Sha** the Other Sides: Exploring the Physical Architecture of Rhizosphere

  • Chapter
  • First Online:
Plant-Microbe Interaction: An Approach to Sustainable Agriculture

Abstract

The root system is immediately surrounded by a narrow zone of soil called the rhizosphere. A major proportion of biodiversity of the soil resides in the rhizosphere, hence accounting for the various activities found in that area. There are various abiotic and biotic factors which help in modifying the physical structure of the rhizosphere. The main abiotic factors are light, temperature, humidity, carbon dioxide, water uptake, pH change, etc. The physical architecture determines the richness of the microbial community which in turn affects the plant growth. In this chapter, the various physical and chemical processes occurring in the rhizosphere and how the change in environment hampers these factors and how that affects the rhizospheric diversity in modifying the microbial ecology and root architecture will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alder NN et al (1996) Root and stem xylem embolism, stomatal conductance and leaf turgor in Acer grandidentatum populations along a soil moisture gradient. Oecologia 105:293–301

    Article  Google Scholar 

  • Allen MF, Klironomos JN, Treseder KK, Oechel WC (2005) Responses of soil biota to elevated CO2 in a chaparral ecosystem. Ecol Appl 15:1701–1711

    Article  Google Scholar 

  • Amellal N, Burtin G, Bartoli F, Heulin T (1998) Colonization of wheat roots by an exopolysaccharide-producing Pantoea agglomerans strain and its effects on rhizosphere soil aggregation. Appl Environ Microbiol 64:3740–3747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach, 2nd edn. Wiley, New York, p 414

    Google Scholar 

  • Barney CW (1951) Effects of soil temperature and light intensity on root growth of loblolly pine seedlings. Plant Physiol 26(1):146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • BassiriRad H (2000) Kinetics of nutrient uptake by roots: responses to global change. New Phytol 147:155–169

    Article  CAS  Google Scholar 

  • BassiriRad H, Caldwell MM, Bilbrough C (1993) Effects of soil temperature and nitrogen status on kinetics of 15NO3 uptake by roots of field-grown Agropyron desertorum (Fisch. ex Link) Schult. New Phytol 123:485–489

    Article  CAS  Google Scholar 

  • Bhat KKS, Nye PH, Baldwin JP (1976) Diffusion of phosphate to plant roots in soil. IV. The concentration distance profile in the rhizosphere of roots with root hairs in a low-P soil. Plant Soil 44:63–72

    Article  CAS  Google Scholar 

  • Biswell HH (1935) Effect of environment upon the root habits of certain deciduous forest trees. Bot Gaz 96:676–708

    Article  Google Scholar 

  • Cotrufo MF, Gorissen A (1997) Elevated CO2 enhances below-ground C allocation in three perennial grass species at different levels of N availability. New Phytol 137:421–431

    Article  CAS  Google Scholar 

  • Crawford JW, Harris JA, Ritz K, Young IM (2005) Towards an evolutionary ecology of life in soil. Trends Ecol Evol 20:81–86

    Article  PubMed  Google Scholar 

  • Curtis PS (1996) A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant Cell Environ 19:127–137

    Article  Google Scholar 

  • Curtis TP, Sloan WT (2005) Exploring microbial diversity-A vast below. Science 309:1331–1333

    Article  CAS  PubMed  Google Scholar 

  • Curtis PS, Wang XZ (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313

    Article  Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A 99:10494–10499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czarnes S, Hiller S, Dexter AR, Hallett PD, Bartoli F (1999) Root:soil adhesion in the maize rhizosphere: the rheological approach. Plant Soil 211:69–86

    Article  CAS  Google Scholar 

  • Czarnes S, Hallett PD, Bengough AG, Young IM (2000) Root and microbial-derived mucilages affect soil structure and water transport. Eur J Soil Sci 51:435–443

    Article  Google Scholar 

  • Darrah PR (1993) The rhizosphere and plant nutrition: a quantitative approach. Plant Soil 155/156:1–20

    Article  Google Scholar 

  • Dexter AR (1987) Compression of soil around roots. Plant Soil 97:401–406

    Article  Google Scholar 

  • Diaz S, Grime JP, Harris J, McPherson E (1993) Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364:616–617

    Article  CAS  Google Scholar 

  • Doussan C, Pagès L, Pierret A (2003) Soil exploration and resource acquisition by plant roots: an architectural and modelling point of view. Agronomie 23:419–431

    Article  Google Scholar 

  • Dunbabin VM, McDermott S, Bengough AG (2006) Upscaling from rhizosphere to whole root system: modelling the effects of phospholipid surfactants on water and nutrient uptake. Plant Soil 283(1–2):57–72

    Article  CAS  Google Scholar 

  • Ferguson JJ, Menge JA (1982) The influence of light intensity and artificially extended photoperiod upon infection and sporulation of Glomus fasciculatum on Sudan grass and on root exudation of Sudan grass. New Phytol 92(2):183–191

    Article  Google Scholar 

  • Gahoonia TS, Claassen N, Jungk A (1992) Mobilization of phosphate in different soils by ryegrass supplied with ammonium or nitrate. Plant Soil 140:241–248

    Article  Google Scholar 

  • Gamper H, Peter M, Jansa J, Luscher A, Hartwig UA, Leuchtmann A (2004) Arbuscular mycorrhizal fungi benefit from 7 years of free air CO2 enrichment in well-fertilized grass and legume monocultures. Glob Chang Biol 10:189–199

    Article  Google Scholar 

  • Gamper H, Hartwig UA, Leuchtmann A (2005) Mycorrhizas improve nitrogen nutrition of Trifolium repens after 8 yr of selection under elevated atmospheric CO2 partial pressure. New Phytol 167:531–542

    Article  CAS  PubMed  Google Scholar 

  • Ge Z, Rubio G, Lynch JP (2000) The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model. Plant Soil 218:159–171

    Article  CAS  PubMed  Google Scholar 

  • Hacke U, Sauter JJ (1996) Drought-induced xylem dysfunction in petioles, branches and roots of Populus balsamifera and Alnus glutinosa (L.) Gaertn. Plant Physiol 111:413–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haig IT (1936) Factors controlling initial establishment of western white pine and associated species, Bulletin 41. Yale University, School Forestry, New Haven, p 41

    Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner: a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:714

    Article  Google Scholar 

  • Hayman DS (1974) Plant growth responses to vesiculararbuscular mycorrhiza. New Phytol 73(1):71–80

    Article  Google Scholar 

  • Haynes RJ (1990) Active ion uptake and maintenance of cation– anion balance: a critical examination of their role in regulating rhizosphere pH. Plant Soil 126:247–264

    Article  CAS  Google Scholar 

  • Hendriks L, Claassen N, Jungk A (1981) Phosphatverarmung des wurzelnahen Bodens und Phosphataufnahme von Mais und Raps. Z Pflanzenern Bodenkd 144:486–499

    Article  CAS  Google Scholar 

  • Hiatt AJ (1967) Relationship of cell pH to organic acid change during ion uptake. Plant Physiol 42:294–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiltner L (1904) Ueber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie und unter besonderer BerUcksichtigung der Grundungung und Brache. Arb Deut Landw Gesell 98:5978

    Google Scholar 

  • Hinsinger P (1998a) How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv Agron 64:225–265

    Article  CAS  Google Scholar 

  • Hinsinger P (1998b) Structure and function of the rhizosphere: mechanisms at the soil-root interface. Ocl-Oleagineux Corps Gras Lipides 5(5):340–341

    CAS  Google Scholar 

  • Hinsinger P (2001a) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237(2):173–195

    Article  CAS  Google Scholar 

  • Hinsinger P (2001b) Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC Press LCC, Boca Raton, pp 25–41

    Google Scholar 

  • Hinsinger P (2004) Nutrient availability and transport in the rhizosphere. In: Goodman RM (ed) Encyclopedia of plant and crop science. Marcel Dekker, Inc, New York, pp 1094–1097

    Chapter  Google Scholar 

  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root‐mediated physical and chemical processes. New Phytol 168(2):293–303

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321(1–2):117–152

    Article  CAS  Google Scholar 

  • Hu SJ, Firestone MK, Chapin FS (1999) Soil microbial feedbacks to atmospheric CO2 enrichment. Tree 14:433–437

    CAS  PubMed  Google Scholar 

  • Jaillard B, Plassard C, Hinsinger P (2002) Measurements of H+ fluxes and concentrations in the rhizosphere. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker, New York

    Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular–arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Jones DL, Brassington DS (1998) Sorption of organic acids in acid soils and its implications in the rhizosphere. Eur J Soil Sci 49:447–455

    Article  CAS  Google Scholar 

  • Jones DL, Hinsinger P (2008) The rhizosphere: complex by design. Plant Soil 312:1–6

    Article  CAS  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, van Hees PAW (2002) Organic acid behaviour in soils – misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil

    Google Scholar 

  • Kandeler E, Tscherko D, Bardgett RD, Hobbs PJ, Lampichler C, Jones TH (2002) The response of soil microorganisms and roots to elevated CO2 and temperature in a terrestrial model ecosystem. Plant Soil 1998:251–262

    Google Scholar 

  • King JS, Thomas RB, Strain BR (1996) Growth and carbon accumulation in root systems of Pinus taeda and Pinus ponderosa seedlings as affect by varying CO2, temperature and nitrogen. Tree Physiol 16:635–642

    Article  CAS  PubMed  Google Scholar 

  • King JS, Thomas RS, Strain BR (1997) Morphology and tissue quality of seedling root systems of Pinus taeda and Pinus ponderosa as affected by varying CO2, temperature and nitrogen. Plant Soil 195:107–119

    Article  CAS  Google Scholar 

  • Klironomos JN, Rillig MC, Allen MF (1996) Below-ground microbial and microfaunal responses to Artemisia tridentata grown under elevated atmospheric CO2. Funct Eco 10:527–534

    Article  Google Scholar 

  • Kuchenbuch R, Jungk A (1982) A method for determining concentration profiles at the soil-root interface by thin slicing rhizospheric soil. Plant Soil 68:391–394

    Article  CAS  Google Scholar 

  • Li X-L, George E, Marschner H (1991) Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 136:41–48

    Article  Google Scholar 

  • Loosemore N, Straczek A, Hinsinger P, Jaillard B (2004) Zinc mobilization from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH. Plant Soil 260:19–32

    Article  CAS  Google Scholar 

  • Lorenz SE, Hamon RE, McGrath SP (1994) Differences between soil solutions obtained from rhizosphere and non-rhizosphere soils by water displacement and soil centrifugation. Eur J Soil Sci 45:431–438

    Article  CAS  Google Scholar 

  • Lynch JM (1990) The rhizosphere. Wiley, New York

    Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, 889 pp

    Google Scholar 

  • McCully ME (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev Plant Physiol Plant Mol Biol 50:695–718

    Article  CAS  PubMed  Google Scholar 

  • Michaud AM, Bravin MN, Galleguillos M, Hinsinger P (2007) Copper uptake and phytotoxicity as assessed in situ for durum wheat (Triticum turgidum durum L.) cultivated in Cu-contaminated, former vineyard soils. Plant Soil 298:99–111

    Google Scholar 

  • Nye PH (1981) Changes of pH across the rhizosphere induced by roots. Plant Soil 61:7–26

    Article  CAS  Google Scholar 

  • Parrent JL, Morris WF, Vilgalys R (2006) CO2-enrichment and nutrient availability alter ectomycorrhizal fungal communities. Ecology 87:2278–2287

    Article  PubMed  Google Scholar 

  • Paterson E, Hall JM, Rattray EAS, Griffiths BS, Ritz K, Killham K (1997) Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes. Glob Chang Biol 3:363–377

    Article  Google Scholar 

  • Pendall E, Bridgham S, Hanson PJ, Hungate B, Kicklighter DW, Johnson DW, Law BE, Luo Y, Megonigal JP, Olsrud M, Ryan MG (2004) Below‐ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytol 162(2):311–322

    Article  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance. New Phytol 157:475–492

    Article  Google Scholar 

  • Read DB, Bengough AG, Gregory PJ, Crawford JW, Robinson D, Scrimgeour CM, Young IM, Zhang K, Zhang X (2003) Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil. New Phytol 157:315–326

    Article  CAS  Google Scholar 

  • Rillig MC, Scow KM, Klironomos JN, Allen MF (1997) Microbial carbon-substrate utilization in the rhizosphere of Gutierrezia sarothrae grown in elevated atmospheric carbon dioxide. Soil Biol Biochem 29:1387–1394

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  CAS  PubMed  Google Scholar 

  • Sadowsky MJ, Schortemeyer M (1997) Soil microbial responses to increased concentrations of atmospheric CO2. Glob Chang Biol 3:217–224

    Article  Google Scholar 

  • Sanders IR, Streitwolf-Engel R, van der Heijden MGA, Boller T, Wiemken A (1998) Increased allocation to external hyphae of arbuscular mycorrhizal fungi under CO2 enrichment. Oecologia 117:496–503

    Article  Google Scholar 

  • Shirley HL (1936) Lethal high temperatures for conifers, and the cooling effect of transpiration. J Agric Res 53:239–258

    Google Scholar 

  • Staddon PL, Heinemeyer A, Fitter AH (2002) Mycorrhizas and global environmental change: research at different scales. Plant Soil 244:253–261

    Article  CAS  Google Scholar 

  • Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189–200

    Article  CAS  Google Scholar 

  • Wan S, Norby RJ, Pregitzer KS, Ledford J, O’Neill EG (2004) CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytol 162

    Google Scholar 

  • Winter AG, Meloh KA (1958) Untersuchungen über den Einfluss der endotrophen Mycorrhiza auf die Entwicklung von Zea mays L. Naturwissenschaften 45(13):319

    Article  Google Scholar 

  • Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151:105–117

    Article  CAS  Google Scholar 

  • Zak DR, Pregitzer KS, Curtis PS, Holmes WE (2000) Atmospheric CO2 and the composition and function of soil microbial communities. Ecol Appl 10:47–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabindranath Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chatterjee, M., Bhattacharya, R., Bhattacharyya, R. (2016). Sha** the Other Sides: Exploring the Physical Architecture of Rhizosphere. In: Choudhary, D., Varma, A., Tuteja, N. (eds) Plant-Microbe Interaction: An Approach to Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-2854-0_2

Download citation

Publish with us

Policies and ethics

Navigation