Position-Specific Isotope Analysis as a Fingerprint for Pollutants

  • Living reference work entry
  • First Online:
Handbook of Isotopologue Biogeochemistry
  • 3 Accesses

Abstract

Better methodologies appear to be necessary for detecting the origins of given pollutants, and for understanding the natural processes involved in their migration routes, abiotic degradation, biodegradation, and eventual disappearance. In addition, it is essential to check whether treatment leads to complete mineralization or if cleaning of the polluted area is effective. Isotopic measurement is a fundamental tool that can be used in the management of a pollution to provide indicators as to containment, spread, and bioremediation possibilities. As a complete illustration of this principle, organic contaminants frequently detected in surface and groundwater are given as an example.

Stable isotopes have been used successfully to demonstrate the natural or enhanced biodegradation of petroleum hydrocarbons, solvents, and gasoline additives in soil and groundwater. So far, overall isotopic fractionation in 13C and 2H have been exploited, the isotope content being measured by isotope ratio Mass Spectrometry (IRMS), but this leads to the loss of valuable position-related information. In contrast, NMR spectrometry and pyrolysis coupled to GC-C-IRMS (Py-GC-C-IRMS) offer the capability to measure position-specific 13C/12C ratios, giving new information. Isotopic NMR and Py-GC-C-IRMS methodologies allow to determine position-specific isotope effects involved in physical transformations (volatilization and migration), chemical (hydrolysis and oxidation) as well as degradation by microorganisms. The construction of models provides a unique means to allow detailed detection and tracing of a given pollutant and the determination of its origin as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bai H, Peng L, Cao J, Liu X, Zhang J, Mu L. Effects of volatilization on the hydrogen isotope composition of selected n-alkanes. Atmos Res. 2013;132–133:164–72.

    Article  Google Scholar 

  • Balabane M, Létolle R. Inverse overall isotope fractionation effect through distillation of some aromatic molecules (anethole, benzene and toluene). Chem Geol Isot Geosci Sect. 1985;52(3–4):391–6.

    Article  CAS  Google Scholar 

  • Bartell LS, Roskos RR. Isotope effects on molar volume and surface tension: simple theoretical model and experimental data for hydrocarbons. J Chem Phys. 1966;44(2):457–63.

    Article  CAS  Google Scholar 

  • Barwick VJ. Strategies for solvent selection - a literature review. TrAC Trends Anal Chem. 1997;16(6):293–309.

    Article  CAS  Google Scholar 

  • Bigeleisen J. The relative reaction velocities of isotopic molecules. J Chem Phys. 1949;17(8):675–8.

    Article  CAS  Google Scholar 

  • Bigeleisen J. Statistical mechanics of isotope effects on the thermodynamic properties of condensed systems. J Chem Phys. 1961;34(5):1485–93.

    Article  CAS  Google Scholar 

  • Botosoa EP, Caytan E, Silvestre V, Robins RJ, Akoka S, Remaud GS. Unexpected fractionation in site-specific 13C isotopic distribution detected by quantitative 13C NMR at natural abundance. J Am Chem Soc. 2008 Jan 1;130(2):414–5.

    Article  CAS  Google Scholar 

  • Botosoa EP, Silvestre V, Robins RJ, Rojas JMM, Guillou C, Remaud GS. Evidence of 13C non-covalent isotope effects obtained by quantitative 13C nuclear magnetic resonance spectroscopy at natural abundance during normal phase liquid chromatography. J Chromatogr A. 2009;1216(42):7043–8.

    Article  CAS  Google Scholar 

  • Cerón-Carrasco JP, Jacquemin D, Laurence C, Planchat A, Reichardt C, Sraïdi K. Determination of a solvent hydrogen-bond acidity scale by means of the solvatochromism of pyridinium-N-phenolate betaine dye 30 and PCM-TD-DFT calculations. J Phys Chem B. 2014a;118(17):4605–14.

    Article  Google Scholar 

  • Cerón-Carrasco JP, Jacquemin D, Laurence C, Planchat A, Reichardt C, Sraïdi K. Solvent polarity scales: determination of new ET(30) values for 84 organic solvents. J Phys Org Chem. 2014b;27(6):512–8.

    Article  Google Scholar 

  • Craig H, Gordon LI. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Conference on Stable Isotopes in Oceanographic Studies and Paleotemperatures, 1965.

    Google Scholar 

  • Damm JH, Hardacre C, Kalin RM, Walsh KP. Kinetics of the oxidation of methyl tert-butyl ether (MTBE) by potassium permanganate. Water Res. 2002;36(14):3638–46.

    Article  CAS  Google Scholar 

  • Eiler JM, Clog M, Magyar P, Piasecki A, Sessions A, Stolper D, et al. A high-resolution gas-source isotope ratio mass spectrometer. Int J Mass Spectrom. 2013;335:45–56.

    Article  CAS  Google Scholar 

  • Elsner M, McKelvie J, Lacrampe Couloume G, Sherwood Lollard B. Insight into Methyl tert-Butyl Ether (MTBE) stable isotope fractionation from abiotic reference experiments. Environ Sci Technol. 2007;41(16):5693–700.

    Article  CAS  Google Scholar 

  • Gauchotte C, O’Sullivan G, Davis S, Kalin RM. Development of an advanced on-line position-specific stable carbon isotope system and application to methyl tert-butyl ether. Rapid Commun Mass Spectrom. 2009 Oct;23(19):3183–93.

    Article  CAS  Google Scholar 

  • Gauchotte C, Davis S, O’Sullivan G, Kalin RM. Site-specific stable carbon isotope study of the oxidation of methyl tert-butyl ether by potassium permanganate using an advanced on-line position specific stable isotope analysis system (EGU2011–12277, 2011). In Geophysical Research Abstracts, EGU General Assembly, (13):2011.

    Google Scholar 

  • Gilbert A, Yamada K, Suda K, Ueno Y, Yoshida N. Measurement of position-specific 13C isotopic composition of propane at the nanomole level. Geochim Cosmochim Acta. 2016;177:205–16.

    Article  CAS  Google Scholar 

  • Haddad L, Renou S, Remaud GS, Rizk T, Bejjani J, Akoka S. A precise and rapid isotopomic analysis of small quantities of cholesterol at natural abundance by optimized 1H-13C 2D NMR. Anal Bioanal Chem. 2021;413:1521–32.

    Article  CAS  Google Scholar 

  • Haring MM. The theory of rate processes (Glasstone, Samuel; Laidler, Keith J.; Eyring, Henry). J Chem Educ. 1942;19(5):249.

    Article  Google Scholar 

  • Harrington RR, Poulson SR, Drever JI, Colberg PJS, Kelly EF. Carbon isotope systematics of monoaromatic hydrocarbons: vaporization and adsorption experiments. Org Geochem. 1999;30(8, Part 1):765–75.

    Article  CAS  Google Scholar 

  • Hattori R, Yamada K, Kikuchi M, Hirano S, Yoshida N. Intramolecular carbon isotope distribution of acetic acid in vinegar. J Agric Food Chem. 2011;59(17):9049–53.

    Article  CAS  Google Scholar 

  • Höhener P, Silvestre V, Lefrançois A, Loquet D, Botosoa EP, Robins RJ, et al. Analytical model for site-specific isotope fractionation in 13C during sorption: determination by isotopic 13C NMR spectrometry with vanillin as model compound. Chemosphere. 2012;87(5):445–52.

    Article  Google Scholar 

  • Huang L, Sturchio NC, Abrajano T Jr, Heraty LJ, Holt BD. Carbon and chlorine isotope fractionation of chlorinated aliphatic hydrocarbons by evaporation. Org Geochem. 1999;30(8, Part 1):777–85.

    Article  CAS  Google Scholar 

  • Imfeld G, Kopinke FD, Fischer A, Richnow HH. Carbon and hydrogen isotope fractionation of benzene and toluene during hydrophobic sorption in multistep batch experiments. Chemosphere. 2014;107:454–61.

    Article  CAS  Google Scholar 

  • Jeannottat S, Hunkeler D. Chlorine and carbon isotopes fractionation during volatilization and diffusive transport of trichloroethene in the unsaturated zone. Environ Sci Technol. 2012;46(6):3169–76.

    Article  CAS  Google Scholar 

  • Jézéquel T, Joubert V, Giraudeau P, Remaud GS, Akoka S. The new face of isotopic NMR at natural abundance. Magn Reson Chem. 2017;55(2):77–90.

    Article  Google Scholar 

  • Julien M, Nun P, Robins RJ, Remaud GS, Parinet J, Höhener P. Insights into mechanistic models for evaporation of organic liquids in the environment obtained by position-specific carbon isotope analysis. Environ Sci Technol. 2015a;49(21):12782–8.

    Article  CAS  Google Scholar 

  • Julien M, Parinet J, Nun P, Bayle K, Höhener P, Robins RJ, et al. Fractionation in position-specific isotope composition during vaporization of environmental pollutants measured with isotope ratio monitoring by 13C nuclear magnetic resonance spectrometry. Environ Pollut. 2015b;205:299–306.

    Article  CAS  Google Scholar 

  • Julien M, Nun P, Höhener P, Parinet J, Robins RJ, Remaud GS. Enhanced forensic discrimination of pollutants by position-specific isotope analysis using isotope ratio monitoring by 13C nuclear magnetic resonance spectrometry. Talanta. 2016;147:383–9.

    Article  CAS  Google Scholar 

  • Julien M, Höhener P, Robins RJ, Parinet J, Remaud GS. Position-specific 13C fractionation during liquid-vapor transition correlated to the strength of intermolecular interaction in the liquid phase. J Phys Chem B. 2017;121(23):5810–7.

    Article  CAS  Google Scholar 

  • Julien M, Gori D, Höhener P, Robins RJ, Remaud GS. Intramolecular isotope effects during permanganate oxidation and acid hydrolysis of methyl tert-butyl ether. Chemosphere. 2020;248:125975.

    Article  CAS  Google Scholar 

  • Julien M, Liégeois M, Höhener P, Paneth P, Remaud GS. Intramolecular non-covalent isotope effects at natural abundance associated with the migration of paracetamol in solid matrices during liquid chromatography. J Chromatogr A. 2021;1639:461932.

    Article  CAS  Google Scholar 

  • Kopinke F-D, Georgi A, Voskamp M, Richnow HH. Carbon isotope fractionation of organic contaminants due to retardation on humic substances: implications for natural attenuation studies in aquifers. Environ Sci Technol. 2005;39(16):6052–62.

    Article  CAS  Google Scholar 

  • Kuder T, Philp P, Allen J. Effects of volatilization on carbon and hydrogen isotope ratios of MTBE. Environ Sci Technol. 2009;43(6):1763–8.

    Article  CAS  Google Scholar 

  • Lapworth DJ, Baran N, Stuart ME, Ward RS. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut. 2012;163:287–303.

    Article  CAS  Google Scholar 

  • Laurence C, Legros J, Nicolet P, Vuluga D, Chantzis A, Jacquemin D. Solvatomagnetic comparison method: a proper quantification of solvent hydrogen-bond basicity. J Phys Chem B. 2014;118(27):7594–608.

    Article  CAS  Google Scholar 

  • Levchuk I, Bhatnagar A, Sillanpää M. Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water. Sci Total Environ. 2014;476–477:415–33.

    Article  Google Scholar 

  • McKelvie JR, Hyman MR, Elsner M, Smith C, Aslett DM, Lacrampe-Couloume G, et al. Isotopic fractionation of methyl tert-butyl ether suggests different initial reaction mechanisms during aerobic biodegradation. Environ Sci Technol. 2009;43(8):2793–9.

    Article  CAS  Google Scholar 

  • Neubauer C, Sweredoski MJ, Moradian A, Newman DK, Robins RJ, Eiler JM. Scanning the isotopic structure of molecules by tandem mass spectrometry. Int J Mass Spectrom. 2018;434:276–86.

    Article  CAS  Google Scholar 

  • Neubauer C, Crémière A, Wang XT, Thiagarajan N, Sessions AL, Adkins JF, et al. Stable isotope analysis of intact oxyanions using electrospray quadrupole-orbitrap mass spectrometry. Anal Chem. 2020;92(4):3077–85.

    Article  CAS  Google Scholar 

  • Piasecki A, Sessions A, Lawson M, Ferreira AA, Neto EVS, Eiler JM. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer. Geochim Cosmochim Acta. 2016;188:58–72.

    Article  CAS  Google Scholar 

  • Poulson SR, Drever JI. Stable isotope (C, cl, and H) fractionation during vaporization of trichloroethylene. Environ Sci Technol. 1999;33(20):3689–94.

    Article  CAS  Google Scholar 

  • Reichardt C. Solvatochromism, thermochromism, piezochromism, halochromism, and chiro-solvatochromism of pyridinium N-phenoxide betaine dyes. Chem Soc Rev. 1992;21(3):147–53.

    Article  CAS  Google Scholar 

  • Reichardt C. Solvatochromic dyes as solvent polarity indicators. Chem Rev. 1994;94(8):2319–58.

    Article  CAS  Google Scholar 

  • Rosell M, Gonzalez-Olmos R, Rohwerder T, Rusevova K, Georgi A, Kopinke F-D, et al. Critical evaluation of the 2D-CSIA scheme for distinguishing fuel oxygenate degradation reaction mechanisms. Environ Sci Technol. 2012;46(9):4757–66.

    Article  CAS  Google Scholar 

  • Schüth C, Taubald H, Bolaño N, Maciejczyk K. Carbon and hydrogen isotope effects during sorption of organic contaminants on carbonaceous materials. J Contam Hydrol. 2003;64(3–4):269–81.

    Article  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM. Environmental organic chemistry. 2nd ed. Hoboken: Wiley; 2003.

    Google Scholar 

  • Shin WJ, Lee KS. Carbon isotope fractionation of benzene and toluene by progressive evaporation. Rapid Commun Mass Spectrom. 2010;24(11):1636–40.

    Article  CAS  Google Scholar 

  • Slater GF, Ahad JME, Sherwood Lollar B, Allen-King R, Sleep B. Carbon isotope effects resulting from equilibrium sorption of dissolved VOCs. Anal Chem. 2000;72(22):5669–72.

    Article  CAS  Google Scholar 

  • Thomas F, Randet C, Gilbert A, Silvestre V, Jamin E, Akoka S, et al. Improved characterization of the botanical origin of sugar by carbon-13 SNIF-NMR applied to ethanol. J Agric Food Chem. 2010;58(22):11580–5.

    Article  CAS  Google Scholar 

  • Wang Y, Huang Y. Hydrogen isotope fractionation of low molecular weight n-alkanes during progressive vaporization. Org Geochem. 2001;32(8):991–8.

    Article  CAS  Google Scholar 

  • **ao Q, Sun Y, Zhang Y, Chai P. Stable carbon isotope fractionation of individual light hydrocarbons in the C6–C8 range in crude oil as induced by natural evaporation: experimental results and geological implications. Org Geochem. 2012;50:44–56.

    Article  CAS  Google Scholar 

  • Yu T, Gan Y, Zhou A, Yu K, Liu Y. Investigation of Stable C and Cl isotope effects of trichloroethene and tetrachloroethylene during evaporation at different temperatures. J Earth Sci. 2014;25(4):735–40.

    Article  CAS  Google Scholar 

  • Zhang B-L, Jouitteau C, Pionnier S, Gentil E. Determination of multiple equilibrium isotopic fractionation factors at natural abundance in liquid-vapor transitions of organic molecules. J Phys Chem B. 2002;106(11):2983–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Julien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Julien, M. (2023). Position-Specific Isotope Analysis as a Fingerprint for Pollutants. In: Yoshida, N., Gilbert, A., Foriel, J. (eds) Handbook of Isotopologue Biogeochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-10-7048-8_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7048-8_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7048-8

  • Online ISBN: 978-981-10-7048-8

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Navigation