehydes by cyanobacterial aldehyde decarbonylase: a new reaction of diiron enzymes. Angew Chem Int Ed Eng 50:7148–7152

    Article  CAS  Google Scholar 

  23. Rajakovich LJ, Norgaard H, Warui DM, Chang WC, Li N, Booker SJ, Krebs C, Bollinger JM Jr, Pandelia ME (2015) Rapid reduction of the diferric-peroxyhemiacetal intermediate in aldehyde-deformylating oxygenase by a cyanobacterial ferredoxin: evidence for a free-radical mechanism. J Am Chem Soc 137:11695–11709

    Article  PubMed  CAS  Google Scholar 

  24. Waugh MW, Marsh EN (2014) Solvent isotope effects on alkane formation by cyanobacterial aldehyde deformylating oxygenase and their mechanistic implications. Biochemistry 53:5537–5543

    Article  PubMed  CAS  Google Scholar 

  25. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  26. Pandelia ME, Li N, Norgaard H, Warui DM, Rajakovich LJ, Chang WC, Booker SJ, Krebs C, Bollinger JM Jr (2013) Substrate-triggered addition of dioxygen to the diferrous cofactor of aldehyde-deformylating oxygenase to form a diferric-peroxide intermediate. J Am Chem Soc 135:15801–15812

    Article  PubMed  CAS  Google Scholar 

  27. Hayashi Y, Yasugi F, Arai M (2015) Role of cysteine residues in the structure, stability, and alkane producing activity of cyanobacterial aldehyde deformylating oxygenase. PLoS One 10:e0122217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bao L, Li JJ, Jia C, Li M, Lu X (2016) Structure-oriented substrate specificity engineering of aldehyde-deformylating oxygenase towards aldehydes carbon chain length. Biotechnol Biofuels 9:185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. O’Brien PJ, Siraki AG, Shangari N (2005) Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol 35:609–662

    Article  PubMed  CAS  Google Scholar 

  30. Warui DM, Pandelia ME, Rajakovich LJ, Krebs C, Bollinger JM Jr, Booker SJ (2015) Efficient delivery of long-chain fatty aldehydes from the Nostoc punctiforme acyl-acyl carrier protein reductase to its cognate aldehyde-deformylating oxygenase. Biochemistry 54:1006–1015

    Article  PubMed  CAS  Google Scholar 

  31. Das D, Ellington B, Paul B, Marsh EN (2014) Mechanistic insights from reaction of α-oxiranyl-aldehydes with cyanobacterial aldehyde deformylating oxygenase. ACS Chem Biol 9:570–577

    Article  PubMed  CAS  Google Scholar 

  32. Eser BE, Das D, Han J, Jones PR, Marsh EN (2011) Oxygen-independent alkane formation by non-heme iron-dependent cyanobacterial aldehyde decarbonylase: investigation of kinetics and requirement for an external electron donor. Biochemistry 50:10743–10750

    Article  PubMed  CAS  Google Scholar 

  33. Zhang J, Lu X, Li JJ (2013) Conversion of fatty aldehydes into alk(a/e)nes by in vitro reconstituted cyanobacterial aldehyde-deformylating oxygenase with the cognate electron transfer system. Biotechnol Biofuels 6:86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wang Q, Huang X, Zhang J, Lu X, Li S, Li JJ (2014) Engineering self-sufficient aldehyde deformylating oxygenases fused to alternative electron transfer systems for efficient conversion of aldehydes into alkanes. Chem Commun (Camb) 50:4299–4301

    Article  CAS  Google Scholar 

  35. Li N, Norgaard H, Warui DM, Booker SJ, Krebs C, Bollinger JM Jr (2011) Conversion of fatty aldehydes to alka(e)nes and formate by a cyanobacterial aldehyde decarbonylase: cryptic redox by an unusual dimetal oxygenase. J Am Chem Soc 133:6158–6161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Patra T, Manna S, Maiti D (2011) Metal-mediated deformylation reactions: synthetic and biological avenues. Angew Chem Int Ed Eng 50:12140–12142

    Article  CAS  Google Scholar 

  37. Paul B, Das D, Ellington B, Marsh EN (2013) Probing the mechanism of cyanobacterial aldehyde decarbonylase using a cyclopropyl aldehyde. J Am Chem Soc 135:5234–5237

    Article  PubMed  CAS  Google Scholar 

  38. Wang C, Zhao C, Hu L, Chen H (2016) Calculated mechanism of cyanobacterial aldehyde-deformylating oxygenase: asymmetric aldehyde activation by a symmetric diiron cofactor. J Phys Chem Lett 7:4427–4432

    Article  PubMed  CAS  Google Scholar 

  39. Aukema KG, Makris TM, Stoian SA, Richman JE, Munck E, Lipscomb JD, Wackett LP (2013) Cyanobacterial aldehyde deformylase oxygenation of aldehydes yields n-1 aldehydes and alcohols in addition to alkanes. ACS Catal 3:2228–2238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Coursolle D, Lian J, Shanklin J, Zhao H (2015) Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxygenase with a bacterial type-I fatty acid synthase in E. coli. Mol Biosyst 11:2464–2472

    Article  PubMed  CAS  Google Scholar 

  41. Wang W, Liu X, Lu X (2013) Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnol Biofuels 6:69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Cao YX, **ao WH, Liu D, Zhang JL, Ding MZ, Yuan YJ (2015) Biosynthesis of odd-chain fatty alcohols in Escherichia coli. Metab Eng 29:113–123

    Article  PubMed  CAS  Google Scholar 

  43. Kang MK, Zhou YJ, Buijs NA, Nielsen J (2017) Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae. Microb Cell Factories 16:74

    Article  CAS  Google Scholar 

  44. Patrikainen P, Carbonell V, Thiel K, Aro EM, Kallio P (2017) Comparison of orthologous cyanobacterial aldehyde deformylating oxygenases in the production of volatile C3-C7 alkanes in engineered E. coli. Metab Eng Commun 5:9–18

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lin F, Das D, Lin XN, Marsh EN (2013) Aldehyde-forming fatty acyl-CoA reductase from cyanobacteria: expression, purification and characterization of the recombinant enzyme. FEBS J 280:4773–4781

    Article  PubMed  CAS  Google Scholar 

  46. Kudo H, Nawa R, Hayashi Y, Arai M (2016) Comparison of aldehyde-producing activities of cyanobacterial acyl-(acyl carrier protein) reductases. Biotechnol Biofuels 9:234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Liu R, Zhu F, Lu L, Fu A, Lu J, Deng Z, Liu T (2014) Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli. Metab Eng 22:10–21

    Article  PubMed  CAS  Google Scholar 

  48. Shakeel T, Fatma Z, Fatma T, Yazdani SS (2015) Heterogeneity of alkane chain length in freshwater and marine cyanobacteria. Front Bioeng Biotechnol 3:34

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yoshino T, Liang Y, Arai D, Maeda Y, Honda T, Muto M, Kakunaka N, Tanaka T (2015) Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway. Appl Microbiol Biotechnol 99:1521–1529

    Article  PubMed  CAS  Google Scholar 

  50. Schirmer A, Rude M, Helman N (US20110124071A1) Methods and compositions for producing hydrocarbons. US20110124071A1; WO2011062987A2; WO2011062987A3

    Google Scholar 

  51. Cao YX, **ao WH, Zhang JL, **e ZX, Ding MZ, Yuan YJ (2016) Heterologous biosynthesis and manipulation of alkanes in Escherichia coli. Metab Eng 38:19–28

    Article  PubMed  CAS  Google Scholar 

  52. Zhang L, Liang Y, Wu W, Tan X, Lu X (2016) Microbial synthesis of propane by engineering valine pathway and aldehyde-deformylating oxygenase. Biotechnol Biofuels 9:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Rude M, Trinh N, Schirmer A, Gano J (US9683219B2) Acyl-ACP reductase with improved properties. CA2898317A1; CN105051189A; EP2946009A2; EP2946009B1; EP3103867A1; US9683219B2; US20150361454; US20160348080; WO2014113571A2; WO2014113571A3

    Google Scholar 

  54. Rodriguez GM, Atsumi S (2014) Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab Eng 25:227–237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Rahman Z, Sung BH, Yi JY, Bui Le M, Lee JH, Kim SC (2014) Enhanced production of n-alkanes in Escherichia coli by spatial organization of biosynthetic pathway enzymes. J Biotechnol 192(Pt A):187–191

    Article  CAS  Google Scholar 

  56. Wang B, Wang J, Zhang W, Meldrum DR (2012) Application of synthetic biology in cyanobacteria and algae. Front Microbiol 3:344

    PubMed  PubMed Central  Google Scholar 

  57. Kallio P, Pasztor A, Akhtar MK, Jones PR (2014) Renewable jet fuel. Curr Opin Biotechnol 26:50–55

    Article  PubMed  CAS  Google Scholar 

  58. Kang MK, Nielsen J (2017) Biobased production of alkanes and alkenes through metabolic engineering of microorganisms. J Ind Microbiol Biotechnol 44:613–622

    Article  PubMed  CAS  Google Scholar 

  59. **e M, Wang W, Zhang W, Chen L, Lu X (2017) Versatility of hydrocarbon production in cyanobacteria. Appl Microbiol Biotechnol 101:905–919

    Article  PubMed  CAS  Google Scholar 

  60. Wang J, Zhu K (2018) Microbial production of alka(e)ne biofuels. Curr Opin Biotechnol 50:11–18

    Article  PubMed  CAS  Google Scholar 

  61. Peramuna A, Morton R, Summers ML (2015) Enhancing alkane production in cyanobacterial lipid droplets: a model platform for industrially relevant compound production. Life (Basel) 5:1111–1126

    CAS  Google Scholar 

  62. Kageyama H, Waditee-Sirisattha R, Sirisattha S, Tanaka Y, Mahakhant A, Takabe T (2015) Improved alkane production in nitrogen-fixing and halotolerant cyanobacteria via abiotic stresses and genetic manipulation of alkane synthetic genes. Curr Microbiol 71:115–120

    Article  PubMed  CAS  Google Scholar 

  63. Yoshida S, Takahashi M, Ikeda A, Fukuda H, Kitazaki C, Asayama M (2015) Overproduction and easy recovery of biofuels from engineered cyanobacteria, autolyzing multicellular cells. J Biochem 157:519–527

    Article  PubMed  CAS  Google Scholar 

  64. Asayama M (2012) Overproduction and easy recovery of target gene products from cyanobacteria, photosynthesizing microorganisms. Appl Microbiol Biotechnol 95:683–695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Reppas NB, Ridley CP (US7794969B1) Methods and compositions for the recombinant biosynthesis of n-alkanes. CA2766204A1; CN102597248A; CN102597248B; CN104630279A; EP2307553A2; EP2307553A4; EP2307553B1; EP2584032A2; EP2584032A3; EP2584032B1; EP2787061A1; US7794969B1; US7919303; US8101397; US8481285; US9458069; US20110009674; US20110172467; US20120095266; US20140005439; US20170051315; WO2011006137A2; WO2011006137A3

    Google Scholar 

  66. Butterworth PH, Bloch K (1970) Comparative aspects of fatty acid synthesis in Bacillus subtilis and Escherichia coli. Eur J Biochem 12:496–501

    Article  PubMed  CAS  Google Scholar 

  67. Schweizer E, Hofmann J (2004) Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 68:501–517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Rock CO, Jackowski S (2002) Forty years of bacterial fatty acid synthesis. Biochem Biophys Res Commun 292:1155–1166

    Article  PubMed  CAS  Google Scholar 

  69. Gao Q, Wang W, Zhao H, Lu X (2012) Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803. Biotechnol Biofuels 5:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Song X, Yu H, Zhu K (2016) Improving alkane synthesis in Escherichia coli via metabolic engineering. Appl Microbiol Biotechnol 100:757–767

    Article  PubMed  CAS  Google Scholar 

  71. Fujita Y, Matsuoka H, Hirooka K (2007) Regulation of fatty acid metabolism in bacteria. Mol Microbiol 66:829–839

    Article  PubMed  CAS  Google Scholar 

  72. Cronan JE Jr (1997) In vivo evidence that acyl coenzyme A regulates DNA binding by the Escherichia coli FadR global transcription factor. J Bacteriol 179:1819–1823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Ichikawa S, Karita S (2015) Bacterial production and secretion of water-insoluble fuel compounds from cellulose without the supplementation of cellulases. FEMS Microbiol Lett 362:fnv202

    Article  PubMed  CAS  Google Scholar 

  74. Crepin L, Lombard E, Guillouet SE (2016) Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production. Metab Eng 37:92–101

    Article  PubMed  CAS  Google Scholar 

  75. Sinha M, Weyda I, Sorensen A, Bruno KS, Ahring BK (2017) Alkane biosynthesis by Aspergillus carbonarius ITEM 5010 through heterologous expression of Synechococcus elongatus acyl-ACP/CoA reductase and aldehyde deformylating oxygenase genes. AMB Express 7:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Harger M, Zheng L, Moon A, Ager C, An JH, Choe C, Lai YL, Mo B, Zong D, Smith MD, Egbert RG, Mills JH, Baker D, Pultz IS, Siegel JB (2013) Expanding the product profile of a microbial alkane biosynthetic pathway. ACS Synth Biol 2:59–62

    Article  PubMed  CAS  Google Scholar 

  77. Howard TP, Middelhaufe S, Moore K, Edner C, Kolak DM, Taylor GN, Parker DA, Lee R, Smirnoff N, Aves SJ, Love J (2013) Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc Natl Acad Sci U S A 110:7636–7641

    Article  PubMed  PubMed Central  Google Scholar 

  78. Foo JL, Susanto AV, Keasling JD, Leong SS, Chang MW (2017) Whole-cell biocatalytic and de novo production of alkanes from free fatty acids in Saccharomyces cerevisiae. Biotechnol Bioeng 114:232–237

    Article  PubMed  CAS  Google Scholar 

  79. Koeduka T, Matsui K, Akakabe Y, Kajiwara T (2002) Catalytic properties of rice α-oxygenase. A comparison with mammalian prostaglandin H synthases. J Biol Chem 277:22648–22655

    Article  PubMed  CAS  Google Scholar 

  80. Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Kallio P, Pasztor A, Thiel K, Akhtar MK, Jones PR (2014) An engineered pathway for the biosynthesis of renewable propane. Nat Commun 5:4731

    Article  PubMed  CAS  Google Scholar 

  82. Akhtar MK, Turner NJ, Jones PR (2013) Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci U S A 110:87–92

    Article  PubMed  Google Scholar 

  83. **g F, Cantu DC, Tvaruzkova J, Chipman JP, Nikolau BJ, Yandeau-Nelson MD, Reilly PJ (2011) Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC Biochem 12:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Article  PubMed  CAS  Google Scholar 

  85. Menon N, Pasztor A, Menon BR, Kallio P, Fisher K, Akhtar MK, Leys D, Jones PR, Scrutton NS (2015) A microbial platform for renewable propane synthesis based on a fermentative butanol pathway. Biotechnol Biofuels 8:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Rui Z, Li X, Zhu X, Liu J, Domigan B, Barr I, Cate JH, Zhang W (2014) Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase. Proc Natl Acad Sci U S A 111:18237–18242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Rui Z, Zhang W (US20160289701A1) Biosynthesis of 1-undecence and related terminal olefins. US20160289701A1; WO2015095240A2; WO2015095240A3

    Google Scholar 

  88. Zhu Z, Zhou YJ, Kang MK, Krivoruchko A, Buijs NA, Nielsen J (2017) Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast. Metab Eng 44:81–88

    Article  PubMed  CAS  Google Scholar 

  89. Rui Z, Harris NC, Zhu X, Huang W, Zhang W (2015) Discovery of a family of desaturase-like enzymes for 1-alkene biosynthesis. ACS Catal 5:7091–7094

    Article  CAS  Google Scholar 

  90. Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J (2016) Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun 7:11709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, Muniz-Rascado L, Bonavides-Martinez C, Paley S, Krummenacker M, Altman T, Kaipa P, Spaulding A, Pacheco J, Latendresse M, Fulcher C, Sarker M, Shearer AG, Mackie A, Paulsen I, Gunsalus RP, Karp PD (2011) EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res 39:D583–D590

    Article  PubMed  CAS  Google Scholar 

  92. Fatma Z, Jawed K, Mattam AJ, Yazdani SS (2016) Identification of long chain specific aldehyde reductase and its use in enhanced fatty alcohol production in E. coli. Metab Eng 37:35–45

    Article  PubMed  CAS  Google Scholar 

  93. Yao L, Qi F, Tan X, Lu X (2014) Improved production of fatty alcohols in cyanobacteria by metabolic engineering. Biotechnol Biofuels 7:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Kaczmarzyk D, Cengic I, Yao L, Hudson EP (2018) Diversion of the long-chain acyl-ACP pool in Synechocystis to fatty alcohols through CRISPRi repression of the essential phosphate acyltransferase PlsX. Metab Eng 45:59–66

    Article  PubMed  CAS  Google Scholar 

  95. Kaiser BK, Carleton M, Hickman JW, Miller C, Lawson D, Budde M, Warrener P, Paredes A, Mullapudi S, Navarro P, Cross F, Roberts JM (2013) Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products. PLoS One 8:e58307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sumiya N, Kawase Y, Hayakawa J, Matsuda M, Nakamura M, Era A, Tanaka K, Kondo A, Hasunuma T, Imamura S, Miyagishima SY (2015) Expression of cyanobacterial acyl-ACP reductase elevates the triacylglycerol level in the red alga Cyanidioschyzon merolae. Plant Cell Physiol 56:1962–1980

    Article  PubMed  CAS  Google Scholar 

  97. Arai M (2018) Unified understanding of folding and binding mechanisms of globular and intrinsically disordered proteins. Biophys Rev 10:163–181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Shakeel T, Gupta M, Fatma Z, Kumar R, Kumar R, Singh R, Sharma M, Jade D, Gupta D, Fatma T, Yazdani SS (2018) A consensus-guided approach yields a heat-stable alkane-producing enzyme and identifies residues promoting thermostability. J Biol Chem In press

    Google Scholar 

  99. Fujisawa T, Narikawa R, Maeda SI, Watanabe S, Kanesaki Y, Kobayashi K, Nomata J, Hanaoka M, Watanabe M, Ehira S, Suzuki E, Awai K, Nakamura Y (2017) CyanoBase: a large-scale update on its 20th anniversary. Nucleic Acids Res 45:D551–D554

    Article  PubMed  CAS  Google Scholar 

  100. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  102. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aids for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and by the Institute for Fermentation, Osaka.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munehito Arai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arai, M., Hayashi, Y., Kudo, H. (2018). Cyanobacterial Enzymes for Bioalkane Production. In: Zhang, W., Song, X. (eds) Synthetic Biology of Cyanobacteria. Advances in Experimental Medicine and Biology, vol 1080. Springer, Singapore. https://doi.org/10.1007/978-981-13-0854-3_6

Download citation

Publish with us

Policies and ethics

Navigation