Role of Sp1 Transcriptional Factor in Gastrointestinal Carcinogenesis

  • Chapter
  • First Online:
Role of Transcription Factors in Gastrointestinal Malignancies

Abstract

Sp1 protein binds to GC/GT-rich promoter elements through zinc finger motifs present at their C-terminal domains and regulates expression of multiple genes in normal tissues and tumors. Sp1 protein plays a critical role in the growth and metastasis of gastrointestinal cancers by regulating expression of cell cycle genes and VEGF. However, Sp1 is involved much in growth-related signal transduction pathways, and its overexpression has both positive and negative effects on proliferation of cells. In addition to growth control, Sp1 is intricate in apoptosis and angiogenesis; therefore, Sp1 is involved in several aspects of tumorigenesis. Consistent with a role of Sp1 in cancer, it interacts with oncogenes and tumor suppressors and alters their expression. Effects of changes in Sp1 factor are context-dependent and are paradoxical. Sp1 proteins have been recognized as an essential cancer drug target.

The original version of this chapter was revised. The book was inadvertently published without Abstracts and Keywords, which are now included in all the chapters. An erratum to this chapter can be found at https://doi.org/10.1007/978-981-10-6728-0_39

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asanuma K, Tsuji N, Endoh T, Yagihashi A, Watanabe N (2004) Surviving enhances Fas ligand expression via up-regulation of specificity protein 1- mediated gene transcription in colon cancer cells. J Immunol 172:3922–3929

    Article  CAS  PubMed  Google Scholar 

  2. Aziz F, Wang X, Liu J, Yan Q (2016) Ginsenoside Rg3 induces FUT4-mediated apoptosis in h. Pylori CAGA-treated gastric cancer cells by regulating SP1 and HSF1 expressions. Toxicol In Vitro 31:158–166

    Article  CAS  PubMed  Google Scholar 

  3. Beishline K, Azizkhan-Clifford J (2015) Sp1 and the ‘hallmarks of cancer’. FEBS J 282(2):224–258

    Article  CAS  PubMed  Google Scholar 

  4. Black AR, Black JD, Azizkhan-Clifford J (2001) Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 188:143–160

    Article  CAS  PubMed  Google Scholar 

  5. Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602

    Article  CAS  PubMed  Google Scholar 

  6. Chen Y, Huang Y, Huang Y, **a X, Zhang J, Zhou Y, …, Re OD (2013) JWA suppresses tumor angiogenesis via Sp1-activated matrix metalloproteinase-2 and its prognostic significance in human gastric cancer. Carcinogenesis bgt311

    Google Scholar 

  7. Cheng Q, Ling X, Haller A, Nakahara T, Yamanaka K, Kita A, Koutoku H, Takeuchi M, Brattain MG, Li F (2012) Suppression of surviving promoter activity by YM155 involves disruption of Sp1-DNA interaction in the surviving core promoter. Int J Biochem Mol Biol 3:179–197

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Chiefari E, Brunetti A, Arturi F, Bidart JM, Russo D, Schlumberger M, Filetti S (2002) Increased expression of AP2 and Sp1 transcription factors in human thyroid tumors: a role in NIS expression regulation? BMC Cancer 2:35

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chitnis MM, Yuen JS, Protheroe AS, Pollak M, Macaulay VM (2008) The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res 14:6364–6370

    Article  CAS  PubMed  Google Scholar 

  10. Dennig J, Beato M, Suske G (1996) An inhibitor domain in Sp3 regulates its glutamine-rich activation domains. EMBO J 15:5659–5667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Duan H, Heckman CA, Boxer LM (2005) Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t(14;18) lymphomas. Mol Cell Biol 25:1608–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haley J, Whittle N, Bennet P, Kinchington D, Ullrich A, Waterfield M (1987) The human EGF receptor gene: structure of the 110 kb locus and identification of sequences regulating its transcription. Oncogene Res 1:375–396

    PubMed  CAS  Google Scholar 

  13. Han I, Kudlow JE (1997) Reduced O-glycosylation of Sp1 is associated with increased proteasome susceptibility. Mol Cell Biol 17:2550–2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  15. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  16. Ito T, Azumano M, Uwatoko C, Itoh K, Kuwahara J (2009) Role of zinc finger structure in nuclear localization of transcription factor Sp1. Biochem Biophys Res Commun 380:28–32

    Article  CAS  PubMed  Google Scholar 

  17. Jia Z, Zhang J, Wei D, Wang L, Yuan P, Le X, Li Q, Yao J, **e K (2007) Molecular basis of the synergistic antiangiogenic activity of bevacizumab and mithramycin A. Cancer Res 67:4878–4885

    Article  CAS  PubMed  Google Scholar 

  18. Kageyama R, Merlino GT, Pastan I (1988) Epidermal growth factor (EGF) receptor gene transcription. Requirement for Sp1 and an EGF receptor-specific factor. J Biol Chem 263:6329–6336

    PubMed  CAS  Google Scholar 

  19. Kitadai Y, Yasui W, Yokozaki H, Kuniyasu H, Haruma K, Kajiyama G, Tahara E (1992) The level of a transcription factor Sp1 is correlated with the expression of EGF receptor in human gastric carcinomas. Biochem Biophys Res Commun 189:1342–1348

    Article  CAS  PubMed  Google Scholar 

  20. Li AY, Lin HH, Kuo CY, Shih HM, Wang CC, Yen Y, Ann DK (2011) High-mobility group A2 protein modulates hTERT transcription to promote tumorigenesis. Mol Cell Biol 31:2605–2617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li Z, Guo Y, Jiang H, Zhang T, ** C, Young CY, Yuan H (2014) Differential regulation of MMPs by E2F1, Sp1 and NF-kappa B controls the small cell lung cancer invasive phenotype. BMC Cancer 14(1):276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maor S, Yosepovich A, Papa MZ, Yarden RI, Mayer D, Friedman E, Werner H (2007) Elevated insulin like growth factor-I receptor (IGF-IR) levels in primary breast tumors associated with BRCA1 mutations. Cancer Lett 257:236–243

    Article  CAS  PubMed  Google Scholar 

  23. Maor SB, Abramovitch S, Erdos MR, Brody LC, bWerner H (2000) BRCA1 suppresses insulin-like growth factor-I receptor promoter activity: potential interaction between BRCA1 and Sp1. Mol Genet Metab 69:130–136

    Article  CAS  PubMed  Google Scholar 

  24. Nam EH, Lee Y, Park YK, Lee JW, Kim S (2012) ZEB2 upregulates integrin α5 expression through cooperation with Sp1 to induce invasion during epithelial–mesenchymal transition of human cancer cells. Carcinogenesis bgs005

    Google Scholar 

  25. Nam, E. H., Lee, Y., Zhao, X. F., Park, Y. K., Lee, J. W., & Kim, S. (2013). ZEB2-Sp1 cooperation induces invasion by upregulating cadherin-11 and integrin α5 expression. Carcinogenesis, bgt340

    Google Scholar 

  26. Normanno, N., De Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M. R., ...& Salomon, D. S. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 366(1), 2-16

    Article  CAS  PubMed  Google Scholar 

  27. Pollak M (2012) The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 12:159–169

    Article  CAS  PubMed  Google Scholar 

  28. Previdi S, Malek A, Albertini V, Riva C, Capella C, Broggini M et al (2010) Inhibition of Sp1-dependent transcription and antitumor activity of the new aureolic acid analogues mithramycin SDK and SK in human ovarian cancer xenografts. Gynecol Oncol 118:182–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seznec J, Silkenstedt B, Naumann U (2011) Therapeutic effects of the Sp1 inhibitor mithramycin A in glioblastoma. J Neuro-Oncol 101:365–377

    Article  CAS  Google Scholar 

  30. Siegel R, DeSantis C, Jemal A (2014) Colorectal cancer statistics, 2014. CA Cancer J Clin 64(2):104–117

    Article  PubMed  Google Scholar 

  31. Su K, Roos MD, Yang X, Han I, Paterson AJ, Kudlow JE (1999) An N-terminal region of Sp1 targets its proteasome-dependent degradation in vitro. J Biol Chem 274:15194–15202

    Article  CAS  PubMed  Google Scholar 

  32. Suske G (1999) The Sp-family of transcription factors. Gene 238(2):291–300

    Article  CAS  PubMed  Google Scholar 

  33. Tan F, Mbunkui F, Ofori-Acquah SF (2012) Cloning of the human activated leukocyte cell adhesion molecule promoter and identification of its tissue-independent transcriptional activation by Sp1. Cell Mol Biol Lett 17(4):571–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vallian S, Chin KV, Chang KS (1998) The promyelocytic leukemia protein interacts with Sp1 and inhibits its transactivation of the epidermal growth factor receptor promoter. Mol Cell Biol 18:7147–7156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vizcaíno C, Mansilla S, Portugal J (2015) Sp1 transcription factor: a long-standing target in cancer chemotherapy. Pharmacol Ther 152:111–124

    Article  CAS  PubMed  Google Scholar 

  36. Wang X, Pan L, Feng Y, Wang Y, Han Q, Han L, Han S, Guo J, Huang B, Lu J (2008a) P300 plays a role in p16(INK4a) expression and cell cycle arrest. Oncogene 27:1894–1904

    Article  CAS  PubMed  Google Scholar 

  37. Wang XB, Peng WQ, Yi ZJ, Zhu SL, Gan QH (2007b) Expression and prognostic value of transcriptional factor Sp1 in breast cancer. Ai Zheng 26:996–1000

    PubMed  CAS  Google Scholar 

  38. Wang L, Guan X, Zhang J, Jia Z, Wei D, Li Q, …, **e K (2008b) Targeted inhibition of Sp1-mediated transcription for antiangiogenic therapy of metastatic human gastric cancer in orthotopic nude mouse models. Int J Oncol 33(1):161–167

    Google Scholar 

  39. Wang L, Wei D, Huang S, Peng Z, Le X, Wu TT, …, **e K (2003) Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res 9(17):6371–6380

    Google Scholar 

  40. Wei S, Chuang HC, Tsai WC, Yang HC, Ho SR, Paterson AJ, Kulp SK, Chen CS (2009) Thiazolidinediones mimic glucose starvation in facilitating Sp1 degradation through the up-regulation of beta-transducin repeat-containing protein. Mol Pharmacol 76:47–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wei D, Wang L, He Y, **ong HQ, Abbruzzese JL, **e K (2004) Celecoxib inhibits vascular endothelial growth factor expression in and reduces angiogenesis and metastasis of human pancreatic cancer via suppression of Sp1 transcription factor activity. Cancer Res 64(6):2030–2038

    Article  CAS  PubMed  Google Scholar 

  42. **e, K., & Huang, S. (2003). Regulation of cancer metastasis by stress pathways. Clinical and Experimental Metastasis, 20(1), 31-43

    Article  CAS  PubMed  Google Scholar 

  43. Yan X, Lin Y, Liu S, Yan Q (2015) Fucosyltransferase IV (FUT4) as an effective biomarker for the diagnosis of breast cancer. Biomed Pharmacother 70:299–304

    Article  CAS  PubMed  Google Scholar 

  44. Yao JC, Wang L, Wei D, Gong W, Hassan M, Wu TT, Mansfield P, Ajani J, **e K (2004) Association between expression of transcription factor Sp1 and increased vascular endothelial growth factor expression, advanced stage, and poor survival in patients with resected gastric cancer. Clin Cancer Res 10(12):4109–4117

    Article  CAS  PubMed  Google Scholar 

  45. Yen WH, Ke WS, Hung JJ, Chen TM, Chen JS, Sun HS (2016) Sp1-mediated ectopic expression of T-cell lymphoma invasion and metastasis 2 in hepatocellular carcinoma. Cancer Med 5(3):465–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang JP, Zhang H, Wang HB, Li YX, Liu GH, **ng S, …, Zeng MS (2014) Down-regulation of Sp1 suppresses cell proliferation, clonogenicity and the expressions of stem cell markers in nasopharyngeal carcinoma. J Transl Med 12(1):222

    Google Scholar 

  47. Zhou C, Ji J, Cai Q, Shi M, Chen X, Yu Y, …, Zhang J (2013) MTA2 promotes gastric cancer cells invasion and is transcriptionally regulated by Sp1. Mol Cancer 12(1):102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallaval Veera Bramhachari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prathyusha, A.M.V.N., Nawadkar, R., Bramhachari, P.V. (2017). Role of Sp1 Transcriptional Factor in Gastrointestinal Carcinogenesis. In: Nagaraju, G., Bramhachari, P. (eds) Role of Transcription Factors in Gastrointestinal Malignancies. Springer, Singapore. https://doi.org/10.1007/978-981-10-6728-0_13

Download citation

Publish with us

Policies and ethics

Navigation