Identifying and Conserving Tilapiine Cichlid Species in the Twenty-First Century

  • Chapter
  • First Online:
The Behavior, Ecology and Evolution of Cichlid Fishes

Abstract

The use of species as the unit of organismal identification has implications for policies that support conservation and management. For most fish, including tilapiine cichlids, identification in the last century supported by alpha taxonomy produced keys and descriptions of diagnostic features and designation of correct species names. The rapid increase in species discoveries in the twenty-first century has resulted in large turnover of names and descriptions. However, these updates have had little impact on conservation of tilapiine cichlids, mostly because the wide distribution of cichlid species provides the false impression of resilience to habitat disturbance. There is a need to provide clarity on intraspecific variations, in order to conserve cichlid populations threatened by species introductions and habitat loss. Here, we review some powerful tools that assess differences in morphology, trophic ecology, and genomics and enable definition of units of conservation of tilapiine cichlids. We discuss advances in geometric morphometrics in morphological characterization of tilapiine cichlids. Similarly, we show how sequencing technology has influenced the definition of units of conservation, namely evolutionary significant units, which take into account gene flow between populations, and recognize demography and migrations. We also highlight next generation sequencing technology that is revolutionizing biomonitoring using environmental DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Adapted from Ford et al. (2015) with permission of the author.

  2. 2.

    Adapted from Ford et al. (2015) with permission of the author.

References

  • Abila R, Salzburger W, Ndonga M et al (2008) The role of the Yala swamp lakes in the conservation of Lake Victoria region haplochromine cichlids: evidence from genetic and trophic ecology studies. Lakes Reservoirs: Res Manage 13(2):95–104. https://doi.org/10.1111/j.1440-1770.2008.00366.x

  • Adams DC, Rohlf FJ, Slice DE (2002) Geometric morphometrics: ten years of progress following the “revolution”. Italian J Zool 71:5–16

    Article  Google Scholar 

  • Agnèse JF, Adepo-Gourène B, Abban EK et al (1997) Genetic differentiation among natural populations of the Nile tilapia Oreochromis niloticus (Teleostei, Cichlidae). Heredity 79:88–96

    Article  PubMed  Google Scholar 

  • Agostinho AA, Ortega JCG, Dayani B, da Graca WJ, Pelicice FM, Júlio HF (2021) Introduced cichlids in the Americas: distribution patterns, invasion ecology, and impacts. In: Abate ME, Noakes DLG (eds) The behavior, ecology and evolution of cichlid fishes. Springer Nature, Dordrecht, pp 313–361. https://doi.org/10.1007/978-94-024-2080-7_10

    Chapter  Google Scholar 

  • Allendorf FW, Luikart GH, Aitken SN (2012) Conservation and the genetics of populations, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Argillier C, Causse S, Gevrey M et al (2013) Development of a fish-based index to assess the eutrophication status of European lakes. Hydrobiologia 704:193–211

    Article  Google Scholar 

  • Arnegard ME, McIntyre PB, Harmon LJ et al (2010) Sexual signal evolution outpaces ecological divergence during electric fish species radiation. Am Nat 176:335–356

    Article  PubMed  Google Scholar 

  • Aura CM, Nyamweya CS, Njiru JM et al (2019) Using fish landing sites and markets information towards quantification of the blue economy to enhance fisheries management. Fish Manag Ecol 26:141–152. https://doi.org/10.1111/fme.12334

    Article  Google Scholar 

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, New York. https://doi.org/10.1007/978-1-4615-2381-9

    Book  Google Scholar 

  • Bezault E, Balaresque P, Toguyeni A et al (2011) Spatial and temporal variation in population structure of wild Nile tilapia (Oreochromis niloticus) across Africa. Genetics 12:102

    PubMed  PubMed Central  Google Scholar 

  • Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol Syst 42:411–440

    Article  Google Scholar 

  • Bookstein FL (1984) Tensor biometrics for changes in cranial shape. Ann Hum Biol 11:413–437

    Article  CAS  PubMed  Google Scholar 

  • Bookstein FL (1989) Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 2:567–585

    Article  Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data. Cambridge University Press, New York

    Google Scholar 

  • Bradbeer SJ, Harrington J, Watson H et al (2019) Limited hybridization between introduced and critically endangered indigenous tilapia fishes in northern Tanzania. Hydrobiologia 832:257

    Article  PubMed  Google Scholar 

  • Brawand D, Wagner C, Li Y et al (2014) The genomic substrate for adaptive radiation in African cichlid fish. Nature 513:375–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britton A, Day JJ, Ngatunga BP, Kemp K, Carbone C, Murrell DJ (2017) Terrestrial-focused protected areas are effective for conservation of freshwater fish diversity in Lake Tanganyika. Biol Conserv 212(A):120–129. https://doi.org/10.1016/j.biocon.2017.06.001

    Article  Google Scholar 

  • Britton AW, Murrell DJ, McGill RAR, Doble CJ, Ramage CI, Day JJ (2019) The effects of land use disturbance vary with trophic position in littoral cichlid fish communities from Lake Tanganyika. Freshw Biol 64:1114–1130. https://doi.org/10.1111/fwb.13287

    Article  Google Scholar 

  • CABI (2019) Oreochromis niloticus. In: Invasive species compendium. CAB International, Wallingford. www.cabi.org/isc/datasheet/72086

    Google Scholar 

  • Canonico CG, Arthington A, McCrary JK, Thieme ML (2005) The effect of introduced tilapias on native biodiversity. Aquat Conserv Mar Freshwat Ecosyst 15:463–483

    Article  Google Scholar 

  • Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453

    Article  CAS  Google Scholar 

  • Chevasco V, Elzinga JA, Mappes J, Grapputo A (2014) Evaluation of criteria for species delimitation of bagworm moths (Lepidoptera: Psychidae). Eur J Entomol 111:121–136

    Article  CAS  Google Scholar 

  • Church MR, Ebersole JL, Rensmeyer KM et al (2008) Mucus: a new tissue fraction for rapid determination of fish diet switching using stable isotope analysis. Can J Fish Aquat Sci 66(1):1–5

    Article  CAS  Google Scholar 

  • Cilleros K, Valentini A, Allard L, Dejean T et al (2019) Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): a test with Guianese freshwater fishes. Mol Ecol Resour 19:27–46

    Article  CAS  PubMed  Google Scholar 

  • Closs GP, Angermeier PL, Darwall WR, Balcombe SR (2015) Why are freshwater fish so threatened? In: Closs GP, Krkosek M, Olden J (eds) Conservation of freshwater fishes. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  • Coates DJ, Byrne M, Moritz C (2018) Genetic diversity and conservation units: dealing with the species–population continuum in the age of genomics. Front Ecol Evol 6:165

    Article  Google Scholar 

  • Connolly RM, Guest MA, Melville AJ, Oakes JM (2004) Sulfur stable isotopes separate producers in marine food-web analysis. Oecologia 138:161–167

    Article  PubMed  Google Scholar 

  • Conte MA, Gammerdinger WJ, Bartie KL et al (2017) A high quality assembly of the Nile Tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions. BMC Genomics 18:341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corti M (1993) Geometric morphometrics: an extension of the revolution. Trends Ecol Evol 8:302–303

    Article  CAS  PubMed  Google Scholar 

  • Davey JW, Davey JL, Blaxter ML, Blaxter MW (2010) RADSeq: next-generation population genetics. Brief Funct Genomics 9:416–423

    Article  CAS  PubMed  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome-wide genetic marker discovery and genoty** using next generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  • Day-Williams AG, Zeggini E (2010) The effect of next-generation sequencing technology on complex trait research. Eur J Clin Investig 41:561–567

    Article  Google Scholar 

  • De Silva CD, Ranasinghe J (1989) Biochemical evidence of hybrid gene introgression in some reservoir populations of tilapia in southern Sri Lanka. Aquacult Fish Manage 20:2269–2277

    Google Scholar 

  • Deines AM, Bbole I, Katongo C, Feder JL, Lodge DM (2014) Hybridisation between non-indigenous Oreochromis niloticus in the Kafue River, Zambia. Afr J Aquat Sci 39:23–34

    Article  Google Scholar 

  • Deines AM, Wittmann ME, Deines JM, Lodge DM (2016) Tradeoffs among ecosystem services associated with global tilapia introductions. Rev Fish Sci Aquac 24:178–191

    Article  Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution on nitrogen isotopes in animals. Geochim Cosmochim Acta 45:241–351

    Article  Google Scholar 

  • Doble CJ, Hipperson H, Salzburger W et al (2020) Testing the performance of eDNA metabarcoding for surveying highly diverse tropical fish communities: a case study from Lake Tanganyika. Environ DNA 2:24. https://doi.org/10.1002/edn3.43

    Article  Google Scholar 

  • Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, Chichester

    Google Scholar 

  • Dunz AR, Schliewen UK (2013) Molecular phylogeny and revised classification of the haplotilapiine cichlid fishes formerly referred to as “Tilapia”. Mol Phylogenet Evol 68:64–80

    Article  PubMed  Google Scholar 

  • Eknath AE, Hulata G (2009) Use of genetic resources of Nile tilapia (Oreochromis niloticus). Rev Aquac 1:197–213

    Article  Google Scholar 

  • Faber-Hammond JJ, Bezault E, Lunt DH, Joyce DA, Renn SCP (2019) The genomic substrate for adaptive radiation: copy number variation across 12 tribes of African cichlid species. Genome Biol Evol 11:2856–2874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Figueredo CC, Giani A (2005) Ecological interactions between Nile tilapia (Oreochromis niloticus, L.) and the phytoplanktonic community of the Furnas Reservoir (Brazil). Freshw Biol 50:1391–1403

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2018) The state of world fisheries and aquaculture 2018. FAO, Rome

    Book  Google Scholar 

  • Ford AGP (2015) Evolutionary relationships of east African soda lake cichlid fish. Doctoral thesis, UCL, University College London

    Google Scholar 

  • Ford AGP, Dasmahapatra KK, Rüber L, Gharbi K, Cezard T, Day JJ (2015) High levels of interspecific gene flow in endemic cichlid fish adaptive radiation from an extreme lake environment. Mol Ecol 24(13):3421–3440

    Article  PubMed  PubMed Central  Google Scholar 

  • Ford AGP, Rüber L, Newton J, Dasmahapatra KK et al (2016) Niche divergence facilitated by fine-scale ecological partitioning in a recent cichlid fish adaptive radiation. Evolution 70(12):2718–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford AGP, Bullen TR, Pang L, Genner MJ et al (2019) Molecular phylogeny of Oreochromis (Cichlidae: Oreochromini) reveals mito-nuclear discordance and multiple colonisation of adverse aquatic environments. Mol Phylogenet Evol 136:215–226

    Article  PubMed  Google Scholar 

  • France RL (1995) Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar Ecol Prog Ser 124:307–312

    Article  Google Scholar 

  • Francuski L, Ludoški J, Vujić A, Milankov V (2009a) Wing geometric morphometric inferences on species delimitation and intraspecific divergent units in the Merodon ruficornis group (Diptera, Syrphidae) from the Balkan Peninsula. Zool Sci 26:301–308

    Article  Google Scholar 

  • Francuski L, Vujić A, Kovačević A et al (2009b) Identification of the species of the Cheilosia variabilis group (Diptera, Syrphidae) from the Balkan Peninsula using wing geometric morphometrics, with the revision of status of C. melanopa redi Vujić, 1996. Contrib Zool 78:129–140

    Article  Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752

    Article  CAS  PubMed  Google Scholar 

  • French GCA, Rizzuto S, Stürup M et al (2018) Sex, size and isotopes: cryptic trophic ecology of an apex predator, the white shark Carcharodon carcharias. Mar Biol 165:102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Gould SJ (1966) Allometry and size in ontogeny and phylogeny. Biol Rev 41:587–640

    Article  CAS  PubMed  Google Scholar 

  • Gracan R, Zavodnik D, Krstinic P et al (2017) Feeding ecology and trophic segregation of two sympatric mesopredatory sharks in the heavily exploited coastal ecosystem of the Adriatic Sea. J Fish Biol 90:167–184

    Article  CAS  PubMed  Google Scholar 

  • Gregg RE, Howard JH, Shonhiwa F (1998) Introgressive hybridization of tilapias in Zimbabwe. J Fish Biol 52:1–10

    Article  Google Scholar 

  • Grueber CE (2015) Comparative genomics for biodiversity conservation. Comput Struct Biotechnol J 13:370–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurgel-Gonçalves R, Ferreira JBC, Rosa AF et al (2010) Geometric morphometrics and ecological niche modelling for delimitation of near-sibling triatomine species. Med Vet Entomol 25:84–93

    Article  PubMed  Google Scholar 

  • Hallerman E, Hilsdorf AWS (2014) Conservation genetics of tilapias: seeking to define appropriate units for management. Isr J Aquac 66:2–19

    Google Scholar 

  • Hanfling B, Handley LH, Read DS et al (2016) Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol Ecol 25:3101–3119

    Article  PubMed  CAS  Google Scholar 

  • Harvati K (2003) Quantitative analysis of Neanderthal temporal bone morphology using three-dimensional geometric morphometrics. Am J Phys Anthropol 120:323–338

    Article  PubMed  Google Scholar 

  • Hong **a J, Bai Z, Meng Z et al (2015) Signatures of selection in tilapia revealed by whole genome resequencing. Sci Rep 5:14168

    Article  PubMed Central  CAS  Google Scholar 

  • Hopkins K, Ridha M, Leclercq D et al (1989) Screening tilapias for culture in sea water in Kuwait. Aquat Fish Manag 20:389–397

    Google Scholar 

  • Hounmanou YMG et al (2018) Tilapia lake virus threatens tilapiines farming and food security: Socio-economic challenges and preventive measures in Sub-Saharan Africa. Aquaculture (Amsterdam, Netherlands) 493:123–129

    Article  Google Scholar 

  • Hulata G (1995) A review of genetic improvement of the common carp (Cyprinus carpio L.) and other cyprinids by crossbreeding, hybridization and selection. Aquaculture 129:143–155

    Article  Google Scholar 

  • Jakubavičiūtė E, Bergström U, Eklöf JS et al (2017) DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem. PLoS ONE 12(10):e0186929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson WE, Koepfli K (2014) The role of genomics in conservation and reproductive sciences. Adv Exp Med Biol 753:71–96

    Article  PubMed  Google Scholar 

  • Karl SA, Bowen BW (1999) Evolutionary significant units versus geopolitical taxonomy: molecular systematics of an endangered sea turtle (genus Chelonia). Conserv Biol 13:990–999

    Article  Google Scholar 

  • Kaufman L (1992) Catastrophic change in species-rich freshwater ecosystems. The lessons of Lake Victoria. Bioscience 42:846–858

    Article  Google Scholar 

  • Keeley JE, Sandquist DR (1992) Carbon: freshwater plants. Plant Cell Environ 15:1021–1035

    Article  CAS  Google Scholar 

  • Kendall DG (1984) Shape manifolds, Procrusteam metrics, and complex projective spaces. Bull Lond Math Soc 16:81–121

    Article  Google Scholar 

  • Kerschbaumer MK, Sturmbauer C (2011) The utility of geometric morphometrics to elucidate pathways of cichlids of cichlid evolution. Int J Evol Biol 290245, 8 pp

    Google Scholar 

  • Klingenberg CP (2010) Evolution and development of shape: integrating quantitative approaches. Nat Rev Genet 11:623–635

    Article  CAS  PubMed  Google Scholar 

  • Klingenberg CP (2013) Visualizations in geometric morphometrics: how to read and how to make graphs showing shape changes. Hystrix 24:15–24

    Google Scholar 

  • Klingenberg CP, Marugan-Lobon J (2013) Evolutionary covariation in geometric morphometric data: analyzing integration, modularity and allometry in a phylogenetic context. Syst Biol 62:591–610

    Article  PubMed  Google Scholar 

  • Klingenberg CP, Monteiro L (2005) Distances and directions in multidimensional shape spaces: implications for morphometric applications. Syst Biol 54:678–688

    Article  PubMed  Google Scholar 

  • Klingenberg CP, Barluenga M, Meyer A (2003) Body shape variation in cichlid fishes of the Amphilophus citrinellus species complex. Biol J Linn Soc 80:397–408

    Article  Google Scholar 

  • Kobori H, Dickinson JL, Washitani I et al (2016) Citizen science: a new approach to advance ecology, education, and conservation. Ecol Res 31:1–19

    Article  CAS  Google Scholar 

  • Lind CE, Agyakwah SK, Attipoe FY et al (2019) Genetic diversity of Nile tilapia (Oreochromis niloticus) throughout West Africa. Sci Rep 9:16767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lind CE, Brummett RE, Ponzoni RW (2012) Exploitation and conservation of fish genetic resources in Africa: issues and priorities for aquaculture development and research. Rev Aquac 4:125–141

    Article  Google Scholar 

  • Mable BK (2019) Conservation of adaptive potential and functional diversity: integrating old and new approaches. Conserv Genet 20:89

    Article  CAS  Google Scholar 

  • Maderbacher M, Bauer C, Herler J, Postl L, Makasa L, Sturmbauer C (2008) Assessment of traditional versus geometric morphometrics for discriminating populations of the Tropheus moorii species complex (Teleostei: Cichlidae), a Lake Tanganyika model for allopatric speciation. J Zool Syst Evol Res 46:153–161

    Article  Google Scholar 

  • Malinsky M, Svardal H, Tyers AM et al (2018) Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. Nat Ecol Evol 2:1940–1955

    Article  PubMed  PubMed Central  Google Scholar 

  • Marijnissen SAE, Michel E, Cleary DFR, McIntyre PB (2008) Ecology and conservation status of endemic freshwater crabs in Lake Tanganyika, Africa. Biodivers Conserv 18:1555–1573

    Article  Google Scholar 

  • McDonald-Madden E, Sabbadin R, Game E et al (2016) Using food-web theory to conserve ecosystems. Nat Commun 7:10245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinney CR, McCrea JM, Epstein S, Allen HA, Urey HC (1950) Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. Rev Sci Instrum 21:724

    Article  CAS  PubMed  Google Scholar 

  • McWhinnie KC, Parsons KJ (2019) Sha** up? A direct comparison between 2D and low-cost 3D shape analysis using African cichlid mandibles. Environ Biol Fish 102:927–938

    Article  Google Scholar 

  • Meier JI, Stelkens RB, Joyce DA et al (2019) The coincidence of ecological opportunity with hybridization explains rapid adaptive radiation in Lake Mweru cichlid fishes. Nat Commun 10:5391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer A (1987) Phenotypic plasticity and heterochrony in Cichlasoma managuense (Pisces, Cichlidae) and their implications for speciation in cichlid fishes. Evolution 41:1357–1369

    PubMed  Google Scholar 

  • Meyer BS, Habluetzel PI, Roose AK, Hofmann MJ, Salzburger W, Raeymaekers JAM (2019) An exploration of the links between parasites, trophic ecology, morphology, and immunogenetics in the Lake Tanganyika cichlid radiation. Hydrobiologia 832:215–233

    Article  PubMed  Google Scholar 

  • Middelburg JJ (2014) Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences 11:2357–2371

    Article  Google Scholar 

  • Minelli A (1993) Biological systematics: the state of the art. Chapman and Hall, London

    Google Scholar 

  • Monteiro L (1999) Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape. Syst Biol 48:192–199

    Article  CAS  PubMed  Google Scholar 

  • Monteiro L (2013) Morphometrics and the comparative method: studying the evolution of biological shape. Hystrix 24:25–32

    Google Scholar 

  • Mugimba KK, Chengula AA, Wamala S et al (2018) Detection of tilapia lake virus (TiLV) infection by PCR in farmed and wild Nile tilapia (Oreochromis niloticus) from Lake Victoria. J Fish Dis 41(8):1181–1189

    Article  CAS  Google Scholar 

  • Mutanen M, Pretorius E (2007) Subjective visual evaluation vs. traditional and geometric morphometrics in species delimitation: a comparison of moth genitalia. Syst Entomol 32:371–386

    Article  Google Scholar 

  • Nandamuri SP, Conte MA, Carleton KL (2018) Multiple trans QTL and one cis-regulatory deletion are associated with the differential expression of cone opsins in African cichlids. BMC Genomics 19:945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natugonza V, Musinguzi L, Kishe MA, van Rijssel JC, Seehausen O, Oguto-Ohwayo R (2021) The consequences of anthropogenic stressors on cichlid fish communities: revisiting Lakes Victoria, Kyoga, and Nabugabo. In: Abate ME, Noakes DLG (eds) The behavior, ecology and evolution of cichlid fishes. Springer Nature, Dordrecht, pp 217–246. https://doi.org/10.1007/978-94-024-2080-7_7

    Chapter  Google Scholar 

  • Ndiwa TC, Nyingi DW, Agnèse JF (2014) An important natural genetic resource of Oreochromis niloticus (Linnaeus, 1758) threatened by aquaculture activities in Loboi drainage, Kenya. PLoS One 9(9):e106972. https://doi.org/10.1371/journal.pone.0106972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ndiwa TC, Nyingi D, Claude J, Agnèse JF (2016) Morphological variations of wild populations of Nile tilapia (Oreochromis niloticus) living in extreme environmental conditions in the Kenyan Rift-Valley. Environ Biol Fish 99(5):473–485

    Article  Google Scholar 

  • Neill C, Cornwell JC (1992) Stable carbon, nitrogen, and sulfur isotopes in a prairie marsh food web. Wetlands 12:217–224

    Article  Google Scholar 

  • Nelson JS (1999) The species concept in fish biology. Rev Fish Biol Fish 9(4):277–280

    Article  Google Scholar 

  • Newton J (2010) Stable isotope ecology. Wiley, Chichester

    Google Scholar 

  • Njiru M, Ojuok JE, Okeyo-Owuor JB, Muchiri M, Ntiba MJ, Cowx IG (2006) Some biological aspects and life history strategies of Nile tilapia Oreochromis niloticus (L.) in Lake Victoria, Kenya. Afr J Ecol 44:30–37

    Article  Google Scholar 

  • Nyingi D, Agnèse JF (2007) Recent Introgressive hybridization revealed by exclusive mtDNA transfer from O. leucostictus (Trewavas, 1933) to O. niloticus (Linnaeus, 1758) in Lake Baringo (Kenya). In: J Fish Biol 70: 148–154

    Google Scholar 

  • Nyingi DW, Agnèse JF (2012) Phylogeography of the Nile Tilapia in Africa. Lambert Academic

    Google Scholar 

  • Nyingi D, De-Vos L, Aman R, Agnèse JF (2009) Genetic characterization of an unknown and endangered native population of the Nile tilapia Oreochromis niloticus (Linnaeus, 1758) (Cichlidae; Teleostei) in the Loboi Swamp (Kenya). Aquaculture 297:57–63

    Article  CAS  Google Scholar 

  • Odhiambo EA, Kerschbaumer M, Postl L, Sturmbauer C (2011) Morphometric differentiation among haplochromine cichlid fish species of a satellite lake of Lake Victoria. J Zool Syst Evol Res 49:216–223

    Article  Google Scholar 

  • Ogutu-Ohwayo R (1990) The decline of the native fishes of lakes Victoria and Kyoga (East Africa) and the impact of the introduced species, especially the Nile perch, Lates niloticus and the Nile tilapia. Environ Biol Fish 27:81–96

    Google Scholar 

  • Ojuok JE, Njiru M, Ntiba MJ, Mavuti KM (2007) The effect of overfishing on the life-history strategies of Nile tilapia, Oreochromis niloticus (L.) in the Nyanza Gulf of Lake Victoria, Kenya. Aquat Ecosyst Health Manage 10(4):443–448

    Article  Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR et al (2004) Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427:240–243

    Article  CAS  PubMed  Google Scholar 

  • Palaiokostas C, Bekaert M, Khan MG et al (2013) Map** and validation of the major sex-determining region in Nile tilapia (Oreochromis niloticus L.) using RAD sequencing. PLoS One 8:e68389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palaiokostas C, Bekaert M, Khan MG et al (2015) A novel sex-determining QTL in Nile tilapia (Oreochromis niloticus). BMC Genomics 16:171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palsbøll PJ, Bérubé M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22(1):11–16

    Article  PubMed  Google Scholar 

  • Pearson RM, van de Merwe JP, Limpus CJ, Connolly RM (2017) Realignment of sea turtle isotope studies needed to match conservation priorities. Mar Ecol Prog Ser 583:259–271

    Article  Google Scholar 

  • Pocock MJO, Tweddle JC, Savage J et al (2017) The diversity and evolution of ecological and environmental citizen science. PLoS ONE 12(4):e0172579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Polly PD, Lawing AM, Fabre A-C, Goswami A (2013) Phylogenetic principal components analysis and geometric morphometrics. Hystrix 24:33–41

    Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Ramírez I, Paiva VH, Fagundes I et al (2016) Conservation implications of consistent foraging and trophic ecology in a rare petrel species. Anim Conserv 19:139–152

    Article  Google Scholar 

  • Reid GMG, Contreras MacBeath T, Csatadi K (2013) Global challenges in freshwater fish conservation related to public aquariums and the aquarium industry. Int Zoo Yearbook 47(1):6–45

    Article  Google Scholar 

  • Revell LJ (2009) Size-correction and principal components for interspecific comparative studies. Evolution 63:3258–3268

    Article  PubMed  Google Scholar 

  • Revell LJ (2011) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Article  Google Scholar 

  • Riccioni G, Stagioni M, Piccinetti C, Libralato S (2018) A metabarcoding approach for the feeding habits of European hake in the Adriatic Sea. Ecol Evol 8:10435–10447

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. Trends Ecol Evol 8:129–132

    Article  Google Scholar 

  • Rohlf FJ, Slice D (1990) Extensions of the procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40–59

    Article  Google Scholar 

  • Rüber L, Adams DC (2001) Evolutionary convergence of body shape and trophic morphology in cichlids from Lake Tanganyika. J Evol Biol 14:325–332

    Article  Google Scholar 

  • Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10

    Article  Google Scholar 

  • Samadi S, Barberousse A (2006) The tree, the network and the species. Biol J Linn Soc 89:509–521

    Article  Google Scholar 

  • Schwarzfeld M, Sperling F (2014) Species delimitation using morphology, morphometrics, and molecules: definition of the Ophion scutellaris Thomson species group, with descriptions of six new species (Hymenoptera, Ichneumonidae). ZooKeys 462:59–114

    Article  Google Scholar 

  • Scribner KT, Page KS, Bartron ML (2001) Hybridization of freshwater fishes: a review of case studies and cytonuclear methods of biological inference. Rev Fish Biol Fish 10:293–323

    Article  Google Scholar 

  • Seegers L, Sonnenberg R, Yamamoto R (1999) Molecular analysis of the Alcolapia flock from lakes Natron and Magadi, Tanzania and Kenya (Teleostei: Cichlidae), and implications for their systematics and evolution. Ichthyol Explor Freshw 10:175–199

    Google Scholar 

  • Seyoum S, Kornfield I (1992a) Taxonomic notes on the Oreochromis niloticus subspecies-complex (Pisces: Cichlidae), with a description of a new subspecies. Can J Zool 70:2161–2165

    Article  Google Scholar 

  • Seyoum S, Kornfield I (1992b) Identification of the subspecies of Oreochromis niloticus (Pisces: Cichlidae) using restriction endonuclease analysis of mitochondrial DNA. Aquaculture 102:29–42

    Article  CAS  Google Scholar 

  • Shechonge A, Ngatunga BP, Tamatamah R et al (2018) Losing cichlid fish biodiversity: genetic and morphological homogenization of tilapia following colonization by introduced species. Conserv Genet 19:1199

    Article  PubMed  PubMed Central  Google Scholar 

  • Shechonge A, Ngatunga BP, Bradbeer SJ et al (2019) Widespread colonisation of Tanzanian catchments by introduced Oreochromis tilapia fishes: the legacy from decades of deliberate introduction. Hydrobiologia (2019) 832:235

    Article  Google Scholar 

  • Sidlauskas BL, Mol JH, Vari RP (2011) Dealing with allometry in linear and geometric morphometrics: a taxonomic case study in the Leporinus cylindriformis group (Characiformes: Anostomidae) with description of a new species from Suriname. Zool J Linn Soc 162:103–130

    Article  Google Scholar 

  • Smyntek PM, Maberly SC, Grey J (2012) Dissolved carbon dioxide concentration controls baseline stable carbon isotope signatures of a lake food web. Limnol Oceanogr 57:1292–1302

    Article  CAS  Google Scholar 

  • Sneath PHA (1967) Trend-surface analysis of transformatrion grids. J Zool 151:65–122

    Article  Google Scholar 

  • Spreitzer ML, Mautner S, Makasa L, Sturmbauer C (2011) Genetic and morphological population differentiation in the rock-dwelling and specialized shrimp-feeding cichlid fish species Altolamprologus compressiceps from Lake Tanganyika, East Africa. Hydrobiologia 682:143–154

    Article  PubMed  PubMed Central  Google Scholar 

  • Stapley J, Reger J, Feulner PGD et al (2010) Adaptation genomics: the next generation. Trends Ecol Evol 25:705–712

    Article  PubMed  Google Scholar 

  • Stiassny MLJ (1991) Phylogenetic intrarelationships of the family Cichlidae: an overview. In: Keenleyside MHA (ed) Cichlid fishes: behaviour, ecology and evolution. Chapman & Hall, London, pp 1–35

    Google Scholar 

  • Strauss RE (2010) Discriminating groups of organisms. In: Elewa A (ed) Morphometrics for nonmorphometricians. Lecture notes in earth sciences, vol 124. Springer, Berlin. pp 73–91

    Google Scholar 

  • Su J, Guan K, Wang J, Yang Y (2015) Significance of hind wing morphology in distinguishing genera and species of cantharid beetles with a geometric morphometric analysis. ZooKeys 502:11–25

    Article  Google Scholar 

  • Supple MA, Shapiro B (2018) Conservation of biodiversity in the genomics era. Genome Biol 19:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Syaifudin M, Bekaert M, Taggart JB et al (2019) Species-specific marker discovery in tilapia. Sci Rep 9:13001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahara T, Minamoto T, Doi H (2013) Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS ONE 8(2)

    Google Scholar 

  • Thomsen PF, Willerslev E (2014) Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18

    Article  Google Scholar 

  • Thomsen PF, Kielgast J, Iversen LL et al (2012) Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol 21(11):2565–2573

    Article  CAS  PubMed  Google Scholar 

  • Thomsen PF, Møller PR, Sigsgaard EE, Knudsen SW, Jørgensen OA, Willerslev E (2016) Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes. PLoS ONE 11(11):e0165252. https://doi.org/10.1371/journal.pone.0165252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tibihika PD, Curto M, Dornstauder-Schrammel E et al (2019) Application of microsatellite genoty** by sequencing (SSR-GBS) to measure genetic diversity of the east African Oreochromis niloticus. Conserv Genet 20:357

    Article  CAS  Google Scholar 

  • Trewavas E (1983) Tilapiine fishes of the genera Sarotherodon, Oreochromis and Danakilia. British Museum (Natural History), London

    Book  Google Scholar 

  • Turner GF (1999) What is a fish species? Rev Fish Biol Fish 9:281–297

    Article  Google Scholar 

  • Valentini A, Taberlet P, Miaud C et al (2016) Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol Ecol 25:929–942

    Article  CAS  PubMed  Google Scholar 

  • Vander Zanden MJ, Shuter BJ, Lester N, Rasmussen JB (1999) Patterns of food chain length in lakes: a stable isotope study. Am Nat 154:406–416

    Article  PubMed  Google Scholar 

  • Vander Zanden MJ, Clayton MK, Moody EK et al (2015) Stable isotope turnover and half-life in animal tissues: a literature synthesis. PLoS One 10:e0116182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182

    Article  PubMed  Google Scholar 

  • Wagner CE, McCune AR (2009) Contrasting patterns of spatial genetic structure in sympatric rock dwelling cichlid fishes. Evolution 63:1312–1326

    Article  PubMed  Google Scholar 

  • Wagner CE, Keller I, Wittwer S et al (2013) Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Mol Ecol 22:787–798

    Article  CAS  PubMed  Google Scholar 

  • Wanek KA, Sturmbauer C (2015) Form, function and phylogeny: comparative morphometrics of Lake Tanganyika’s cichlid tribe Tropheini. Zoologica Scripta. https://doi.org/10.1111/zsc.12110

  • Waples RS (1991) Genetic methods for estimating the effective size of cetacean populations. Rep Int Whaling Commission (13):279–300

    Google Scholar 

  • Webster M, Sheets HD (2010) A practical introduction to landmark-based geometric morphometrics. In: Alroy J, Hunt G (eds) Quantitative methods in paleontology. Paleontological Society Short Course, October 30th 2010. The Paleontological Society Papers, vol 16, pp 163–188

    Google Scholar 

  • Weidel BC, Carpenter SR, Kitchell JF, Vander Zanden MJ (2011) Rates and components of carbon turnover in fish muscle: insights from bioenergetics models and a whole-lake 13C addition. Can J Fish Aquat Sci 68:387–399

    Article  CAS  Google Scholar 

  • Whitehead PJP (1990) Systematics: an endangered species. Syst Zool 39(2):179–184

    Article  Google Scholar 

  • Zelditch ML, Swiderski D, Sheets HD (2012) Geometric morphometrics for biologists: a primer. Academic, London

    Google Scholar 

  • Zengeya TA, Booth AJ, Bastos ADS, Chimimba DT (2011) Trophic interrelationships between the exotic Nile tilapia, Oreochromis niloticus and indigenous tilapiine cichlids in a subtropical African River system (Limpopo River, South Africa). Environ Biol Fish 92:479–489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanja D. Nyingi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nyingi, W.D. et al. (2021). Identifying and Conserving Tilapiine Cichlid Species in the Twenty-First Century. In: Abate, M.E., Noakes, D.L. (eds) The Behavior, Ecology and Evolution of Cichlid Fishes. Fish & Fisheries Series, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2080-7_9

Download citation

Publish with us

Policies and ethics

Navigation