Abstract

The term heteromorphism is especially applicable to normal variants observed by chromosome banding techniques . However, normal variations in morphology in certain regions of the human genome were noted even before the advent of chromosome banding. In the first Conference on Standardization in Human Cytogenetics in Denver in 1960 [1], chromosomes were divided into Groups A–G based on their relative sizes and positions of the centromeres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Denver Conference (1960) A proposed standard system of nomenclature of human mitotic chromosomes. Lancet i:1063–1065; reprinted in Chicago Conference 1966, pp 12–15

    Google Scholar 

  2. London Conference on the Normal Human Karyotype (1963) Cytogenetics 2:264–268; reprinted in Chicago Conference 1966, pp 18–19

    Google Scholar 

  3. Chicago Conference (1966) Standardization in human cytogenetics. Birth defects: original article series, vol 2, no 2. The National Foundation, New York

    Google Scholar 

  4. Caspersson T et al (1968) Chemical differentiation along metaphase chromosomes. Exp Cell Res 49:219–222

    Google Scholar 

  5. Caspersson T, Zech L, Johansson C (1970) Analysis of human metaphase chromosome set by aid of DNA-binding fluorescent agents. Exp Cell Res 62:490–492

    Article  CAS  PubMed  Google Scholar 

  6. Geraedts JPM, Pearson PL (1974) Fluorescent chromosome polymorphisms; frequencies and segregation in a Dutch population. Clin Genet 6:247–257

    Article  CAS  PubMed  Google Scholar 

  7. Lin CC et al (1976) Chromosome analysis on 930 consecutive newborn children using quinacrine fluorescent banding technique. Hum Genet 31:315–328

    Google Scholar 

  8. Lubs HA et al (1977) Q and C-banding polymorphisms in 7 and 8 year old children: racial differences and clinical significance: In: Hook E, Porter (eds) Population cytogenetic studies in humans. Academic Press, New York, pp 133–159

    Google Scholar 

  9. Craig-Holms AP, Moore FB, Shaw MW (1973) Polymorphism of human C-band heterochromatin I: frequency of variants. Am J Hum Genet 25:181–192

    Google Scholar 

  10. Muller HJ, Klinger HP, Glasner M (1975) Chromosome polymorphism in a human newborn population II. Potentials of polymorphic chromosome variants for characterizing the idiogram of an individual. Cytogenet Cell Genet 15:235–239

    Google Scholar 

  11. McKenzie WH, Lubs HA (1975) Human Q and C chromosomal variations: distribution and incidence. Cytogenet Cell Genet 14:97–115

    Article  CAS  PubMed  Google Scholar 

  12. Magenis RE et al (1977) Heritability of chromosome banding variants. In: Hook EB, Porter IH (eds) Population cytogenetics. Studies in humans. Academic Press, New York, pp 179–188

    Google Scholar 

  13. Dutrillaux B, Lejeune J (1971) Cytogénétique humaine. Sur une nouvelle technique d’ analyse du caryotype humain. CR Acad Sci 272:2638–2640

    CAS  Google Scholar 

  14. Howell WM, Denton TE, Diamond JR (1975) Differential staining of the satellite regions of human acrocentric chromosomes. Experentia 31:260–262

    Article  CAS  Google Scholar 

  15. Bobrow M, Madan K, Pearson PL (1972) Staining of some specific regions of human chromosomes, particularly the secondary constriction of No. 9. Nat New Biol 238:122–124

    Article  CAS  PubMed  Google Scholar 

  16. Paris Conference (1971) Standardization in human genetics. Birth defects original article series, vol 8, no 7. The National Foundation, New York

    Google Scholar 

  17. Paris Conference Supplement (1975) Standardization in Human genetics. Birth defects original article series, vol XI, no 9. The National Foundation, New York

    Google Scholar 

  18. ISCN (2009) An international system for human cytogenetic nomenclature. In: Shafer LG, Tommerup (eds). S Karger, Basel

    Google Scholar 

  19. Saunders GF et al (1972) Locations of human satellite DNA in human chromosomes. Nature New Biol 236:244–246

    Google Scholar 

  20. Jones KW, Corneo G (1971) Location of satellite and homogeneous DNA sequences on human chromosomes. Nature New Biol 233:268–271

    Article  CAS  PubMed  Google Scholar 

  21. Ginelli E, Corneo G (1976) The organization of repeated DNA sequences in the human genome. Chromosoma (Berl) 56:55–69

    Article  CAS  Google Scholar 

  22. Verma RS, Babu A (1995) Human chromosomes. Principles and techniques. McGraw-Hill, New York, pp 72–127

    Google Scholar 

  23. Babu A, Macera MJ, Verma RS (1986) Intensity heteromorphisms of human chromosome 15p by DA/DAPI technique. Hum Genet 73:298–300

    Article  CAS  PubMed  Google Scholar 

  24. Corneo G, Ginelli E, Polli EJ (1968) Isolation of complementary strands of a human satellite DNA. J Mol Biol 33:331

    Article  CAS  PubMed  Google Scholar 

  25. Miklos GLG, John B (1979) Heterochromatin and satellite DNA in man: properties and prospects. Am J Hum Genet 31:264–280

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gosden JR et al (1975) The location of four human satellite DNAs on human chromosomes. Exp Cell Res 92:148–158

    Google Scholar 

  27. Jones KW et al (1973) The chromosomal localization of human satellite DNA III. Chromosoma (Berl.) 42:445–451

    Google Scholar 

  28. Buhler EM et al (1975) Satellite DNA III and alkaline Giemsa staining. Humangenetik 26:329–333

    Google Scholar 

  29. Levi B, Warburton P (2004) Molecular dissection of heteromorphic regions. In: Wyandt HE, Tonk VS (eds) Atlas of human chromosome heteromorphisms. Kluwer Academic Publishers, Dordrecht, pp 97–105

    Chapter  Google Scholar 

  30. Hopman AHN et al (1988) Non radioactive in situ hybridization. In: Van Leeuwen FW et al (eds) Molecular neuroanatomy. Elsevier Science Publishers B.V., pp 43–68

    Google Scholar 

  31. Lichter P, Ried T (1994) Molecular analysis of chromosome aberrations. In situ hybridization. In: Gosden JR (ed) Methods in molecular biology. Chromosome analysis protocols. Humana Press, Totowa, New Jersey (USA), pp 449–478

    Google Scholar 

  32. Caspersson T, Zech L, Johansson C (1970) Analysis of human metaphase chromosome set by aid of DNA-binding fluorescent agents. Exp Cell Res 62:490–492

    Article  CAS  PubMed  Google Scholar 

  33. Weisblum B, de Haseth PL (1972) Quinacrine, a chromosome stain specific for deoxyadenylate-deoxythymidylate rich regions in DNA. Proc Natl Acad Sci USA 63:629–632

    Article  Google Scholar 

  34. Ellison JR, Barr HJ (1972) Quinacrine fluorescence of specific chromosome regions. Late replication and high A: T content in Samoia leonensis. Chromosoma 36:375–390

    Article  CAS  PubMed  Google Scholar 

  35. Comings DE et al (1975) Mechanism of chromosome banding. V. Quinacrine banding. Chromosoma 50:111–145

    Google Scholar 

  36. Michelson AM, Monny C, Kovoor A (1972) Action of quinacrine mustard on polynucleotide. Biochimie 54:1129–1136

    Article  CAS  PubMed  Google Scholar 

  37. Sumner AT, Evans HJ, Buckland RA (1971) New technique for distinguishing between human chromosomes. Nature New Biol 232:31–32

    Article  CAS  PubMed  Google Scholar 

  38. Drets ME, Shaw MW (1971) Specific banding patterns of human chromosomes. Proc Nat Acad Sci (USA) 68:2073–2077

    Article  CAS  Google Scholar 

  39. Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2:971–972

    Article  CAS  PubMed  Google Scholar 

  40. Wang HC, Fedoroff (1972) Banding in human chromosomes treated with trypsin. Nat New Biol 235:52–54

    Google Scholar 

  41. Muller W, Rozenkranz (1972) Rapid banding technique for human and mammalian chromosomes. The Lancet 1:898

    Google Scholar 

  42. Pearson P (1972) The use of new staining techniques for human chromosome identification. J Med Genet 9:264–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sumner AT (1994) Chromosome banding and identification absorption staining. In: Gosden GR (ed) Methods in molecular biology. Chromosome analysis protocols. Humana Press, Totowa, NJ, pp 59–81

    Google Scholar 

  44. Saitoh Y, Laemmli (1994) Metaphase chromosome structure: bands arise from a differential folding path of highly AT-rich scaffold. Cell 75:609–621

    Google Scholar 

  45. Hancock R (2000) A new look at the nuclear matrix. Chromosoma 109(4):219–225

    Article  CAS  PubMed  Google Scholar 

  46. Nickerson J (2001) Experimental observations of the nuclear matrix. J Cell Sci 114(3):463–474

    CAS  PubMed  Google Scholar 

  47. Comings DE, Avelino A (1974) Mechanisms of chromosome banding II. Evidence that histones are not involved. Exp Cell Res 86:202–206

    Article  CAS  PubMed  Google Scholar 

  48. Comings DE et al (1973) The mechanisms of C- and G-banding of chromosomes. Exp Cell Res 77:469–493

    Google Scholar 

  49. Sumner AT (1973) Involvement of protein disulphides and sulphydryls in chromosome banding. Exp Cell Res 83:438–442

    Article  Google Scholar 

  50. Korf BR et al (1976) The role of trypsin in the pre-treatment of chromosomes for Giemsa banding. Hum Genet 31:27–33

    Google Scholar 

  51. Holmquist GP (1992) Chromosome bands, their chromatin flavors and their functional features. Am J Hum Genet 51:17–37

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Brown RL, Pathak S, Hsu TC (1975) The possible role of histones in the mechanism of G-banding. Science 189:1090–1091

    Article  CAS  PubMed  Google Scholar 

  53. Holmquist GP, Comings DE (1976) Histones and G-banding of chromosomes. Science 193:599–602

    Article  CAS  PubMed  Google Scholar 

  54. Retief AE, Ruchel R (1977) Histones removed by fixation. Their role in the mechanism of chromosome banding. Exp Cell Res 106:233–237

    Article  CAS  PubMed  Google Scholar 

  55. Okada TA, Comings DE (1974) Mechanisms of chromosome banding III. Similarity between G-bands of mitotic chromosomes and chromomeres of meiotic chromosomes. Chromosoma 48:65–71

    Article  CAS  PubMed  Google Scholar 

  56. Jhanwar SC et al (1982) Mid-pachytene chromomere maps of human autosomes. Cytogenet Cell Genet 33:240–248

    Google Scholar 

  57. Comings DE (1975) Mechanisms of chromosome banding. IV. Optical properties of the Giemsa dyes. Chromosoma 50:89–110

    Article  CAS  PubMed  Google Scholar 

  58. Comings DE, Avelino E (1975) Mechanisms of chromosome banding VII. Interaction of methylene blue with DNA and chromatin. Chromosoma 51:365–379

    Article  CAS  PubMed  Google Scholar 

  59. Wyandt HE et al (1980) Mechanisms of Giemsa banding II. Giemsa components and other variables in G-banding. Hum Genet 53:211–215

    Google Scholar 

  60. Dutrillaux B, Lejeune J (1971) Cytogenetique humaine. Sur une nouvelle technique d’ analyse du caryotype humain. CR Acad Sci (III) 272:2638–2640

    CAS  Google Scholar 

  61. Bobrow M, Collacott HEAC, Madan K (1972) Chromosome banding with acridine orange. Lancet 2:1311

    Article  CAS  PubMed  Google Scholar 

  62. Wyandt HE et al (1974) Colored reverse-banding of human chromosomes with acridine orange following alkaline-formalin treatment: densitometric validation and applications. Humangenetik 23:119–130

    Google Scholar 

  63. Pardue ML, Gall JG (1970) Chromosomal localization of mouse satellite DNA. Science 168:1356–1358

    Article  CAS  PubMed  Google Scholar 

  64. Arrighi FE, Hsu TC (1971) Localization of heterochromatin in human chromosomes. Cytogenetics 10:81–86

    Article  CAS  PubMed  Google Scholar 

  65. Hsu TC, Arrighi FE (1971) Distribution of constitutive heterochromatin in mammalian chromosomes. Chromosoma 34:243–253

    CAS  PubMed  Google Scholar 

  66. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306

    Article  CAS  PubMed  Google Scholar 

  67. McKenzie WH, Lubs HA (1973) An analysis of the technical variables in the production of C bands. Chromosoma 41:175–182

    Article  CAS  PubMed  Google Scholar 

  68. Eiberg H (1974) New selective Giemsa technique for human chromosomes. Cd staining. Nature 248:55

    Article  CAS  PubMed  Google Scholar 

  69. Nakagome Y et al (1984) The “loss” of centromeres from chromosomes of aged women. Am J Hum Genet 36:398–404

    Google Scholar 

  70. Nakagome Y et al (1986) The loss of centromeric heterochromatin from an inactivated centromere of a dicentric chromosome. **rui Idengaku Zasshi 31:21–26

    Google Scholar 

  71. Evans HJ, Ross A (1974) Letter: spotted centromeres in human chromosomes. Nature 249:861–862

    Article  CAS  PubMed  Google Scholar 

  72. Maraschio P, Zuffardi O, Lo CF (1980) Cd bands and centromeric function in dicentric chromosomes. Hum Genet 54:265–267

    Article  CAS  PubMed  Google Scholar 

  73. Earnshaw WC, Rothfield (1985) Identification of a family of centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 912(3–4):313–321

    Google Scholar 

  74. Willard HF (1990) Centromeres of mammalian chromosomes. Trends Genet 6:410–416

    Article  CAS  PubMed  Google Scholar 

  75. Patil SR, Merrick S, Lubs HA (1971) Identification of each human chromosome with a modified Giemsa stain. Science 173:821–822

    Article  CAS  PubMed  Google Scholar 

  76. Bobrow M, Madan K, Pearson PL (1972) Staining of some specific regions of human chromosomes, particularly the secondary constriction of No. 9. Nature New Biol. 238:122–124

    Article  CAS  PubMed  Google Scholar 

  77. Wyandt HE et al (1976) Mechanism of Giemsa banding of chromosomes I. Giemsa-11 banding with azure and eosin. Exp Cell Res 102:85–94

    Google Scholar 

  78. Hendersen AS, Warburton D, Atwood KC (1972) Localization of ribosomal DNA in human chromosomal complement. Proc Nat Acad Sci USA 69(11):3394–3398

    Article  Google Scholar 

  79. Pardue ML, Hsu TC (1975) Locations of 18S and 28S ribosomal genes on the chromosomes of Indian muntjac. J Cell Biol 64:251–254

    Article  CAS  PubMed  Google Scholar 

  80. Hsu TC, Spirito SE, Pardue ML (1975) Distribution of 18 + 28S ribosomal genes in mammalian genomes. Chromosoma 53(1):25–36

    Article  CAS  PubMed  Google Scholar 

  81. Howell WM, Denton TE (1974) An ammoniacal—silver stain technique specific for satellite III DNA regions on human chromosomes. Experientia 30(11):1364–1366

    Article  CAS  PubMed  Google Scholar 

  82. Howell WM, Black DA (1980) Controlled silver-staining of nucleolar organizer regions with protective colloidal developer: a 1-step method. Experientia 36(8):1014–1015

    Article  CAS  PubMed  Google Scholar 

  83. Goodpasture C, Bloom SE (1975) Visualization of nucleolar organizing regions in mammalian chromosomes using silver staining. Chromosoma 53(1):37–50

    Article  CAS  PubMed  Google Scholar 

  84. Goodpasture C et al (1976) Human nucleolus organizers: the satellites or the stalks? Am J Hum Genet 28:559–566

    Google Scholar 

  85. Miller OJ et al (1976) Expression of human and suppression of mouse nucleolus organizer activity in mouse-human somatic cell hybrids. Proc Natl Acad Sci USA 73:4531–4535

    Google Scholar 

  86. Verma RS et al (1983) Preferential association of nucleolar organizing human chromosomes as revealed by silver staining technique at mitosis. Mol Gen Genet 190:352–354

    Google Scholar 

  87. Mikelsaar AV et al (1977) Frequency of Ag-stained nucleolar organizer regions in the acrocentric chromosomes of man. Hum Genet 37(1):73–77

    Google Scholar 

  88. Markovic VD, Worton GR, Berg JM (1978) Evidence for the inheritance of silver stained nucleolus organizer regions. Hum Genet 41(2):181–187

    Article  CAS  PubMed  Google Scholar 

  89. Mikelsaar AV, Ilus T (1979) Populational polymorphisms in silver staining of nucleolus organizer regions in human acrocentric chromosomes. Hum Genet 51(3):281–285

    Article  CAS  PubMed  Google Scholar 

  90. Ray M, Pearson J (1979) Nucleolar organizing regions of human chromosomes. Hum Genet 48(2):201–210

    Article  CAS  PubMed  Google Scholar 

  91. Taylor EF, Martin-DeLeon PA (1981) Familial silver staining patterns of human nucleolus organizer regions (NORs). Am J Hum Genet 33(1):67–76

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Morton CC et al (1981) Quinacrine mustard and nucleolar organizer region heteromorphisms in twins. Acta Genet Med Gemellol (Roma) 30(1):39–49

    Google Scholar 

  93. Denton TE et al (1981) The relationship between aging and ribosomal gene activity in humans as evidenced by silver staining. Mech Ageing Dev 15(1):1–7

    Google Scholar 

  94. Zakharov AF et al (1982) Polymorphisms of Ag-stained nucleolar organizer regions in man. Hum Genet 60(4):334–339

    Google Scholar 

  95. Das BC et al (1986) The number of silver-staining NORs (rDNA) in lymphocytes of newborns and its relationship to human development. Mech Ageing Dev 36(2):117–123

    Google Scholar 

  96. Zurita F et al (1997) Interchromosomal, intercellular and interindividual variability of NORs studied with silver staining and in situ hybridizion. Heredity (Edinb) 78(3):229–234

    Google Scholar 

  97. Perry P, Wolff S (1974) New Giemsa method for differential staining of sister chromatids. Nature 261:156–158

    Article  Google Scholar 

  98. Latt SA (1973) Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc Natl Acad Sci (USA). 70:3395–3399

    Article  CAS  PubMed Central  Google Scholar 

  99. Gebhart E (1981) Sister chromatid exchange (SCE) and structural chromosome aberration in mutagenicity testing. Hum Genet 58:235–254

    Article  CAS  PubMed  Google Scholar 

  100. Craig-Holmes AP, Shaw MW (1976) Cell cycle analysis of asynchronous cultures using the BudR-Hoechst technique. Exp Cell Res 99:79–87

    Article  CAS  PubMed  Google Scholar 

  101. Crossen PE, Morgan WF (1977) Analysis of human lymphocyte cell cycle time in culture measured by sister chromatid differential staining. Exp Cell Res 104:453–457

    Article  CAS  PubMed  Google Scholar 

  102. German J, Crippa LP, Bloom D (1974) Bloom’s syndrome III. Analysis of the chromosome aberrations characteristic of this disorder. Chromosoma 48:361–366

    Article  CAS  PubMed  Google Scholar 

  103. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373

    Article  CAS  PubMed  Google Scholar 

  104. German JL III (1962) DNA synthesis in human chromosomes. Trans NY Acad Sci 24:395–407

    Article  CAS  Google Scholar 

  105. Peterson AJ (1964) DNA synthesis and chromosomal asynchrony. J Cell Biol 23:651–654

    Article  Google Scholar 

  106. Priest JH, Heady JE, Priest RE (1967) Delayed onset of replication of human X chromosomes. J Cell Biol 35:483–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lyon MF (1972) X-chromosome inactivation and developmental patterns in mammals. Biol Rev 47:1–35

    Article  CAS  PubMed  Google Scholar 

  108. Latt SA (1975) Fluorescence analysis of late DNA replication in human metaphase chromosomes. Somat Cell Genet 1:293–321

    Article  CAS  PubMed  Google Scholar 

  109. Angell RR, Jacobs PA (1975) Lateral asymmetry in human constitutive heterochromatin. Chromosoma 51:301–310

    Article  CAS  PubMed  Google Scholar 

  110. Lin MS, Alfi OS (1978) Detection of lateral asymmetry in the C band of human chromosomes by BrdU-DAPI fluorescence. Somatic Cell Genet 4:603–608

    Article  CAS  PubMed  Google Scholar 

  111. Angell RR, Jacobs PA (1978) Lateral asymmetry in human constitutive heterochromatin: frequency and inheritance. Am J Hum Genet 30:144–152

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Gosh PK, Rani R, Nand R (1979) Lateral asymmetry of constitutive heterochromatin in human chromosomes. Hum Genet 52:79–84

    Google Scholar 

  113. Yunis JJ (1976) High resolution of human chromosomes. Science 191:1268–1269

    Article  CAS  PubMed  Google Scholar 

  114. Yunis JJ (1981) Mid prophase human chromosomes; the attainment of 2000 bands. HumGenet 56:295–298

    Google Scholar 

  115. Ikeuchi T (1984) Inhibitory effect of ethidium bromide on mitotic chromosome condensation and its application to high-resolution chromosome banding. Cytogenet Cell Genet 38:56–61

    Article  CAS  PubMed  Google Scholar 

  116. Balicek P, Zizka J (1980) Intercalar satellites of human acrocentric chromosomes as a cytological manifestation of polymorphisms in GC-rich material. Hum Genet 54:343–347

    Article  CAS  PubMed  Google Scholar 

  117. Waye JS, Creeper LA, Willard HF (1987) Organization and evolution of alpha satellite DNA from human chromosome 11. Chromosoma 95:182–188

    Article  CAS  PubMed  Google Scholar 

  118. Choo KHA, Vissel B, Earle E (1989) Evolution of Alpha satellite DNA on human acrocentric chromosomes. Genomics 5:332–344

    Article  CAS  PubMed  Google Scholar 

  119. Waye JS, Willard HF (1989) Human beta satellite DNA: genomic organization and sequence definition of a class of highly repetitive tandem DNA. Proc Natl Acad Sci (USA) 86:6250–6254

    Article  CAS  PubMed Central  Google Scholar 

  120. Vissel B, Choo KH (1989) Mouse major (gamma) satellite DNA is highly conserved and organized into extremely long tandem arrays: implications for recombination between non-homologous chromosomes. Genomics 5:407–414

    Article  CAS  PubMed  Google Scholar 

  121. Wier HU, Zitzelsberger HF, Gray JW (1992) Differential staining of human and murine chromatin in situ by hybridization with species-specific satellite DNA probes. Biochem Biophyus Res Commun 182:1313–1319

    Article  Google Scholar 

  122. Lee C et al (1995) Human gamma X satellite DNA: an X chromosome specific centromeric DNA sequences. Chromosoma 104:103–112

    Google Scholar 

  123. Johnson DH, Kroisel PM, Klapper HJ, Rosenkranz W (1992) Microdissection of a human marker chromosome reveals its origin and a new family of centromeric repetitive DNA. Hum Mol Genet 1:741–747

    Article  CAS  PubMed  Google Scholar 

  124. Corneo G, Ginelli E, Polli E (1970) Repeated sequences in human DNA. J Mol Biol 48:319–327

    Article  CAS  PubMed  Google Scholar 

  125. Jones KW et al (1973) Satellite DNA, constitutive heterochromatin and human evolution. In: Pfeiffer RA (ed) Modern aspects of cytogenetics: constitutive heterochromatin in man. Stuttgart-New York, F.K. Schattauer Verlag, pp 45–61

    Google Scholar 

  126. Jones KW et al (1974) The chromosomal location of human satellite DNA I. Chromosoma 49:161–171

    Google Scholar 

  127. Prosser J et al (1986) Sequence relationships of three human satellite DNAs. J Mol Biol 187:145–155

    Google Scholar 

  128. Tagarro I, Wiegant J, Raap AK, Gonzalez-Aguilera JJ, Fernandez-Peralta AM (1994) Assignment of human satellite 1 DNA as revealed by fluorescent in situ hybridization with oligonucleotides. Hum Genet 93:125–128

    CAS  PubMed  Google Scholar 

  129. Jeanpierre M (1994) Human satellites 2 and 3. Ann Genet 37:63–71

    Google Scholar 

  130. Jackson MS, Mole SE, Ponder BA (1992) Characterization of a boundary between satellite III and alphoid sequences on human chromosome 10. Nucleic Acids Res 20:4781–4787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Willard HF (1991) Evolution of alpha satellite DNA. Curr Opin Genet Dev 1:509–514

    Article  CAS  PubMed  Google Scholar 

  132. Cooke CA et al (1990) CENP-B: a major human centromeric protein located beneath the kinetochore. J Cell Biol 110:1475–1488

    Google Scholar 

  133. Gieni RS, Chan GKT, Hendzel MJ (2008) Epigenetics regulate centromere formation and kinetochore function. J Cell Biochem 104:2027–2039

    Google Scholar 

  134. Masumoto H et al (2004) The role of CENP-B and alpha-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres. Chromosome Res 12(6):543–556

    Google Scholar 

  135. Dalal Y et al (2007) Structure, dynamics and evolution of centromeric nucleosomes. Proc Nat Acad Sci USA 104(41):15974–15981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Perpelescu M, Fukagawa T (2011) The ABCs of CENPs. Chromosoma 120(5):425–446

    Article  PubMed  Google Scholar 

  137. Nechemia-Arbely Y et al (2012) Replicating centromeric chromatin: special and temporal control of CENP-A assembly. Exp Cell Res 318(12):1353–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Stellfox MA et al (2013) Putting CENP-A in its place. Cell Mol Life Sci 70(3):387–406

    Article  CAS  PubMed  Google Scholar 

  139. Padeganeh A et al (2013) Octameric CENP-A nucleosomes are present at human centromeres throughout the cell cycle. Curr Biol 23:764–769

    Article  CAS  PubMed  Google Scholar 

  140. Henikoff JG et al (2015) A unique chromatin complex occupies young α-satellite arrays of human centromeres. Sci Adv 20(15):e1400234

    Article  Google Scholar 

  141. Earnshaw WC (2015) Discovering centromere proteins: from cold white hands to the A, B, C of CENPs. Nat Rev Mol Cell Biol 16(7):443–449

    Article  CAS  PubMed  Google Scholar 

  142. Fujita R et al (2015) Stable complex formation of CENP-B with the CENP-A nucleosome. Nucleic Acids Res 43(10):4909–4922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fachinetti D et al (2015) DNA sequence-specific binding of CENP-B enhances the fidelity of human centromere function. Dev Cell 33(3):314–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Frommer M et al (1982) Simple repeated sequences in human satellite DNA. Nucleic Acids Res 10(2):547–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jarmuz M et al (2007) Evolution of satellite III DNAs. Am J Hum Genet 80:495–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Valgardsdottir R et al (2008) Transcription of satellite III non-coding RNAs is a general stress response in human cells. Nucleic Acids Res 36(2):423–434

    Article  CAS  PubMed  Google Scholar 

  147. Herbomel G et al (2013) Dynamics of the full length and mutated heat shock factor 1in human cells. PLOS ONE 8(7):e67566

    Google Scholar 

  148. Cardonne MF et al (2004) Evolution of Beta satellite DNA sequences: evidence for duplication-mediated repeat amplification and spreading. Mol Biol Evol 21(9):1792–1799

    Article  CAS  Google Scholar 

  149. Lemmers RJLF et al (2010) Worldwide population analysis of 4q and 10q subtelomeres identifies only four discreet interchromosomal sequence transfers in human evolution. Am J Hum Genet 86:364–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Scionti I et al (2012) Large scale population analysis challenges the current criteria for the molecular diagnosis of fascioscapulohumeral muscular dystrophy. Am J Hum Genet 90:628–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bosi PR, Grant GR, Jeffreys AJ (2002) Minisatellites show rare and simple intra-allelic instability in the mouse germ line. Genomics 80:2–4

    Article  CAS  Google Scholar 

  152. Desmarais E et al (1993) Variant map** of the Apo(B) AT rich minisatellite. Dependence on nucleotide sequence of the copy number variations. Instability of the non-canonical alleles. Nucleic Acids Res 21:2179–2184

    Google Scholar 

  153. Buresi C et al (1996) Structural analysis of the minisatellite present at the 3’ end of the human apolipoprotein B gene: new definition of the alleles and evolutionary implications. Hum Mol Genet 5:61–68

    Google Scholar 

  154. Yu S et al (1997) Human chromosomal fragile site FRA16B is an amplified AT-rich minisatellite repeat. Cell 88:367–374

    Google Scholar 

  155. Hewett DR et al (1998) FRA10B structure reveals common elements in repeat expansion and chromosomal fragile site genesis. Mol Cell 1:773–781

    Google Scholar 

  156. Jobling MA, Bouzekri N, Taylor PG (1998) Hypervariable digital DNA codes for human paternal lineages: MVR-PCR at the Y-specific minisatellite, MSY1(DYF155S1). Hum Mol Genet 7:643–653

    Article  CAS  PubMed  Google Scholar 

  157. Butler JM (2004) Short tandem repeat analysis for human identity testing. Current protocols in human genetics. Unit 14.8

    Google Scholar 

  158. Butler JM (2007) Short tandem repeat ty** technologies used in human identity testing. BioTechniques 43 suppl:i–iv

    Google Scholar 

  159. Payseur BA, **g P (2009) A genomewide comparison of population structure at STRPs and nearby SNPs in humans. Mol Biol Evol 26:1369–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Manolio TA, Collins FS (2009) The HapMap and genome-wide association studies in diagnosis and therapy. Ann Rev Med 60:443–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herman E. Wyandt .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wyandt, H.E., Wilson, G.N., Tonk, V.S. (2017). Chromosome Heteromorphism. In: Human Chromosome Variation: Heteromorphism, Polymorphism and Pathogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-10-3035-2_2

Download citation

Publish with us

Policies and ethics

Navigation