Microfluidic Paper-Based Analytical Devices for Point-of-Care Diagnosis

  • Chapter
  • First Online:
Next Generation Point-of-care Biomedical Sensors Technologies for Cancer Diagnosis

Abstract

Point-of-care testing (POCT) shows its significant importance in academic and social affairs (Jansen et al. 1998; Wu et al. 1999). From commercialized products to laboratory prototypes, the creative atmosphere in this research field has maintained its vitality and drawn increasing attention from researchers in related areas. There have been many inventions that have changed the practice of medicine at the point of care in either rural or developed areas, and one prominent candidate for POCT is paper-based microfluidic analytical devices, also called Chip-on-a-Paper, or paper-based POC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80(18):6928–6934

    Article  CAS  PubMed  Google Scholar 

  • Ali MM, Aguirre SD, Xu Y, Filipe CD, Pelton R, Li Y (2009) Detection of DNA using bioactive paper strips. Chem Commun 43:6640–6642

    Google Scholar 

  • Alkasir RS, Ornatska M, Andreescu S (2012) Colorimetric paper bioassay for the detection of phenolic compounds. Anal Chem 84(22):9729–9737

    Article  CAS  PubMed  Google Scholar 

  • Apilux A, Dungchai W, Siangproh W, Praphairaksit N, Henry CS, Chailapakul O (2010) Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron. Anal Chem 82(5):1727–1732

    Article  CAS  PubMed  Google Scholar 

  • Atalay YT, Vermeir S, Witters D, Vergauwe N, Verbruggen B, Verboven P, Nicolaï BM, Lammertyn J (2011) Microfluidic analytical systems for food analysis. Trends Food Sci Technol 22(7):386–404

    Article  CAS  Google Scholar 

  • Bang JH, Lim SH, Park E, Suslick KS (2008) Chemically responsive nanoporous pigments: colorimetric sensor arrays and the identification of aliphatic amines. Langmuir 24(22):13168–13172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruzewicz DA, Reches M, Whitesides GM (2008) Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper. Anal Chem 80(9):3387–3392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Zhang Q, Wang C, Zhu Y, Bai G (2007) Preparation of novel immunomagnetic cellulose microspheres via cellulose binding domain-protein A linkage and its use for the isolation of interferon α-2b. J Chromatogr A 1149(2):228–235

    Article  CAS  PubMed  Google Scholar 

  • Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81(16):7091–7095

    Article  CAS  PubMed  Google Scholar 

  • Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2014) Recent developments in paper-based microfluidic devices. Anal Chem 87(1):19–41

    Article  PubMed  Google Scholar 

  • Chen Y, Wang Y, Liu L, Wu X, Xu L, Kuang H, Li A, Xu C (2015) A gold immunochromatographic assay for the rapid and simultaneous detection of fifteen β-lactams. Nanoscale 7(39):16381–16388

    Article  CAS  PubMed  Google Scholar 

  • Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12(12):2118–2134

    Article  CAS  PubMed  Google Scholar 

  • Craig SJ, Shu A, Xu Y, Foong FC, Nordon R (2007) Chimeric protein for selective cell attachment onto cellulosic substrates. Protein Eng Des Sel 20(5):235–241

    Article  CAS  PubMed  Google Scholar 

  • Delaney JL, Hogan CF, Tian J, Shen W (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem 83(4):1300–1306

    Article  CAS  PubMed  Google Scholar 

  • Delaney JL, Doeven EH, Harsant AJ, Hogan CF (2013) Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors. Anal Chim Acta 790:56–60

    Article  CAS  PubMed  Google Scholar 

  • Demirel G, Babur E (2014) Vapor-phase deposition of polymers as a simple and versatile technique to generate paper-based microfluidic platforms for bioassay applications. Analyst 139(10):2326–2331

    Article  CAS  PubMed  Google Scholar 

  • Deng L, Zhang L, Shang L, Guo S, Wen D, Wang F, Dong S (2009) Electrochemiluminescence detection of NADH and ethanol based on partial sulfonation of sol–gel network with gold nanoparticles. Biosens Bioelectron 24(7):2273–2276

    Article  CAS  PubMed  Google Scholar 

  • Doeven EH, Barbante GJ, Kerr E, Hogan CF, Endler JA, Francis PS (2014) Red–green–blue electrogenerated chemiluminescence utilizing a digital camera as detector. Anal Chem 86(5):2727–2732

    Article  CAS  PubMed  Google Scholar 

  • Dossi N, Toniolo R, Piccin E, Susmel S, Pizzariello A, Bontempelli G (2013) Pencil-drawn dual electrode detectors to discriminate between analytes comigrating on paper-based fluidic devices but undergoing electrochemical processes with different reversibility. Electroanalysis 25(11):2515–2522

    Article  CAS  Google Scholar 

  • Dossi N, Toniolo R, Terzi F, Impellizzieri F, Bontempelli G (2014) Pencil leads doped with electrochemically deposited Ag and AgCl for drawing reference electrodes on paper-based electrochemical devices. Electrochim Acta 146:518–524

    Article  CAS  Google Scholar 

  • Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81(14):5821–5826

    Article  CAS  PubMed  Google Scholar 

  • Dungchai W, Chailapakul O, Henry CS (2011) A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136(1):77–82

    Article  CAS  PubMed  Google Scholar 

  • Evans E, Gabriel EFM, Benavidez TE, Coltro WKT, Garcia CD (2014a) Modification of microfluidic paper-based devices with silica nanoparticles. Analyst 139(21):5560–5567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans E, Gabriel EFM, Coltro WKT, Garcia CD (2014b) Rational selection of substrates to improve color intensity and uniformity on microfluidic paper-based analytical devices. Analyst 139(9):2127–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng X, Pelton R, Leduc M (2006) Mechanical properties of polyelectrolyte complex films based on polyvinylamine and carboxymethyl cellulose. Ind Eng Chem Res 45(20):6665–6671

    Article  CAS  Google Scholar 

  • Feng QM, Pan JB, Zhang HR, Xu JJ, Chen HY (2014) Disposable paper-based bipolar electrode for sensitive electrochemiluminescence detection of a cancer biomarker. Chem Commun 50(75):10949–10951

    Article  CAS  Google Scholar 

  • Fenton EM, Mascarenas MR, López GP, Sibbett SS (2008) Multiplex lateral-flow test strips fabricated by two-dimensional sha**. ACS Appl Mater Interfaces 1(1):124–129

    Article  Google Scholar 

  • Forster RJ, Bertoncello P, Keyes TE (2009) Electrogenerated chemiluminescence. Annu Rev Anal Chem 2:359–385

    Article  CAS  Google Scholar 

  • Free AH, Adams EC, Kercher ML, Free HM, Coo MH (1957) Simple specific test for urine glucose. Clin Chem 3(3):163–168

    CAS  PubMed  Google Scholar 

  • Fu E, Kauffman P, Lutz B, Yager P (2010) Chemical signal amplification in two-dimensional paper networks. Sens Actuators B 149(1):325–328

    Article  CAS  Google Scholar 

  • Fujii T (2002) PDMS-based microfluidic devices for biomedical applications. Microelectron Eng 61:907–914

    Article  Google Scholar 

  • Gabriel EF, Garcia PT, Cardoso TM, Lopes FM, Martins FT, Coltro WK (2016) Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices. Analyst 141:4749–4756

    Article  CAS  PubMed  Google Scholar 

  • Ge L, Yu J, Ge S, Yan M (2014) Lab-on-paper-based devices using chemiluminescence and electrogenerated chemiluminescence detection. Anal Bioanal Chem 406(23):5613–5630

    Article  CAS  PubMed  Google Scholar 

  • Gerbers R, Foellscher W, Chen H, Anagnostopoulos C, Faghri M (2014) A new paper-based platform technology for point-of-care diagnostics. Lab Chip 14(20):4042–4049

    Article  CAS  PubMed  Google Scholar 

  • Gomes HI, Sales MGF (2015) Development of paper-based color test-strip for drug detection in aquatic environment: application to oxytetracycline. Biosens Bioelectron 65:54–61

    Article  CAS  PubMed  Google Scholar 

  • Jansen RT, Blaton V, Burnett D, Huisman W, Queraltó JM, Zérah S, Allman B (1998) Additional essential criteria for quality systems of medical laboratories. Clin Chem Lab Med 36(4):249–252

    Article  CAS  PubMed  Google Scholar 

  • Jayawardane BM, Wei S, McKelvie ID, Kolev SD (2014) Microfluidic paper-based analytical device for the determination of nitrite and nitrate. Anal Chem 86(15):7274–7279

    Article  CAS  PubMed  Google Scholar 

  • Li X, Liu X (2014) Fabrication of three-dimensional microfluidic channels in a single layer of cellulose paper. Microfluid Nanofluid 16(5):819–827

    Article  CAS  Google Scholar 

  • Li X, Tian J, Garnier G, Shen W (2010) Fabrication of paper-based microfluidic sensors by printing. Colloids Surf B Biointerfaces 76(2):564–570

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6(1):011301

    Article  PubMed Central  Google Scholar 

  • Li W, Li L, Li M, Yu J, Ge S, Yan M, Song X (2013) Development of a 3D origami multiplex electrochemical immunodevice using a nanoporous silver-paper electrode and metal ion functionalized nanoporous gold–chitosan. Chem Commun 49(83):9540–9542

    Article  CAS  Google Scholar 

  • Li L, Ma C, Kong Q, Li W, Zhang Y, Ge S, Yan M, Yu J (2014a) A 3D origami electrochemical immunodevice based on a Au@ Pd alloy nanoparticle-paper electrode for the detection of carcinoembryonic antigen. J Mater Chem B 2(38):6669–6674

    Article  CAS  Google Scholar 

  • Li L, Xu J, Zheng X, Ma C, Song X, Ge S, Yu J, Yan M (2014b) Growth of gold-manganese oxide nanostructures on a 3D origami device for glucose-oxidase label based electrochemical immunosensor. Biosens Bioelectron 61:76–82

    Article  CAS  PubMed  Google Scholar 

  • Liana DD, Raguse B, Wieczorek L, Baxter GR, Chuah K, Gooding JJ, Chow E (2013) Sintered gold nanoparticles as an electrode material for paper-based electrochemical sensors. RSC Adv 3(23):8683–8691

    Article  CAS  Google Scholar 

  • Liu H, Crooks RM (2011) Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc 133(44):17564–17566

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Ge S, Yu J, Yan M, Song X (2014) Electrochemical device based on a Pt nanosphere-paper working electrode for in situ and real-time determination of the flux of H2O2 releasing from SK-BR-3 cancer cells. Chem Commun 50(71):10315–10318

    Article  CAS  Google Scholar 

  • Lopez-Ruiz N, Curto VF, Erenas MM, Benito-Lopez F, Diamond D, Palma AJ, Capitan-Vallvey LF (2014) Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices. Anal Chem 86(19):9554–9562

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Shi W, Jiang L, Qin J, Lin B (2009) Rapid prototy** of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30(9):1497–1500

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Ge S, Ge L, Yan M, Yu J (2012) Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim Acta 80:334–341

    Article  CAS  Google Scholar 

  • Ma S, Tang Y, Liu J, Wu J (2014) Visible paper chip immunoassay for rapid determination of bacteria in water distribution system. Talanta 120:135–140

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Li W, Kong Q, Yang H, Bian Z, Song X, Yu J, Yan M (2015) 3D origami electrochemical immunodevice for sensitive point-of-care testing based on dual-signal amplification strategy. Biosens Bioelectron 63:7–13

    Article  CAS  PubMed  Google Scholar 

  • Mabey D, Peeling RW, Ustianowski A, Perkins MD (2004) Tropical infectious diseases: diagnostics for the develo** world. Nat Rev Microbiol 2(3):231–240

    Article  CAS  PubMed  Google Scholar 

  • Maejima K, Tomikawa S, Suzuki K, Citterio D (2013) Inkjet printing: an integrated and green chemical approach to microfluidic paper-based analytical devices. RSC Adv 3(24):9258–9263

    Article  CAS  Google Scholar 

  • Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46(8):1318–1320

    Article  CAS  Google Scholar 

  • Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci U S A 105(50):19606–19611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2009) Diagnostics for the develo** world: microfluidic paper-based analytical devices. Anal Chem 82(1):3–10

    Article  Google Scholar 

  • Müller RH, Clegg DL (1949) Automatic paper chromatography. Anal Chem 21(9):1123–1125

    Article  Google Scholar 

  • Nath P, Arun RK, Chanda N (2015) Smart gold nanosensor for easy sensing of lead and copper ions in solution and using paper strips. RSC Adv 5(84):69024–69031

    Article  CAS  Google Scholar 

  • Nguyen TH, Fraiwan A, Choi S (2014) Paper-based batteries: a review. Biosens Bioelectron 54:640–649

    Article  CAS  PubMed  Google Scholar 

  • Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, Martinez AW, Narovlyansky M, Whitesides GM (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10(4):477–483

    Article  CAS  PubMed  Google Scholar 

  • Nie J, Liang Y, Zhang Y, Le S, Li D, Zhang S (2013) One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices. Analyst 138(2):671–676

    Article  CAS  PubMed  Google Scholar 

  • Noor MO, Krull UJ (2014) Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors. Anal Chem 86(20):10331–10339

    Article  CAS  PubMed  Google Scholar 

  • Nurak T, Praphairaksit N, Chailapakul O (2013) Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water. Talanta 114:291–296

    Article  CAS  PubMed  Google Scholar 

  • Olkkonen J, Lehtinen K, Erho T (2010) Flexographically printed fluidic structures in paper. Anal Chem 82(24):10246–10250

    Article  CAS  PubMed  Google Scholar 

  • Ornatska M, Sharpe E, Andreescu D, Andreescu S (2011) Paper bioassay based on ceria nanoparticles as colorimetric probes. Anal Chem 83(11):4273–4280

    Article  CAS  PubMed  Google Scholar 

  • Parolo C, Merkoçi A (2013) Paper-based nanobiosensors for diagnostics. Chem Soc Rev 42(2):450–457

    Article  CAS  PubMed  Google Scholar 

  • Petryayeva E, Algar WR (2015) Toward point-of-care diagnostics with consumer electronic devices: the expanding role of nanoparticles. RSC Adv 5(28):22256–22282

    Article  CAS  Google Scholar 

  • Renault C, Li X, Fosdick SE, Crooks RM (2013) Hollow-channel paper analytical devices. Anal Chem 85(16):7976–7979

    Article  CAS  PubMed  Google Scholar 

  • Renault C, Koehne J, Ricco AJ, Crooks RM (2014) Three-dimensional wax patterning of paper fluidic devices. Langmuir 30(23):7030–7036

    Article  CAS  PubMed  Google Scholar 

  • Richter MM (2004) Electrochemiluminescence (ecl). Chem Rev 104(6):3003–3036

    Article  CAS  PubMed  Google Scholar 

  • Rosa AM, Louro AF, Martins SA, Inácio J, Azevedo AM, Prazeres DMF (2014) Capture and detection of DNA hybrids on paper via the anchoring of antibodies with fusions of carbohydrate binding modules and ZZ-domains. Anal Chem 86(9):4340–4347

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Isogai A (2007) Wet strength improvement of TEMPO-oxidized cellulose sheets prepared with cationic polymers. Ind Eng Chem Res 46(3):773–780

    Article  CAS  Google Scholar 

  • Santhiago M, Kubota LT (2013) A new approach for paper-based analytical devices with electrochemical detection based on graphite pencil electrodes. Sens Actuators B 177:224–230

    Article  CAS  Google Scholar 

  • Santhiago M, Henry CS, Kubota LT (2014) Low cost, simple three dimensional electrochemical paper-based analytical device for determination of p-nitrophenol. Electrochim Acta 130:771–777

    Article  CAS  Google Scholar 

  • Scida K, Li B, Ellington AD, Crooks RM (2013) DNA detection using origami paper analytical devices. Anal Chem 85(20):9713–9720

    Article  CAS  PubMed  Google Scholar 

  • Shi Z, Wu X, Gao L, Tian Y, Yu L (2014) Electrodes/paper sandwich devices for in situ sensing of hydrogen peroxide secretion from cells growing in gels-in-paper 3-dimensional matrix. Anal Methods 6(12):4446–4454

    Article  CAS  Google Scholar 

  • Shi Z, Tian Y, Wu X, Li C, Yu L (2015) A one-piece lateral flow impedimetric test strip for label-free clenbuterol detection. Anal Methods 7(12):4957–4964

    Article  CAS  Google Scholar 

  • Songjaroen T, Dungchai W, Chailapakul O, Laiwattanapaisal W (2011) Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dip**. Talanta 85(5):2587–2593

    Article  CAS  PubMed  Google Scholar 

  • Spicar-Mihalic P, Toley B, Houghtaling J, Liang T, Yager P, Fu E (2013) CO2 laser cutting and ablative etching for the fabrication of paper-based devices. J Micromech Microeng 23(6):067003

    Article  Google Scholar 

  • Su S, Nutiu R, Filipe CD, Li Y, Pelton R (2007) Adsorption and covalent coupling of ATP-binding DNA aptamers onto cellulose. Langmuir 23(3):1300–1302

    Article  CAS  PubMed  Google Scholar 

  • Su M, Ge L, Kong Q, Zheng X, Ge S, Li N, Yu J, Yan M (2015) Cyto-sensing in electrochemical lab-on-paper cyto-device for in-situ evaluation of multi-glycan expressions on cancer cells. Biosens Bioelectron 63:232–239

    Article  CAS  PubMed  Google Scholar 

  • Sun J, **anyu Y, Jiang X (2014) Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chem Soc Rev 43(17):6239–6253

    Article  CAS  PubMed  Google Scholar 

  • Thuo MM, Martinez RV, Lan WJ, Liu X, Barber J, Atkinson MB, Bandarage D, Bloch JF, Whitesides GM (2014) Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods. Chem Mater 26(14):4230–4237

    Article  CAS  Google Scholar 

  • Tobjörk D, Österbacka R (2011) Paper electronics. Adv Mater 23(17):1935–1961

    Article  PubMed  Google Scholar 

  • Tolba M, Brovko LY, Minikh O, Griffiths MW (2008) Engineering of bacteriophages displaying affinity tags on its head for biosensor applications. NSTI Nanotechnol 2:449–452

    CAS  Google Scholar 

  • Wang CC, Hennek JW, Ainla A, Kumar AA, Lan WJ, Im J, Smith BS, Zhao M, Whitesides GM (2016) A paper-based “pop-up” electrochemical device for analysis of beta-hydroxybutyrate. Anal Chem 88(12):6326–6333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu AH, Apple FS, Gibler WB, Jesse RL, Warshaw MM, Valdes R (1999) National Academy of Clinical Biochemistry Standards of Laboratory Practice: recommendations for the use of cardiac markers in coronary artery diseases. Clin Chem 45(7):1104–1121

    CAS  PubMed  Google Scholar 

  • Yamada K, Takaki S, Komuro N, Suzuki K, Citterio D (2014) An antibody-free microfluidic paper-based analytical device for the determination of tear fluid lactoferrin by fluorescence sensitization of Tb3+. Analyst 139(7):1637–1643

    Google Scholar 

  • Yang J, Nam YG, Lee SK, Kim CS, Koo YM, Chang WJ, Gunasekaran S (2014) Paper-fluidic electrochemical biosensing platform with enzyme paper and enzymeless electrodes. Sens Actuators B 203:44–53

    Article  CAS  Google Scholar 

  • Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12):2210–2251

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Ge L, Huang J, Wang S, Ge S (2011a) Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 11(7):1286–1291

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Wang S, Ge L, Ge S (2011b) A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosens Bioelectron 26(7):3284–3289

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Shi Z, Fang C, Zhang Y, Liu Y, Li C (2015) Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk. Biosens Bioelectron 69:307–315

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Ge L, Ge S, Yan M, Yu J, Huang J, Liu S (2013) Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential-control technique. Biosens Bioelectron 41:544–550

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zuo P, Ye BC (2015) A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food. Biosens Bioelectron 68:14–19

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Ali MM, Aguirre SD, Brook MA, Li Y (2008) Paper-based bioassays using gold nanoparticle colorimetric probes. Anal Chem 80(22):8431–8437

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Noor MO, Krull UJ (2014) Luminescence resonance energy transfer-based nucleic acid hybridization assay on cellulose paper with upconverting phosphor as donors. Anal Chem 86(5):2719–2726

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Xu X, Brault ND, Keefe AJ, Han X, Deng Y, Xu J, Yu Q, Jiang S (2014a) Cellulose paper sensors modified with zwitterionic poly (carboxybetaine) for sensing and detection in complex media. Anal Chem 86(6):2871–2875

    Article  CAS  PubMed  Google Scholar 

  • Zhu WJ, Feng DQ, Chen M, Chen ZD, Zhu R, Fang HL, Wang W (2014b) Bienzyme colorimetric detection of glucose with self-calibration based on tree-shaped paper strip. Sens Actuators B 190:414–418

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (No. 31200700 and 21375108), Science Foundation of Chongqing (cstc2014jcyjA10070), Fundamental Research Funds for the Central Universities (XDJK2015B020, XDJK2016A010 and XDJK2016D001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Shi, Z.Z., Lu, Y., Yu, L. (2017). Microfluidic Paper-Based Analytical Devices for Point-of-Care Diagnosis. In: Chandra, P., Tan, Y., Singh, S. (eds) Next Generation Point-of-care Biomedical Sensors Technologies for Cancer Diagnosis. Springer, Singapore. https://doi.org/10.1007/978-981-10-4726-8_16

Download citation

Publish with us

Policies and ethics

Navigation