Array-Comparative Genomic Hybridization/Microarray Analysis: Interpretation of Copy Number Variants

  • Chapter
  • First Online:
Human Chromosome Variation: Heteromorphism, Polymorphism and Pathogenesis

Abstract

Two revolutionary advances in molecular biology have enabled scanning of the entire human genome for genetic variation: 1. Array-comparative genomic hybridization-microarray analysis (aCGH, CMA, microarray analysis, referred to henceforth as aCGH) that identifies altered DNA dosage. 2. Whole genome or exome sequencing (WGS or WES) that identifies nucleotide sequence changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Online Mendelian Inheritance in Man. http://www.omim.org/. Accessed 6 Jan 2016

  2. Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 161:529–540

    Article  CAS  PubMed  Google Scholar 

  3. Miklos GLG, John B (1979) Heterochromatin and satellite DNA in man: properties and prospects. Am J Hum Genet 31:264–280

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wilson GN et al (1978) Molecular analysis of human repetitive DNA: length conservation of a segment containing the 18S rRNA gene. Proc Natl Acad Sci USA 75:5367–5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brown DD (1981) Gene expression in Eucaryotes. Science 211:667–674

    Article  CAS  PubMed  Google Scholar 

  7. Wilson GN et al (1984) Individual and evolutionary variation of primate ribosomal DNA transcription initiation regions. Molec Biol Evol 1:221–237

    CAS  PubMed  Google Scholar 

  8. Engel LW (1993) The human genome project. History, goals, and progress to date. Arch Pathol Lab Med 117:459–465

    CAS  PubMed  Google Scholar 

  9. Mardis ER (2011) A decade’s perspective on DNA sequencing technology. Nature 470:198–202

    Article  CAS  PubMed  Google Scholar 

  10. International Human Genome Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  11. Venter JC et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  12. Lander RS (2011) Initial impact of the sequencing of the human genome. Nature 470:187–197

    Article  CAS  PubMed  Google Scholar 

  13. The International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Article  PubMed Central  Google Scholar 

  14. Ensembl browser. http://oct2012.archive.ensembl.org/Homo_sapiens/Info/Index?db=core;r=1:1-1000000. Accessed Nov 2015; UC Santa Clara genome browser. https://genome.ucsc.edu/. Accessed Nov 2015

  15. Sebat J et al (2004) Large-scale copy number polymorphism in the human genome. Science 305:525–528

    Article  CAS  PubMed  Google Scholar 

  16. Stankiewicz P, Lupski JR (2010) Structural variation in the human genome and its role in disease. Annu Rev Med 61:437–455

    Article  CAS  PubMed  Google Scholar 

  17. Lupski JR (1998) Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 14:417–422

    Article  CAS  PubMed  Google Scholar 

  18. Lee C, Iafrate A, Brothman AR (2007) Copy number variations and clinical cytogenetic diagnosis of constitutional disorders. Nature Genet suppl 39:S48–S54

    Article  CAS  Google Scholar 

  19. Carter NP (2007) Methods and strategies for analyzing copy number variation using DNA microarrays. Nature Genet Suppl 39:S16–S21

    Article  CAS  Google Scholar 

  20. Feuk L et al (2006) Structural variants: changing the landscape of chromosomes and the design of disease studies. Hum Molec Genet 15:R57–R66

    Article  CAS  PubMed  Google Scholar 

  21. Agilent Technologies. www.agilent.com. Accessed Dec 2015

  22. Bluegnome Inc. http://www.cambridgebluegnome.com. Accessed Dec 2015

  23. Promega. www.promega.com. Accessed Dec 2015

  24. NanoDrop Technologies. www.nanodrop.com. Accessed Dec 2015

  25. Invitrogen. www.thermofisher.com. Accessed Dec 2015

  26. http://cibex.nig.ac.jp/index.jsp, UC Santa Clara genome browser: http://www.genome; http://www.ucsc.edu/, Decipher: https://decipher.sanger.ac.uk/application/, http://projects.tcag.ca/variation/; http://www.ncbi.nlm.nih.gov/projects/SNP/; http://humanparalogy.gs.washington.edu/structuralvariation/; http://uswest.ensembl.org/index.html, http://www.ncbi.nlm.nih.gov/geo/; http://www.genenames.org/; http://humanparalogy.gs.washington.edu/; http://ccr.coriellorg/Sections/Collections/NIGMS/?SsId; http://projects.tcag.ca/humandup/, http://www.ncbi.nlm.nih.gov/unigene

  27. Applied Imaging. www.appliedimaging.com. Accessed Dec 2015

  28. Tonk V et al (2011) Interstitial deletion 5q14.3q21.3 with MEF2C haploinsufficiency and mild phenotype: when more is less. Am J Med Genet Part A 155:1437–1441

    Article  CAS  Google Scholar 

  29. Le Meur N et al (2010) MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations. J Med Genet 47:22–29

    Article  PubMed  Google Scholar 

  30. Sampson MG et al (2010) Evidence for a recurrent microdeletion at chromosome 16p11.2 associated with congenital anomalies of the kidney and urinary tract (CAKUT) and Hirschsprung disease. Am J Med Genet 152A:2618–2622

    Article  CAS  PubMed  Google Scholar 

  31. Freeman JL et al (2006) Copy number variation: new insights in genome diversity. Genome Res 16:949–961

    Article  CAS  PubMed  Google Scholar 

  32. Kaiser-Rogers K, Rao K (2009) Structural chromosome rearrangements. In: Gersen SL, Keagle MB (eds) Principles of clinical cytogenetics, 2nd edn. Human, Totowa, pp 165–206

    Google Scholar 

  33. Hastings PJ et al (2009) Mechanisms of change in gene copy number. Nat Rev Genet 10:551–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boone PM et al (2010) Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat 31:1326–1342

    Article  PubMed  PubMed Central  Google Scholar 

  35. Miller DT et al (2010) Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86:749–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. South ST et al (2013) ACMG standards and guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: revision 2013. Genet Med 15:901–909

    Article  CAS  PubMed  Google Scholar 

  37. Tonk VS, Wilson GN (2015) Inaccuracy of non-invasive prenatal screening demands cautious counsel and follow-up. Am J Med Genet A 170:108601087

    Google Scholar 

  38. Epstein CJ (2006). Down syndrome, In: Scriver CR, Beaud et al., Sly WS, Valle D (eds) The metabolic and molecular basis of human disease. McGraw-Hill, New York, pp. 1223–1256

    Google Scholar 

  39. Lupski JR et al (1991) DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell 66:219–232

    Article  CAS  PubMed  Google Scholar 

  40. Wise CA et al (1993) Molecular analyses of unrelated Charcot-Marie-Tooth (CMT) disease patients suggest a high frequency of the CMT1A duplication. Am J Hum Genet 53:853–863

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Valentijn LJ et al (1992) The peripheral myelin gene PMP-22/GAS-3 is duplicated in Charcot-Marie-Tooth disease type 1A. Nature Genet 1:166–170

    Google Scholar 

  42. Li J et al (2013) The PMP22 gene and its related diseases. Mol Neurobiol 47:673–698

    Article  CAS  PubMed  Google Scholar 

  43. Flint J et al (1995) The detection of subtelomeric chromosomal rearrangements in idiopathic mental retardation. Nature Genet 9:132–139

    Article  CAS  PubMed  Google Scholar 

  44. Phelan MC et al (2001) 22q13 deletion syndrome. Am J Med Genet Part A 101A:91–99

    Article  Google Scholar 

  45. Phelan K, Rogers RC (2011) Phelan-McDermid syndrome. http://www.ncbi.nlm.nih.gov/books/NBK1198/. Last posted 25 Aug 2011, Accessed 26 Dec 2015

  46. Bonaglia MC et al (2001) Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. Am J Hum Genet 69:261–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wilson HL et al (2003) Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J Med Genet 40:575–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boccuto L et al (2013) Prevalence of SHANK3 variants in patients with different subtypes of autism spectrum disorders. Europ J Hum Genet 21:310–316

    Article  CAS  PubMed  Google Scholar 

  49. Disciglio V et al (2014) Interstitial 22q13 deletions not involving SHANK3 gene: a new contiguous gene syndrome. Am J Med Genet 164A:1666–1676

    Article  PubMed  Google Scholar 

  50. Luciani JJ et al (2003) Telomeric 22q13 deletions resulting from rings, simple deletions, and translocations: cytogenetic, molecular, and clinical analyses of 32 new observations. J Med Genet 40:690–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wilson HL et al (2008) Interstitial 22q13 deletions: genes other than SHANK3 have major effects on cognitive and language development. Europ J Hum Genet 16:1301–1310

    Article  CAS  PubMed  Google Scholar 

  52. Dhar Su et al (2010) 22q13.3 deletion syndrome: clinical and molecular analysis using array CGH. Am J Med Genet 152A:573–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sarasua SM et al (2011) Association between deletion size and important phenotypes expands the genomic region of interest in Phelan-McDermid syndrome (22q13 deletion syndrome). J Med Genet 48:761–766

    Article  CAS  PubMed  Google Scholar 

  54. Koolen DA et al (2008) Clinical and molecular delineation of the 17q21.31 microdeletion syndrome. J Med Genet 45:710–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cooper GM et al (2011) A copy number variation morbidity map of developmental delay. Nature Genet 43:838–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tan TY et al (2008) Phenotypic expansion and further characterisation of the 17q21.31 microdeletion syndrome (letter). J Med Genet 46:480–489

    Article  Google Scholar 

  57. Steinberg KM et al (2012) Structural diversity and African origin of the 17q21.31 inversion polymorphism. Nature Genet 44:872–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zollino M et al (2012) Mutations in KANSL1 cause the 17q21.31 microdeletion syndrome phenotype. Nature Genet 44:636–638

    Article  CAS  PubMed  Google Scholar 

  59. Koolen DA et al (2012) Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome. Nature Genet 44:639–641

    Article  CAS  PubMed  Google Scholar 

  60. Carr CW et al (2011) 5q14.3 Neurocutaneous syndrome: A novel contiguous gene syndrome caused by simultaneous deletion of RASA1 and MEF2C. Am J Med Genet Part A 155:1640–1645

    Article  CAS  Google Scholar 

  61. Hotz A et al (2013) Microdeletion 5q14.3 and anomalies of brain development. Am J Med Genet Part A 161A:2124–2133

    Article  PubMed  Google Scholar 

  62. Sobreira N et al (2009) Interstitial deletion 5q14.3-q21 associated with iris coloboma, hearing loss, dental anomaly, moderate intellectual disability, and attention deficit and hyperactivity disorder. Am J Med Genet Part A 149A:2581–2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shimojima K (2012) De novo microdeletion of 5q14.3 excluding MEF2C in a patient with infantile spasms, microcephaly, and agenesis of the corpus callosum. Am J Med Genet Part A 158A:2272–2276

    Article  PubMed  Google Scholar 

  64. Nakayama J (2002) A nonsense mutation of the MASS1 gene in a family with febrile and afebrile seizures. Ann Neurol 52:654–657

    Article  CAS  PubMed  Google Scholar 

  65. Nakayama J (2000) Significant evidence for linkage of febrile seizures to chromosome 5q14-q15. Hum Molec Genet 9:87–91

    Article  CAS  PubMed  Google Scholar 

  66. Kapoor A et al (2007) Novel genetic locus for juvenile myoclonic epilepsy at chromosome 5q12–q14. Hum Genet 121:655–662

    Article  PubMed  Google Scholar 

  67. Deprez L (2006) Genome-wide linkage of febrile seizures and epilepsy to the FEB4 locus at 5q14.3-q23.1 and no MASS1 mutation. Hum Genet 118:618–625

    Article  CAS  PubMed  Google Scholar 

  68. Nowakowska BA et al (2010) Severe mental retardation, seizures, and hypotonia due to deletions of MEF2C. Am J Med Genet B Neuropsychiatr Genet 153B:1042–1051

    CAS  PubMed  Google Scholar 

  69. Girirajan S et al (2012) Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N Eng J Med 367:1321–1331

    Article  CAS  Google Scholar 

  70. Brunner HG (2012) The variability of human disease. New Engl J Med 367:1350–1355

    Article  CAS  PubMed  Google Scholar 

  71. Kitsiou-Tzeli S et al (2010) De novo interstitial duplication of the 15q11.2-q14 PWS/AS region of maternal origin: clinical description, array CGH analysis, and review of the literature. Am J Med Genet Part A 152A:1925–1932

    Article  CAS  PubMed  Google Scholar 

  72. Wilson GN (2012) Maternal genetic effect: egg on your traits. Am J Med Genet Part A 158A:1589–1593

    Article  PubMed  Google Scholar 

  73. Brunetti-Pierri N et al (2008) Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nature Genet 40:1466–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wilson GN (2013) The MEF2C gene-microdeletion 5q14.3 dilemma and three axioms for molecular syndromology. Am J Med Genet 158A:1589–1593

    Article  Google Scholar 

  75. Chatfield KC, Schrier SA, Li J, Clark D, Kaur M, Kline AD, Deardorff MA, Jackson LS, Goldmuntz E, Krantz ID (2012) Congenital heart disease in Cornelia de Lange syndrome: Phenotype and genotype analysis. Am J Med Genet Part A. 158A:2499–2505

    Article  PubMed  PubMed Central  Google Scholar 

  76. Benirschke K, Lowry RB, Opitz JM, Schwarzacher HG, Spranger JW (1979) Developmental terms—some proposals: first report of an international working group. Am J Med Genet Part A. 3A:297–302

    Article  Google Scholar 

  77. Cohen MM Jr (1977) On the nature of syndrome delineation. Acta Genet Med Gemellol 26:103–119

    Article  PubMed  Google Scholar 

  78. Pyeritz R (2008) A small molecule for a large disease. N Engl J Med 358:2829–2831

    Article  CAS  PubMed  Google Scholar 

  79. Rauch A et al (2006) Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am J Med Genet A 140A:2063–2074

    Article  Google Scholar 

  80. Moeschler JB (2008) Genetic evaluation of intellectual disabilities. Semin Pediatr Neurol 15:2–9

    Article  PubMed  Google Scholar 

  81. Wilson GN, Cooley WC (2006) Autosomal aneuploidy syndromes (down syndrome checklist). Preventive health care for children with genetic condition: providing a medical home, 2nd edn. Cambridge University Press, Cambridge, pp 190–193

    Chapter  Google Scholar 

  82. Wilson JMG, Jungner G (1968) Principles and practice of screening for disease. WHO Chron 22:473–483

    Google Scholar 

  83. Andermann A et al (2008) Revisiting Wilson and Jungner in the genomic age: a review of screening criteria over the past 40 years. Bull World Health Organ 86:317–319

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hudson K et al. with the ASHG social issues committee (2007) ASHG statement on direct-to-consumer genetic testing in the United States. Am J Hum Genet 81:635–637

    Google Scholar 

  85. Manning M, Hudgins L (2010) Professional practice and guidelines committee. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med 12:742–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schaaf CP, Wiszniewska J, Beaud et al (2011) Copy number and SNP arrays in clinical diagnostics. Annu Rev Genomics Hum Genet 12:25–51

    Article  CAS  PubMed  Google Scholar 

  87. Fraser FC (1976) The multifactorial disease concept—uses and misuses. Teratology 6:225–270

    Google Scholar 

  88. Bachman K et al (2013) Array CGH as a first tier test for neonates with congenital heart disease. Cardiol Young 6:1–8

    Google Scholar 

  89. Zaidi S et al (2013) De novo mutations in histone modifying genes in congenital heart disease. Nature 498:220–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Benjamin B, Wilson GN (2015) Registry analysis supports different mechanisms for gastroschisis and omphalocele within shared developmental fields. Am J Med Genet A 167A:2568–2581

    Article  PubMed  Google Scholar 

  91. Nichol PF et al (2011) Conditional mutation of fibroblast growth factor receptors 1 and 2 results in an omphalocele in mice associated with disruptions in ventral body wall muscle formation. J Pediatr Surg 46:90–96

    Article  PubMed  PubMed Central  Google Scholar 

  92. Weiss LA et al (2008) Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 358:667–675

    Article  CAS  PubMed  Google Scholar 

  93. Kumar RA, Christian SL (2009) Genetics of autism spectrum disorders. Curr Neurol Neurosci Rep 9:188–197

    Article  CAS  PubMed  Google Scholar 

  94. Muhle R, Trentacoste SV, Rapin I (2004) The genetics of autism. Pediatrics 2004;113:e472-e486. Accessed 28 Dec 15

    Google Scholar 

  95. Carroll LS, Owen MJ (2009) Genetic overlap between autism, schizophrenia and bipolar disorder. Genome Med 30:102–110

    Article  Google Scholar 

  96. Greenspan SI et al (2008) Guidelines for early identification, screening, and clinical management of children with autism spectrum disorders. Pediatrics 121:828–829

    Article  PubMed  Google Scholar 

  97. American Psychiatric Association (2014) Diagnostic and statistical manual of mental disorders fifth ed, text revision. Washington, DC

    Google Scholar 

  98. Sebat J, Lakshmi B, Malhotra D (2007) Strong association of de novo copy number mutations with autism. Science 316:445–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sagoo GS et al (2009) Array CGH in patients with learning disability (mental retardation) and congenital anomalies: updated systematic review and meta-analysis of 19 studies and 13926 subjects. Genet Med 11:139–146

    Article  CAS  PubMed  Google Scholar 

  100. Jaffee A (1994) Women’s health begins in pediatrics. Arch Pediatr Adolesc Med 148:783

    Article  Google Scholar 

  101. Agarwal S, Agarwal A, Khanna A, Singh K (2015) Microdeletion of Y chromosome as a cause of recurrent pregnancy loss. J Hum Reprod Sci 8:159–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Reddy UM et al (2012) Karyotype versus microarray testing for genetic abnormalities after stillbirth. N Engl J Med 367:2185–2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fiorentino F et al (2011) Introducing array comparative genomic hybridization into routine prenatal diagnosis practice: a prospective study on over 1000 consecutive clinical cases. Prenat Diagn 31:1270–1282

    Article  PubMed  Google Scholar 

  104. Van den Veyver IB et al (2009) Clinical use of array comparative genomic hybridization (aCGH) for prenatal diagnosis in 300 cases. Prenat Diagn 29:29–39

    Article  PubMed  PubMed Central  Google Scholar 

  105. American College of Obstetricians and Gynecologists Committee on Genetics (2012) Committee opinion no. 545: noninvasive prenatal testing for fetal aneuploidy. Obstet Gynecol 120:1532–1534

    Google Scholar 

  106. Van Lith JMM, Faas BHW, Bianchi DW (2015) Current controversies in prenatal diagnosis 1: NIPT for chromosome abnormalities should be offered to women with low a priori risk. Prenatal Diagn 35:8–14

    Article  Google Scholar 

  107. Scambler PJ (2010) 22q11 deletion syndrome: a role for TBX1 in pharyngeal and cardiovascular development. Pediatr Cardiol 31:373–390

    Article  Google Scholar 

  108. Gothelf D, Schaer M, Eliez S (2008) Genes, brain development and psychiatric phenotypes in velo-cardio-facial syndrome. Dev Disabil Res Rev 14:59–68

    Article  PubMed  Google Scholar 

  109. Brunetti-Pierri MG, Micale L, Fusco C (2010) Copy number variants at Williams-Beuren syndrome 7q11.23 region. Hum Genet 128:3–26

    Article  PubMed  Google Scholar 

  110. Tatton-Brown K, Cole TRP, Rahman N (2015–November 19, 2015 last update) Sotos syndrome. Gene reviews, http://www.ncbi.nlm.nih.gov/books/NBK1479/. Accessed 28 Dec 2015

  111. Ben-Schachar S, Lanpher B, German JR et al (2009) Microdeletion 15q13.3: a locus with incomplete penetrance for autism, mental retardation, and psychiatric disorders. J Med Genet 46:382–388

    Article  Google Scholar 

  112. Van Esch H et al (2005) Deletion of VCX-A due to NAHR plays a major role in the occurrence of mental retardation in patients with X-linked ichthyosis. Hum Mol Genet 14:1795–1803

    Article  PubMed  Google Scholar 

  113. Wiley S et al (2003) Rubinstein-Taybi syndrome medical guidelines. Am J Med Genet A 119A:101–110

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herman E. Wyandt .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wyandt, H.E., Wilson, G.N., Tonk, V.S. (2017). Array-Comparative Genomic Hybridization/Microarray Analysis: Interpretation of Copy Number Variants. In: Human Chromosome Variation: Heteromorphism, Polymorphism and Pathogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-10-3035-2_9

Download citation

Publish with us

Policies and ethics

Navigation