Relative Positioning with Undifferenced Observations: Concept and Application/Experiments with BDS

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC) 2016 Proceedings: Volume III

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 390))

  • 1445 Accesses

Abstract

This paper reviews the history and evolution of the relative positioning based on the undifferenced (UD) observation. The internal mechanism of this method is explained by error division, that is, adopting the model of estimating quasi-clock parameter, which absorbs the unmodeled error of the receiver and the satellite to achieve the same effect of eliminating the common error explicitly by double differenced (DD) observation. With UD observation of Beidou Navigation Satellite System (BDS), various experiments are carried out to demonstrate the flexibility of the relative positioning mode presented, including network solution, static/kinematic baseline solution, and kinematic reference (kinematic for kinematic) solution. In the case of the experiment for network solution with baselines up to thousands of kilometers (2000–5000 km), precise post-processed orbit are used to cancel the influence of orbit errors, the repeatability within 1.1 cm in horizontal direction can be reached, the repeatability in vertical direction is less than 3 cm. The relative positioning precision of BDS on the condition of long baseline also needs to be improved because the phase center offset and variation of satellite antenna and receiver antenna have not been accurately calibrated, and there is still a gap of orbit precision between the current of BDS satellite and GPS. In the static baseline experiments, the broadcast ephemeris is adopted. For baseline of 800 m, the repeatability in horizontal and vertical are 3 and 8 mm, respectively, while for 30 km static baseline, they are 10 and 13 mm. In the experiments of kinematic baseline and kinematic reference solutions both horizontal and vertical precisions are in several centimeters; the latter is slightly worse because the coordinates of reference station are not accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bock Y, Abbot RI, Counselman CC III et al (1985) Establishment of three-dimensional geodetic control by interferometry with the global positioning system. J Geophys Res Solid Earth 90(B9):7689–7703

    Article  Google Scholar 

  2. Remondi RW (1985) Global positioning system carrier phase: description and use. Bull Geod 59:361–377

    Article  Google Scholar 

  3. Lichten SM, Border JS (1987) Strategies for high-precision global positioning system orbit determination. J Geophys Res 92(B12):12751–12762

    Article  Google Scholar 

  4. Dong DN, Bock Y (1989) Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94(B4):3949–3966

    Google Scholar 

  5. Ashkenazi V, Yau J (1986) Significance of discrepancies in the processing of GPS data with different algorithms. Bull Geodesique, 229–239

    Google Scholar 

  6. Jonge de PJ (1998) A processing strategy for the application of the GPS in networks. Delft University of Technology, Delft, p 238

    Google Scholar 

  7. Xu G (2007) GPS theory, algorithms and applications, 2nd edn. Springer, Berlin, p 353

    Google Scholar 

  8. Salazar D, Hernandez-Pajares M, Juan JM et al (2010) GNSS data management and processing with the GPSTk. GPS Solutions 14:293–299

    Article  Google Scholar 

  9. Zhou W (2013) Research and realization on theories and methods of precise positioning base on BeiDou navigation satellite system. PLA Information Engineering University, Zhenghzou, China, p 172

    Google Scholar 

  10. Pan Z, Chai H, Wang M et al (2014) A new relative positioning method based on un-differenced BDS observation. In: 2014 Proceedings of China satellite navigation conference (CSNC). Springer, Nan**g, pp 165–174

    Google Scholar 

  11. Wang M, Cai H, Pan Z (2015) BDS/GPS relative positioning for long baseline with undifferenced observations. Adv Space Res 55(1):113–124

    Article  Google Scholar 

  12. Jonge de P, Tiberius C (1996) The LAMBDA method for integer ambiguity estimation: implementation aspects

    Google Scholar 

  13. Bock Y, Abbot RI, Counselman CC III et al (1986) A demonstration of 1–2 parts in 107 ACCURACY using GPS. Bull Geod 60:241–245

    Article  Google Scholar 

  14. Zumberge J, Heflin M, Jefferson D et al (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017

    Article  Google Scholar 

  15. Gao Y, Shen X (2001) Improving ambiguity convergence in carrier phase-based precise point positioning. In: Proceeding of ION GPS 2001, Salt Lake City, US

    Google Scholar 

  16. Kouba J, Heroux P (2001) Precise point positioning using IGS orbit and clock products. GPS Solutions 5(2):12–28

    Article  Google Scholar 

  17. Shen X, Gao Y (2002) Kinematic processing analysis of carrier phase based precise point positioning. FIG XXII International Congress, Washington, DC, USA

    Google Scholar 

  18. Beran T, Kim D, and Langley RB (2003) High-precision single-frequency GPS point positioning. ION GPS/GNSS 2003, Portland, pp 1192–1200

    Google Scholar 

  19. Kouba J (2003) A guide to using international GPS service (IGS) products, p 31. Date accessed: 15 Sept 2008. ftp://igscb.jpl.nasa.gov/igscb/resource/pubs/GuidetoUsingIGSProducts.pdf

  20. Muellerschoen RJ, Iijima B, Meyer R et al (2003) Real-time point positioning performance evaluation of single-frequency receivers using NASA’s global differential GPS system

    Google Scholar 

  21. Beran T, Bisnath SB, Langley RB (2004) Evaluation of high-precision, single-frequency GPS point positioning models. ION GNSS 2004, Long Beach CA, pp 1893–1901

    Google Scholar 

  22. Gao Y, Wojciechowski A (2004) High precision kinematic positioning using single dual-frequency GPS receiver. Remote Sens Spat Inf Sci, 34

    Google Scholar 

  23. Zhang X (2005) Precise point positioning evaluation and airborne lidar calibration. Danish National Space Center

    Google Scholar 

  24. **g-nan L, Mao-rong G (2003) PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ J Nat Sci 8(28):603–609

    Article  Google Scholar 

  25. Springer T, Dilssner F, Escobar D et al (2011) NAPEOS: The ESA/ESOC tool for space geodesy. The European Geosciences Union 2011 General Assembly, Vienna, Austria

    Google Scholar 

  26. Loyer S, Perosanz F, Mercier F et al (2012) Zero-difference GPS ambiguity resolution at CNES-CLS IGS analysis center. J Geodesy

    Google Scholar 

  27. Wei Z, Ruan R, Jia X et al (2014) Satellite positioning and orbit determination system SPODS: theory and test. Acta Geodaetica et Cartographica Sinica 43(1):1–4

    Google Scholar 

  28. Collins P, Lahaye F, Heroux P et al (2008) Precise point positioning with ambiguity resolution using the decoupled clock model. ION GNSS 2008, Savannah, Georgia

    Google Scholar 

  29. Ge M, Gendt G, Rothacher M et al (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geodesy 82:389–399

    Article  Google Scholar 

  30. Beohm J, Neill A, Tregoning P et al (2006) Global map** function (GMF): a new empirical map** function based on numerical weather model data. Geophys Res Lett, 33

    Google Scholar 

  31. Blewitt G (1989) Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km. J Geophys Res 94(B8):187–203

    Article  Google Scholar 

  32. Ge M, Gendt G, Dick G et al (2005) Improving carrier-phase ambiguity resolution in global GPS network solutions. J Geodesy 2005:103–110

    Article  Google Scholar 

  33. Montenbruck O, Schmid R, Mercier F et al (2015) GNSS satellite geometry and attitude models. Adv Space Res 56:1015–1029

    Google Scholar 

  34. Dai X, Ge M, Lou Y et al (2015) Estimating the yaw-attitude of BDS IGSO and MEO satellites. J Geodesy 89:1005–1018

    Article  Google Scholar 

  35. Wu JT, Wu SC, Hajj GA et al (1993) Effects of antenna orientation on GPS carrier phase [J]. Manuscripta Geodaetica 18:91–98

    Google Scholar 

  36. McCarthy DD, Petit G (2003) IERS conventions (2003): Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main 2004, p 127

    Google Scholar 

Download references

Acknowledgements

The work of this paper is supported by Sate Key Laboratory of Geodesy and Earth’s Dynamics (project number: SKLGED2014-3-4-E). Thanks to the IGS and BDS Test and Evaluation Network for providing experimental data, and the precise orbit products in experiment is also calculated with MGEX data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Zhou, W., Ruan, R., Zhang, H., Yao, F. (2016). Relative Positioning with Undifferenced Observations: Concept and Application/Experiments with BDS. In: Sun, J., Liu, J., Fan, S., Wang, F. (eds) China Satellite Navigation Conference (CSNC) 2016 Proceedings: Volume III. Lecture Notes in Electrical Engineering, vol 390. Springer, Singapore. https://doi.org/10.1007/978-981-10-0940-2_54

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0940-2_54

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0939-6

  • Online ISBN: 978-981-10-0940-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation