Surface Preparation of Fibres for Composite Applications

  • Chapter
  • First Online:
Fibrous and Textile Materials for Composite Applications

Part of the book series: Textile Science and Clothing Technology ((TSCT))

  • 2205 Accesses

Abstract

This chapter discusses about the surface preparation methods of fibres prior to use in composite materials to improve their performance or to introduce other essential characteristics. Chemical coatings, plasma and chemical surface modification techniques as well as mechanical treatments are presented. Also, advanced surface tailoring using nano-coating technology is included in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 121.31
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 168.79
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal A, Foster SJ, Hamed E, Ng TS (2014) Influence of freeze-thaw cycling on the bond strength of steel-frp lap joints. Compos Part B Eng 60:178–185

    Article  CAS  Google Scholar 

  2. Agrawal R, Saxena N, Sharma K, Thomas S, Sreekala M (2000) Mater Sci Eng A 277(1):77–82

    Article  Google Scholar 

  3. Baltazar-Y-Jimenez A, Bismarck A (2007) Surface modification of lignocellulosic fibres in atmospheric air pressure plasma. Green Chem 9(10):1057–1066

    Article  CAS  Google Scholar 

  4. Bekampiene P, Domskiene J, Širvaitiene A (2011) The effect of pre-tension on deformation behaviour of natural fabric reinforced composite. Mater Sci 17(1):56–61

    Google Scholar 

  5. Bledzki A, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274

    Article  CAS  Google Scholar 

  6. Bledzki A, Mamun A, Lucka-Gabor M, Gutowski V (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym Lett 2(6):413–422

    Article  CAS  Google Scholar 

  7. Coutts RSP (1984) Autoclaved beaten wood fibre-reinforced cement composites. Composites 15:139–143

    Article  Google Scholar 

  8. Coutts RSP, Kightly P (1982) Microstructure of autoclaved refined wood-fibre cement mortars. J Mater Sci 17:1801–1806

    Article  CAS  Google Scholar 

  9. Cranmer D (1989) Fibre coatings and characterization. Am Ceram Soc Bull 68:415

    CAS  Google Scholar 

  10. d’Agostino R, Favia P, Oehr C, Wertheimer MR (2005) Low-temperature plasma processing of materials: past, present, and future. Plasma Processes Polym 2(1):7–15

    Article  Google Scholar 

  11. Dilsiz N (2000) Plasma surface modification of carbon fibers: a review. J Adhes Sci Technol 14(7):975–987

    Article  CAS  Google Scholar 

  12. Dipa R, Sarkar BK, Rana AK, Bose NR (2001) Effect of alkali treated jute fibres on composite properties. Bull Mater Sci 24(2):129–135

    Article  Google Scholar 

  13. Dupeyre D, Vignon M (1998) Fibres from semi-retted hemp bundles by steam explosion treatment. Biomass Bioenergy 14(3):251–260

    Article  Google Scholar 

  14. Foster JS, Greeno R, Harington R (2007) Structure and fabric. Pearson Education, Harlow

    Google Scholar 

  15. George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41(9):1471–1485

    Article  CAS  Google Scholar 

  16. Goda K, Takagi H, Netravali AN (2008) Fully biodegradable green composites reinforced with natural fibres. Old City Publishing, Philadelphia

    Google Scholar 

  17. Goutianos S, Peijs T, Nystrom B, Skrifvars M (2006) Development of flax fibre based textile reinforcements for composite applications. Appl Compos Mater 13(4):199–215

    Article  CAS  Google Scholar 

  18. Gulrajani M (2013) Advances in the dyeing and finishing of technical textiles, edited. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  19. Jacob M, Thomas S, Varughese KT (2004) Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos Sci Technol 64(7):955–965

    Article  CAS  Google Scholar 

  20. Jahn A, Schroder M, Futing M, Schenzel K, Diepenbrock W (2002) Spectrochim Acta Part A: Mol Biomol Spectrose 58:2271–2279

    Article  CAS  Google Scholar 

  21. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29(2):187

    Article  CAS  Google Scholar 

  22. Jones C (1991) Special issue interfaces in composites the chemistry of carbon fibre surfaces and its effect on interfacial phenomena in fibre/epoxy composites. Compos Sci Technol 42(1):275–298

    Article  CAS  Google Scholar 

  23. Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37(23):5139–5149

    Article  CAS  Google Scholar 

  24. Joseph P V (2001) Studies on short sisal fibre reinforced isotactic polypropylene composites. Ph.D. thesis, Mahatma Gandhi University

    Google Scholar 

  25. Kalaprasad G, Francis B, Thomas S, Kumar CR, Pavithran C, Groeninckx G, Thomas S (2004) Effect of fibre length and chemical modifications on the tensile properties of intimately mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites. Polym Int 53(11):1624–1638

    Article  CAS  Google Scholar 

  26. Kerans R, Hay R, Pagano N, Parthasarathy T (1989) The role of the fibre-matrix interface in ceramic composites. Ceram Bull 68:529

    Google Scholar 

  27. Kusano Y, Mortensen H, Stenum B, Goutianos S, Mitra S, Ghanbari-Siahkali A, Kingshott P, Sørensen BF, Bindslev H (2007) Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement. Int J Adhes Adhes 27(5):402–408

    Article  CAS  Google Scholar 

  28. Leonard YM, Nick T, Andrew JC (2007) Mechanical properties of hemp fibre reinforced euphorbia composites. Macromol Mater Eng 292(9):993–1000

    Article  Google Scholar 

  29. Lim KB, Lee DC (2004) Surface modification of glass and glass fibres by plasma surface treatment. Surf Interface Anal 36(3):254–258

    Article  CAS  Google Scholar 

  30. Mishra S, Misra M, Tripathy S, Nayak S, Mohanty A (2001) Graft copolymerization of acrylonitrile on chemically modified sisal fibers. Macromol Mater Eng 286(2):107–113

    Article  CAS  Google Scholar 

  31. Mishra S, Mohanty A, Drzal L, Misra M, Parija S, Nayak S, Tripathy S (2003) Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Compos Sci Technol 63(10):1377–1385

    Article  CAS  Google Scholar 

  32. Mittal K L (2004) Polymer surface modification: relevance to adhesion. CRC Press, Boca Raton

    Google Scholar 

  33. Mortensen H, Kusano Y, Leipold F, Rozlosnik N, Kingshott P, Sørensen B, Stenum B, Bindslev H (2006) Jpn J Appl Phys 45(10B):8506

    Article  CAS  Google Scholar 

  34. Mu** S, Baorong H, Yisheng W, Ying T, Weiqiu H, Youxian D (1989) The surface of carbon fibres continuously treated by cold plasma. Compos Sci Technol 34(4):353–364

    Article  Google Scholar 

  35. Nair KM, Thomas S, Groeninckx G (2001) Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Compos Sci Technol 61(16):2519–2529

    Article  Google Scholar 

  36. Othmers K (1930) Encyclopedia of chemical technology. Interscience, New York

    Google Scholar 

  37. Pang JW, Fancey KS (2008) Analysis of the tensile behaviour of viscoelastically prestressed polymeric matrix composites. Compos Sci Technol 68(7):1903–1910

    Article  CAS  Google Scholar 

  38. Porwal P, Beyerlein I, Phoenix S (2007) Statistical strength of twisted fiber bundles with load sharing controlled by frictional length scales. J Mech Mater Struct 2(4):773–791

    Article  Google Scholar 

  39. Ray D, Sarkar BK, Rana A, Bose NR (2001) Effect of alkali treated jute fibres on composite properties. Bull Mater Sci 24(2):129–135

    Article  CAS  Google Scholar 

  40. Report NC (1992) High-performance synthetic fibres for composites. National Reserach Council, Washington

    Google Scholar 

  41. Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61(10):1437–1447

    Article  CAS  Google Scholar 

  42. Rowell RM, Young RA, Rowell JK (2000) Paper and composites from agro-based resources. Carbohydr Polym 41(1):69–78

    Google Scholar 

  43. Sapieha S, Allard P, Zang Y (1990) Dicumyl Peroxide-Modified Cellulose/Lldpe Composites. J Appl Polym Sci 41(9–10):2039–2048

    Article  CAS  Google Scholar 

  44. Sarkar B, Ray D (2004) Effect of the defect concentration on the impact fatigue endurance of untreated and alkali treated jute–vinylester composites under normal and liquid nitrogen atmosphere. Compos Sci Technol 64(13):2213–2219

    Article  CAS  Google Scholar 

  45. Seki Y (2009) Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the mechanical properties of jute/thermoset composites. Mater Sci Eng A 508(1):247–252

    Article  Google Scholar 

  46. Sever K, Sarikanat M, Seki Y, Erkan G, Erdoğan ÜH (2010) The mechanical properties of γ-methacryloxypropyltrimethoxy silane-treated jute/polyester composites. J Compos Mater 44(15):1913–1924

    Article  CAS  Google Scholar 

  47. Širvaitienė A, Jankauskaitė V, Bekampienė P, Kondratas A (2013) Influence of natural fibre treatment on interfacial adhesion in biocomposites. Fibres and textiles in Eastern Europe 21(4(100)):123–129

    Google Scholar 

  48. Sreekala M, Kumaran M, Joseph S, Jacob M, Thomas S (2000) Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance. Appl Compos Mater 7(5–6):295–329

    Article  CAS  Google Scholar 

  49. Sun D, Stylios G (2004) Effect of low temperature plasma treatment on the scouring and dyeing of natural fabrics. Text Res J 74(9):751–756

    Article  CAS  Google Scholar 

  50. Tang LG, Kardos JL (1997) A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix. Polym Compos 18(1):100–113

    Article  CAS  Google Scholar 

  51. Tserki V, Zafeiropoulos N, Simon F, Panayiotou C (2005) A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos A Appl Sci Manuf 36(8):1110–1118

    Article  Google Scholar 

  52. Valadez-Gonzalez A, Cervantes-Uc J, Olayo R, Herrera-Franco P (1999) Chemical modification of henequen fibers with an organosilane coupling agent. Compos B Eng 30(3):321–331

    Article  Google Scholar 

  53. van de Weyenberg I, Ivens J, De Coster A, Kino B, Baetens E, Vepoes I (2003) Compos Sci Technol 63:(1241)

    Google Scholar 

  54. Wang B, Panigrahi S, Tabil L, Crerar W (2007) Pre-treatment of flax fibers for use in rotationally molded biocomposites. J Reinf Plast Compos 26(5):447–463

    Article  CAS  Google Scholar 

  55. Xue L, Lope GT, Satyanarayan P (2007) Chemical treatment of natural fibre for use in natural fibre-reinforced composites: a review. Polym Environ 15(1):25–33

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad S. Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Islam, M.S., Roy, A.K. (2016). Surface Preparation of Fibres for Composite Applications. In: Rana, S., Fangueiro, R. (eds) Fibrous and Textile Materials for Composite Applications. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0234-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0234-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0232-8

  • Online ISBN: 978-981-10-0234-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation