Waste-to-Resource (WTR) Green Supply Chain

  • Chapter
  • First Online:
Carbon Dioxide Mineralization and Utilization

Abstract

Green supply chain has been aggressively constructed in different industrial parks around the world. The win–win benefits in both environmental and economic aspects can be achieved by implementing the waste-to-resource supply chain in the industrial park. Portfolio options of technologies for different types of waste-to-resource supply chains can be considered for achieving circular economy system. In this chapter, the strategies on implementation of waste-to-energy supply chain are proposed to overcome the challenging barriers from the aspects of technology, finance, institution, and regulation. A total of six key task forces are proposed for effectively executing the strategies. In addition, several successful lessons on waste-to-resource supply chains, such as green fuel pellet for heating supply and codigestion of organic wastes for biogas production, are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. UNEP (2012) Measuring progress towards an Inclusive green economy. UNEP

    Google Scholar 

  2. CEPD (2004) Taiwan agenda 21: vision and strategies for national sustainable development. Council for Economic Planning and Development (CEPD), Executive Yuan, Taiwan

    Google Scholar 

  3. Pan S-Y, Du MA, Huang IT, Liu IH, Chang EE, Chiang P-C (2015) Strategies on implementation of waste-to-energy (WTE) supply chain for circular economy system: a review. J Clean Prod 108:409–421. doi:10.1016/j.jclepro.2015.06.124

    Article  Google Scholar 

  4. UNDESA (2009) A global green new deal for climate, energy, and development. United Nations Department of Economic and Social Affairs

    Google Scholar 

  5. Jupesta J, Boer R, Parayil G, Harayama Y, Yarime M, Oliveira JAPd, Subramanian SM (2011) Managing the transition to sustainability in an emerging economy: evaluating green growth policies in Indonesia. Environ Innov Societal Transitions 1(2):187–191. doi:10.1016/j.eist.2011.08.001

    Article  Google Scholar 

  6. UNEP (2011) Towards a green economy: pathways to sustainable development and poverty eradication—a synthesis for policy makers

    Google Scholar 

  7. Tukker A (2013) Product services for a resource-efficient and circular economy—a review. J Clean Prod. doi:10.1016/j.jclepro.2013.11.049

    Google Scholar 

  8. Su B, Heshmati A, Geng Y, Yu X (2013) A review of the circular economy in China: moving from rhetoric to implementation. J Clean Prod 42:215–227. doi:10.1016/j.jclepro.2012.11.020

    Article  Google Scholar 

  9. Geng Y, Fu J, Sarkis J, Xue B (2012) Towards a national circular economy indicator system in China: an evaluation and critical analysis. J Clean Prod 23(1):216–224. doi:10.1016/j.jclepro.2011.07.005

    Article  Google Scholar 

  10. Jamasb T, Nepal R (2010) Issues and options in waste management: a social cost–benefit analysis of waste-to-energy in the UK. Resour Conserv Recycl 54(12):1341–1352. doi:10.1016/j.resconrec.2010.05.004

    Article  Google Scholar 

  11. Saha S, Roy TB (2011) Assessment of the status of solid waste management in mega cities in India: an overview. Int J Agric Environ Biotechnol 4(4):305–315

    Google Scholar 

  12. ECORYS (2010) Assessment of non-cost barriers to renewable energy growth in EU Member. Rep. Rotterdam

    Google Scholar 

  13. De Lange WJ, Stafford WH, Forsyth GG, Le Maitre DC (2012) Incorporating stakeholder preferences in the selection of technologies for using invasive alien plants as a bio-energy feedstock: applying the analytical hierarchy process. J Environ Manage 99:76–83. doi:10.1016/j.jenvman.2012.01.014

    Article  Google Scholar 

  14. Huttunen S, Manninen K, Leskinen P (2014) Combining biogas LCA reviews with stakeholder interviews to analyse life cycle impacts at a practical level. J Clean Prod 80:5–16. doi:10.1016/j.jclepro.2014.05.081

    Article  Google Scholar 

  15. Matos S, Silvestre BS (2013) Managing stakeholder relations when develo** sustainable business models: the case of the Brazilian energy sector. J Clean Prod 45:61–73. doi:10.1016/j.jclepro.2012.04.023

    Article  Google Scholar 

  16. Steiner A (2010) Eleventh annual grotius lecture series: focusing on the good or the bad: what can international environmental law do to accelerate the transition towards a green economy? Am Univ Int Law Rev 25(5):843–875

    Google Scholar 

  17. Keating M (2009) Africa and climate change: with one voice. World Today 65(10):10–11

    Google Scholar 

  18. Chen YT, Chen CC (2012) The privatization effect of MSW incineration services by using data envelopment analysis. Waste Manag 32(3):595–602. doi:10.1016/j.wasman.2011.11.007

    Article  Google Scholar 

  19. Normile D (2010) Restoration or devastation? Science 26:1556–1570

    Google Scholar 

  20. Leichenko RM, O’Brien KL, Solecki WD (2010) Climate change and the global financial crisis: a case of double exposure. Ann Assoc Am Geogr 100(4):963–972. doi:10.1080/00045608.2010.497340

    Article  Google Scholar 

  21. van Loon-Steensma JM, Schelfhout HA, Vellinga P (2014) Green adaptation by innovative dike concepts along the Dutch Wadden Sea coast. Environ Sci Policy 44:108–125. doi:10.1016/j.envsci.2014.06.009

    Article  Google Scholar 

  22. Sovacool BK (2009) The importance of comprehensiveness in renewable electricity and energy-efficiency policy. Energy Policy 37(4):1529–1541. doi:10.1016/j.enpol.2008.12.016

    Article  Google Scholar 

  23. Iakovou E, Karagiannidis A, Vlachos D, Toka A, Malamakis A (2010) Waste biomass-to-energy supply chain management: a critical synthesis. Waste Manag 30(10):1860–1870. doi:10.1016/j.wasman.2010.02.030

    Article  Google Scholar 

  24. Styles D, O’Brien P, O’Boyle S, Cunningham P, Donlon B, Jones MB (2009) Measuring the environmental performance of IPPC industry: I. Devising a quantitative science-based and policy-weighted environmental emissions index. Environ Sci Policy 12(3):226–242. doi:10.1016/j.envsci.2009.02.003

    Article  Google Scholar 

  25. Pan S-Y, Chang EE, Chiang P-C (2012) CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol Air Qual Res 12:770–791. doi:10.4209/aaqr.2012.06.0149

    Google Scholar 

  26. Huang Y-H, Wu J-H (2013) Analyzing the driving forces behind CO2 emissions and reduction strategies for energy-intensive sectors in Taiwan, 1996–2006. Energy 57:402–411. doi:10.1016/j.energy.2013.05.030

    Article  Google Scholar 

  27. Shih SM, Wang S, Zhang CC, Wang TF, Chiang PC, Ji CJ (2004) Taiwan 21 agenda. Taiwan (ROC)

    Google Scholar 

  28. Liu W, Tian J, Chen L (2014) Greenhouse gas emissions in China’s eco-industrial parks: a case study of the Bei**g economic technological development area. J Clean Prod 66:384–391. doi:10.1016/j.jclepro.2013.11.010

    Article  Google Scholar 

  29. Dong H, Ohnishi S, Fujita T, Geng Y, Fujii M, Dong L (2014) Achieving carbon emission reduction through industrial & urban symbiosis: a case of Kawasaki. Energy 64:277–286. doi:10.1016/j.energy.2013.11.005

    Article  Google Scholar 

  30. Puppim de Oliveira JA, Doll CNH, Balaban O, Jiang P, Dreyfus M, Suwa A, Moreno-Peñaranda R, Dirgahayani P (2013) Green economy and governance in cities: assessing good governance in key urban economic processes. J Clean Prod 58:138–152. doi:10.1016/j.jclepro.2013.07.043

    Article  Google Scholar 

  31. Assamoi B, Lawryshyn Y (2012) The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion. Waste Manag 32(5):1019–1030. doi:10.1016/j.wasman.2011.10.023

    Article  Google Scholar 

  32. Li J, Pan SY, Kim H, Linn JH, Chiang PC (2015) Building green supply chains in eco-industrial parks towards a green economy: Barriers and strategies. J Environ Manage 162:158–170. doi:10.1016/j.jenvman.2015.07.030

    Article  Google Scholar 

  33. Behera SK, Kim J-H, Lee S-Y, Suh S, Park H-S (2012) Evolution of ‘designed’ industrial symbiosis networks in the Ulsan Eco-industrial Park: ‘research and development into business’ as the enabling framework. J Clean Prod 29–30:103–112. doi:10.1016/j.jclepro.2012.02.009

    Article  Google Scholar 

  34. Yi H (2014) Green businesses in a clean energy economy: Analyzing drivers of green business growth in U.S. states. Energy 68:922–929. doi:10.1016/j.energy.2014.02.044

    Article  Google Scholar 

  35. White W, Lunnan A, Nybakk E, Kulisic B (2013) The role of governments in renewable energy: the importance of policy consistency. Biomass Bioenergy 57:97–105. doi:10.1016/j.biombioe.2012.12.035

    Article  Google Scholar 

  36. Steiner A (2010) Focusing on the good or the bad: what can international environmental law do to accelerate the transition towards a green economy. Am U Int’l L Rev 843:843–875

    Google Scholar 

  37. IEA (2009) Cogeneration and district energy: sustainable energy technologies for today and tomorrow. OECD, International Energy Agency, France

    Google Scholar 

  38. Carraro C, Favero A, Massetti E (2012) Investments and public finance in a green, low carbon, economy. Energy Econ 34:S15–S28. doi:10.1016/j.eneco.2012.08.036

    Article  Google Scholar 

  39. Reis MF (2011) Solid waste incinerators: health impacts. Institute of Preventive Medicine, University of Lisbon

    Google Scholar 

  40. West J, Bailey I, Winter M (2010) Renewable energy policy and public perceptions of renewable energy: a cultural theory approach. Energy Policy 38(10):5739–5748. doi:10.1016/j.enpol.2010.05.024

    Article  Google Scholar 

  41. Achillas C, Vlachokostas C, Moussiopoulos N, Banias G, Kafetzopoulos G, Karagiannidis A (2011) Social acceptance for the development of a waste-to-energy plant in an urban area. Resour Conserv Recycl 55(9–10):857–863. doi:10.1016/j.resconrec.2011.04.012

    Article  Google Scholar 

  42. Afroz R, Masud MM, Akhtar R, Duasa JB (2013) Survey and analysis of public knowledge, awareness and willingness to pay in Kuala Lumpur, Malaysia—a case study on household WEEE management. Jf Cleaner Prod 52:185–193. doi:10.1016/j.jclepro.2013.02.004

    Article  Google Scholar 

  43. Abdelaziz EA, Saidur R, Mekhilef S (2011) A review on energy saving strategies in industrial sector. Renew Sustain Energy Rev 15(1):150–168. doi:10.1016/j.rser.2010.09.003

    Article  Google Scholar 

  44. Polanec B, Aberšek B, Glodež S (2013) Informal education and awareness of the public in the field of waste management. Proc Soc Behav Sci 83:107–111. doi:10.1016/j.sbspro.2013.06.021

    Article  Google Scholar 

  45. Hawkey D, Webb J, Winskel M (2013) Organisation and governance of urban energy systems: district heating and cooling in the UK. J Clean Prod 50:22–31. doi:10.1016/j.jclepro.2012.11.018

    Article  Google Scholar 

  46. Abadie LM, Ortiz RA, Galarraga I (2012) Determinants of energy efficiency investments in the US. Energy Policy 45:551–566. doi:10.1016/j.enpol.2012.03.002

    Article  Google Scholar 

  47. Avami A (2013) Assessment of optimal biofuel supply chain planning in Iran: technical, economic, and agricultural perspectives. Renew Sustain Energy Rev 26:761–768. doi:10.1016/j.rser.2013.06.028

    Article  Google Scholar 

  48. Sharma B, Ingalls RG, Jones CL, Khanchi A (2013) Biomass supply chain design and analysis: basis, overview, modeling, challenges, and future. Renew Sustain Energy Rev 24:608–627. doi:10.1016/j.rser.2013.03.049

    Article  Google Scholar 

  49. De Meyer A, Cattrysse D, Rasinmäki J, Van Orshoven J (2014) Methods to optimise the design and management of biomass-for-bioenergy supply chains: a review. Renew Sustain Energy Rev 31:657–670. doi:10.1016/j.rser.2013.12.036

    Article  Google Scholar 

  50. Cambero C, Sowlati T (2014) Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives—a review of literature. Renew Sustain Energy Rev 36:62–73. doi:10.1016/j.rser.2014.04.041

    Article  Google Scholar 

  51. Adams PWR, McManus MC (2014) Small-scale biomass gasification CHP utilisation in industry: energy and environmental evaluation. Sustain Energy Technol Assessments 6:129–140. doi:10.1016/j.seta.2014.02.002

    Article  Google Scholar 

  52. Pawelzik PF, Zhang Q (2012) Evaluation of environmental impacts of cellulosic ethanol using life cycle assessment with technological advances over time. Biomass Bioenergy 40:162–173. doi:10.1016/j.biombioe.2012.02.014

    Article  Google Scholar 

  53. Hagos DA, Gebremedhin A, Zethraeus B (2014) Towards a flexible energy system—a case study for Inland Norway. Appl Energy 130:41–50. doi:10.1016/j.apenergy.2014.05.022

    Article  Google Scholar 

  54. Maraver D, Sin A, Sebastián F, Royo J (2013) Environmental assessment of CCHP (combined cooling heating and power) systems based on biomass combustion in comparison to conventional generation. Energy 57:17–23. doi:10.1016/j.energy.2013.02.014

    Article  Google Scholar 

  55. Pavlas M, Touš M, Klimek P, Bébar L (2011) Waste incineration with production of clean and reliable energy. Clean Technol Environ Policy 13(4):595–605. doi:10.1007/s10098-011-0353-5

    Article  Google Scholar 

  56. USEPA (2012) Aqueous sludge gasification technologies. Greenhouse Gas Technology Center, U.S. Environmental Protection Agency, USA

    Google Scholar 

  57. Pagés-Díaz J, Pereda-Reyes I, Taherzadeh MJ, Sárvári-Horváth I, Lundin M (2014) Anaerobic co-digestion of solid slaughterhouse wastes with agro-residues: synergistic and antagonistic interactions determined in batch digestion assays. Chem Eng J 245:89–98. doi:10.1016/j.cej.2014.02.008

    Article  Google Scholar 

  58. Mahalle L (2013) Comparative life cycle assessment of pellet, natural gas and heavy fuel oil as heat energy sources. FPInnovations, British Columbia

    Google Scholar 

  59. Tabasová A, Kropáč J, Kermes V, Nemet A, Stehlík P (2012) Waste-to-energy technologies: impact on environment. Energy 44(1):146–155. doi:10.1016/j.energy.2012.01.014

    Article  Google Scholar 

  60. Borowski S, Domanski J, Weatherley L (2014) Anaerobic co-digestion of swine and poultry manure with municipal sewage sludge. Waste Manag 34(2):513–521. doi:10.1016/j.wasman.2013.10.022

    Article  Google Scholar 

  61. Rezaie B, Rosen MA (2012) District heating and cooling: review of technology and potential enhancements. Appl Energy 93:2–10. doi:10.1016/j.apenergy.2011.04.020

    Article  Google Scholar 

  62. Wu DW, Wang RZ (2006) Combined cooling, heating and power: a review. Prog Energy Combust Sci 32(5–6):459–495. doi:10.1016/j.pecs.2006.02.001

    Article  Google Scholar 

  63. Chambers T, Raush J, Russo B (2014) Installation and operation of parabolic trough organic Rankine cycle solar thermal power plant in South Louisiana. Energy Proc 49:1107–1116. doi:10.1016/j.egypro.2014.03.120

    Article  Google Scholar 

  64. Peris B, Navarro-Esbrí J, Molés F, Collado R, Mota-Babiloni A (2015) Performance evaluation of an organic Rankine cycle (ORC) for power applications from low grade heat sources. Appl Thermal Eng 75:763–769. doi:10.1016/j.applthermaleng.2014.10.034

    Article  Google Scholar 

  65. Guo C, Du X, Yang L, Yang Y (2015) Organic Rankine cycle for power recovery of exhaust flue gas. Appl Thermal Eng 75:135–144. doi:10.1016/j.applthermaleng.2014.09.080

    Article  Google Scholar 

  66. Imran M, Park BS, Kim HJ, Lee DH, Usman M, Heo M (2014) Thermo-economic optimization of regenerative organic Rankine cycle for waste heat recovery applications. Energy Convers Manag 87:107–118. doi:10.1016/j.enconman.2014.06.091

    Article  Google Scholar 

  67. Yang M-H, Yeh R-H (2015) Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine. Appl Energy 149:1–12. doi:10.1016/j.apenergy.2015.03.083

    Article  Google Scholar 

  68. Shewhart WA (1930) Economic control of quality of manufactured product/50th anniversary commemorative issue. Paper presented at the American Society for Quality December 1980

    Google Scholar 

  69. UNEP (2012) Green economy: metrics and indicators

    Google Scholar 

  70. Longden D, Brammer J, Bastin L, Cooper N (2007) Distributed or centralised energy-from-waste policy? Implications of technology and scale at municipal level. Energy Policy 35(4):2622–2634. doi:10.1016/j.enpol.2006.09.013

    Article  Google Scholar 

  71. Kirkeby JT, Birgisdottir H, Hansen TL, Christensen TH, Bhander GS, Hauschild M (2006) Environmental assessment of solid waste systems and technologies: EASEWASTE. Waste Manag Res 24(1):3–15. doi:10.1177/0734242x06062580

    Article  Google Scholar 

  72. Riber C, Bhander GS, Christensen TH (2008) Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE). Waste Manag Res 26(1):96–103. doi:10.1177/0734242x08088583

    Article  Google Scholar 

  73. Dong H, Geng Y, ** F, Fujita T (2013) Carbon footprint evaluation at industrial park level: a hybrid life cycle assessment approach. Energy Policy 57:298–307. doi:10.1016/j.enpol.2013.01.057

    Article  Google Scholar 

  74. Damgaard A, Riber C, Fruergaard T, Hulgaard T, Christensen TH (2010) Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration. Waste Manag 30(7):1244–1250. doi:10.1016/j.wasman.2010.03.025

    Article  Google Scholar 

  75. Giurco D, Bossilkov A, Patterson J, Kazaglis A (2011) Develo** industrial water reuse synergies in Port Melbourne: cost effectiveness, barriers and opportunities. J Clean Prod 19(8):867–876. doi:10.1016/j.jclepro.2010.07.001

    Article  Google Scholar 

  76. Münster M, Morthorst PE, Larsen HV, Bregnbæk L, Werling J, Lindboe HH, Ravn H (2012) The role of district heating in the future Danish energy system. Energy 48(1):47–55. doi:10.1016/j.energy.2012.06.011

    Article  Google Scholar 

  77. Pardo N, Vatopoulos K, Riekkola AK, Perez A (2013) Methodology to estimate the energy flows of the European Union heating and cooling market. Energy 52:339–352. doi:10.1016/j.energy.2013.01.062

    Article  Google Scholar 

  78. Jung S, Dodbiba G, Chae SH, Fujita T (2013) A novel approach for evaluating the performance of eco-industrial park pilot projects. J Clean Prod 39:50–59. doi:10.1016/j.jclepro.2012.08.030

    Article  Google Scholar 

  79. Tian J, Liu W, Lai B, Li X, Chen L (2014) Study of the performance of eco-industrial park development in China. J Clean Prod 64:486–494. doi:10.1016/j.jclepro.2013.08.005

    Article  Google Scholar 

  80. Cheng Loong Corp (2012) Establishment of green supply chains in Cheng Loong Corp. In: Chiang P-C (ed) Forum on promoting integrated energy and resource supply chain. Ministry of Economic Affairs (MOEA), Taiwan (R.O.C.)

    Google Scholar 

  81. Côté RP, Cohen-Rosenthal E (1998) Designing eco-industrial parks: a synthesis of some experiences. J Clean Prod 6:181–188

    Google Scholar 

  82. Pan S-Y, Chiang A, Chang E-E, Lin Y-P, Kim H, Chiang P-C (2015) An innovative approach to integrated carbon mineralization and waste utilization: a review. Aerosol Air Qual Res 15:1072–1091. doi:10.4209/aaqr.2014.10.02

    Google Scholar 

  83. Chang EE, Pan SY, Chen YH, Tan CS, Chiang PC (2012) Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed. J Hazard Mater 227–228:97–106. doi:10.1016/j.jhazmat.2012.05.021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pen-Chi Chiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chiang, PC., Pan, SY. (2017). Waste-to-Resource (WTR) Green Supply Chain. In: Carbon Dioxide Mineralization and Utilization. Springer, Singapore. https://doi.org/10.1007/978-981-10-3268-4_18

Download citation

Publish with us

Policies and ethics

Navigation