Molecular Modeling

  • Chapter
  • First Online:
Systems and Synthetic Biology

Abstract

Recent advances in theoretical methods based on quantum mechanics and classical mechanics with visualization tools have played a very important role in chemistry and biology. Further, computers have a profound influence on the way we do science in the last few decades. The current chapter provides a preliminary exposure to a range of molecular modeling approaches applicable to small to medium sized molecules to proteins. Recent advances in the theoretical and computational methodologies which are aimed to treat large molecules are described. Emphasis is given on methods of computer aided drug design. These are preceded by a simple introduction to quantum mechanics, classical mechanics and molecular dynamics. A major area in modelling biomolecules is a proper quantitative treatment of non-bonded interactions. The importance of understanding various non-bonded interactions is highlighted. The role of these non-bonded interactions which determines the biological structure and functions is described. Thus, the current chapter provides a brief overview of computational methods applied to biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ANN:

Partial least square, artificial neural network

CADD:

Computer aided drug design

DFT:

Density function theory

FBDD:

Fragment based drug design

FEP:

Free energy perturbation

F-value:

Fisher statistic

FTA:

Fragment tailoring approach

GFA:

Genetic function approximation

HTS:

High-throughput screening

Ki:

Inhibitory constant

LBVS:

Ligand-based virtual screening

MCSCF:

Multi-configurational self-consistent field

MD:

Molecular dynamics

MLR:

Multi-linear regression

MM:

Molecular mechanics

PCR:

Principal component regression

PDE:

Phosphodiesterase

QM:

Quantum mechanics

QM/MM:

Quantum mechanics/molecular mechanics

QSAR:

Quantity structure activity relationship

SBVS:

Structure-based virtual screening

SCF:

Self-consistent field

TI:

Thermodynamic integration

VS:

Virtual screening

References

  • Allen MP, Tildesley DJ (1987) Computer simulations of liquids. Clarendon Press, Oxford

    Google Scholar 

  • Ayton GS, Noid WG, Voth GA (2007) Multiscale modeling of biomolecular systems: in serial and in parallel. Curr Opin Struct Biol 17:192–198

    Article  CAS  PubMed  Google Scholar 

  • Badrinarayan P, Sastry GN (2010) Sequence, structure, and active site analyses of p38 MAP kinase: exploiting DFG-out conformation as a strategy to design new type II leads. J Chem Inf Model 51:115–129

    Article  PubMed  Google Scholar 

  • Badrinarayan P, Sastry GN (2011) Virtual high-throughput screening in new lead identification. Comb Chem High T Scr 14:840–860

    CAS  Google Scholar 

  • Badrinarayan P, Sastry GN (2012) Virtual screening filters for the design of type II p38 MAP kinase inhibitors: a fragment based library generation approach. J Mol Graph Modell 34:89–100

    Article  CAS  Google Scholar 

  • Badrinarayan P, Sastry GN (2013) Rational approaches towards lead optimization of kinase inhibitors: the issue of specificity. Curr Pharm Des 19:4714–4738

    Article  CAS  PubMed  Google Scholar 

  • Badrinarayan P, Srivani P, Sastry GN (2011) Design of 1-arylsulfamido-2-alkylpiperazine derivatives as secreted PLA2 inhibitors. J Mol Model 17:817–831

    Article  CAS  PubMed  Google Scholar 

  • Baurin N, Aboul-Ela F, Barril X, Davis B, Drysdale M, Dymock B, Finch H, Fromont C, Richardson C, Simmonite H, Hubbard RE (2004) Design and characterization of libraries of molecular fragments for use in NMR screening against protein targets. J Chem Inf Comput Sci 44:2157–2166

    Article  CAS  PubMed  Google Scholar 

  • Bissantz C, Kuhn B, Stahl MA (2010) Medicinal chemist's guide to molecular interactions. J Med Chem 53:5061–5084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen X,Wang W (2003) The use of bioisosteric groups in lead optimization. Annu Rep Med Chem 38:333–346

    Google Scholar 

  • Chourasia M, Sastry GM, Sastry GN (2011) Aromatic-aromatic database, A2ID: an analysis of aromatic Ï€-networks in proteins. Int J Biol Macromol 48:540–552

    Article  CAS  PubMed  Google Scholar 

  • Cramer CJ (2004) Essentials of computational chemistry: theories and models, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C (2009) Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model 49:1455–1474

    Article  CAS  PubMed  Google Scholar 

  • Dada JO, Mendes P (2011) Multi-scale modelling and simulation in systems biology. Integr Biol 3:86–96

    Article  Google Scholar 

  • Degen J, Wegscheid-Gerlach C, Zaliani A, Rarey M (2008) On the art of compiling and using ‘drug-like’ chemical fragment spaces. Chem Med Chem 10:1503–1507

    Article  Google Scholar 

  • Dehmer M, Varmuza K, Bonchev D (eds) (2012) Statistical modeling of descriptors in QSAR and 881 QSPR. Wiley-Blackwell, Weinheim

    Google Scholar 

  • Dror O et al (2006) Predicting molecular interactions in silico. I. An updated guide to pharmacophore identification and its applications to drug design. Front Med Chem 3:551–584

    Google Scholar 

  • Ekins S, De Groot MJ, Jones JP (2001) Pharmacophore and three-dimensional quantitative structure activity relationship methods for modeling cytochrome P450 Active Sites. Drug Metab Dispos 29:936–944

    CAS  PubMed  Google Scholar 

  • Fermann JT, Valeev EF (1997) Fundamentals of molecular integrals evaluation. Tech. rep

    Google Scholar 

  • Field MJ, Moleculaire LD, Grenoble (2007) Practical introduction to the simulation of molecular systems, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Fischer JR, Lessel U, Rarey MJ (2010) LoFT: similarity-driven multiobjective focused library design. Chem Inf Model 50:1–21

    Article  CAS  Google Scholar 

  • Foloppe N, Fisher LM, Howes R, Kierstan P, Potter A, Robertson AG, Surgenor AE (2005) Structure-based design of novel Chk1 inhibitors: insights into hydrogen bonding and protein-ligand affinity. J Med Chem 48:4332–4345

    Article  CAS  PubMed  Google Scholar 

  • Frenkel D, Smit B (2002) Understanding molecular simulations: from algorithms to applications, 2nd edn. vol 1, Computational Science Series Academic Press, San Diego

    Google Scholar 

  • Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  • Gohlke H, Klebe G (2002) Approaches to the description and prediction of the binding affinity of small-molecule ligands. Angew Chem Int Ed Engl 41:2644–2676

    Article  CAS  PubMed  Google Scholar 

  • Guner OF (ed) (2000) Pharmacophore perception, development, and use in drug design. International University Line, La Jolla

    Google Scholar 

  • Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Reviews Drug Discov 6:211–219

    Article  CAS  Google Scholar 

  • Helguera AM, Combes RD, Gonzalez MP, Cordeiro MN (2008) Applications of 2D descriptors in drug design: a DRAGON tale. Curr Top Med Chem 8:1628–1655

    Article  CAS  PubMed  Google Scholar 

  • Hinchliffe A (2003) Molecular modelling for beginners, vol xviii. Wiley, Chichester

    Google Scholar 

  • Hirschfelder JO, Curtiss L, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  • Hodgkin AL, Huxley, AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holtje HD, Sippl W, Rognan D, Folkers G (2008) Molecular modeling: Basic principles and explanations, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    Article  CAS  PubMed  Google Scholar 

  • Jensen F (2007) Introduction to computational chemistry, 2nd edn. Wiley, UK

    Google Scholar 

  • Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and Validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  • Kamerlin SC, Warshel A (2011) Multiscale modeling of biological functions. Phys Chem Chem Phys 13:10401–10411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karelson M, Lobanov VS, Katritzky AR (1996) Quantum-chemical descriptors in QSAR/QSPR Stud. Chem Rev 96:1027–1043

    Article  CAS  PubMed  Google Scholar 

  • Katritzky AR, Lobanov VS, Karelson M (1994) CODESSA 2.0 comprehensive descriptors for structural and statistical analysis. University of Florida, U.S.A.

    Google Scholar 

  • Klebe G (2006) Virtual ligand screening: strategies, perspectives and limitations. Drug Discov Today 11:580–594

    Article  CAS  PubMed  Google Scholar 

  • Kruger DM, Ahmed A, Gohlke H (2012) NMSim web server: integrated approach for normal mode-based geometric simulations of biologically relevant conformational transitions in proteins. Nucleic Acids Res 40:W310–316

    Google Scholar 

  • Kubinyi H (1993) QSAR, Hansch analysis and related approaches. In: Timmerman H, Mannhold R (eds) Methods and principles in medicinal chemistry. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  • Langer T, Hoffmann RD (eds) (2006) Pharmacophore and pharmacophore searches, vol 32. Wiley-VCH, Weinheim

    Google Scholar 

  • Leach AR (2001) Molecular modelling—principles and applications, 2nd edn. Prentice Hall, Essex

    Google Scholar 

  • Lemke TL, Williams D, Roche VF, Zito SW (eds) (2008) Foye’s principles of medicinal chemistry, 6th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Levine IN (2013) Quantum chemistry, 7th edn. Prentice Hall, UK

    Google Scholar 

  • Levitt M, Warshel A (1975) Computer simulation of protein folding. Nature 253:694–698

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  • Loving K, Alberts I, Sherman W (2010) Computational Approaches for Fragment-Based and De Novo Design. Curr Top Med Chem 10:14–32

    Article  CAS  PubMed  Google Scholar 

  • Lyubartsev AP, Laaksonen A (1995) Calculation of effective interaction potentials from radial distribution functions: a reverse Monte Carlo approach. Phys Rev E 52:3730–3737

    Article  CAS  Google Scholar 

  • Mahadevi AS, Sastry GN (2013) Cation-Ï€ interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 113:2100–2138

    Article  CAS  PubMed  Google Scholar 

  • Martins ML, Ferreira SC Jr, Vilela MJ (2010) Multiscale models for biological systems. Curr Opin Colloid Interface Sci 15:18–23

    Article  CAS  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  • Muller-Plathe F (2002) Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. Chemphyschem 3:754–769

    Article  CAS  Google Scholar 

  • Nantasenamat C, Ayudhya CIN, Naenna T, Prachayasittikul V (2009) A practical overview of quantitative structure-activity relationship. EXCLI J 8:74–88

    Google Scholar 

  • Neela YI, Mahadevi AS, Sastry GN (2010) Hydrogen bonding in water clusters and their ionized counterparts. J Phys Chem B 114:17162–17171

    Article  CAS  PubMed  Google Scholar 

  • Noble D (2002) Modeling the heart from genes to cells to the whole organ. Science 295:1678–1682

    Article  CAS  PubMed  Google Scholar 

  • Parr RG (1983) Density functional theory. Annu Rev Phys Chem 34:631–656

    Article  CAS  Google Scholar 

  • Ponder JW, Case DA (2003) Force fields for protein simulation. Adv Prot Chem 66:27–85

    Article  CAS  Google Scholar 

  • Qu Z, Garfinkel A, Weiss JN, Nivala M (2011) Multi-scale modeling in biology: how to bridge the gaps between scales? Prog Biophys Mol Biol 107:21–31

    Article  PubMed Central  PubMed  Google Scholar 

  • Rapaport DC (2004) The art of MD simulation, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489

    Article  CAS  PubMed  Google Scholar 

  • Reddy MR, Erion MD (eds) (2001) Free energy calculations in rational drug design. Kluwer/Plenum Press, New York

    Google Scholar 

  • Reddy AS, Sastry GN (2005) Cation [M = H+, Li+, Na+, K+, Ca+, Mg2+, NH4 +, and NMe4 +] interactions with the aromatic motifs of naturally occurring amino acids: a theoretical study. J Phys Chem A 109:8893–8903

    Article  CAS  PubMed  Google Scholar 

  • Reddy AS, Vijay D, Sastry GM, Sastry GN (2006) From subtle to substantial: role of metal ions on pi-pi interactions. J Phys Chem B 110:247924-81

    Google Scholar 

  • Reddy AS, Pati SP, Kumar PP, Pradeep HN, Sastry GN (2007a) Virtual screening in drug discovery—a computational perspective. Curr Prot Peptide Sci 8:329–351

    Google Scholar 

  • Reddy AS, Sastry GM, Sastry GN (2007b) Cation-aromatic database. Proteins: Struc Func Bioinfo 67:1179–1184

    Google Scholar 

  • Ringe D Jr, Reynolds CH, Merz KM (eds) (2010) Drug design: structure- and ligand-based approaches. Cambridge University Press, UK

    Google Scholar 

  • Sarkhel S, Desiraju GR (2004) N–H…O, O–H…O, and C–H…O hydrogen bonds in protein-ligand complexes: strong and weak interactions in molecular recognition. Proteins 54:247–259

    Article  CAS  PubMed  Google Scholar 

  • Sastry M, Lowrie JF, Dixon SL, Sherman W (2010) Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments. J Chem Inf Model 50:771–784

    Article  CAS  PubMed  Google Scholar 

  • Saunders MG, Voth GA (2013) 1. Coarse-graining methods for computational biology. Annu Rev Biophys 42:73–93

    Article  CAS  PubMed  Google Scholar 

  • Schnell S, Grima R, Maini PK (2007) Multiscale modeling in biology. Am Sci 95:134–142

    Article  Google Scholar 

  • Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed Engl 48:1198–229

    Article  CAS  PubMed  Google Scholar 

  • Sherwood P, de Vries AH, Guest MF et al (2003) QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis. J Mol Struct Theochem 632:1–28

    Article  CAS  Google Scholar 

  • Sherwood P, Brooks BR, Sansom MS (2008) Multiscale methods for macromolecular simulations. Curr Opin Struct Biol 18:630–640

    Article  CAS  PubMed  Google Scholar 

  • Silverman RB (2004) The organic chemistry of drug design and drug action, 2nd edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Singh PP, Srivastava HK, Pasha FA (2004) DFT-based QSAR study of testosterone and its derivatives. Bioorg Med Chem 12:171–177

    Article  CAS  PubMed  Google Scholar 

  • Southern J, Francis JP, Whiteley J, Stokeley D, Kobashi H, Nobes R, Kadooka Y, Gavaghan D (2008) Multi-scale computational modelling in biology and physiology. Prog Biophys Mol Biol 96:60–89

    Article  CAS  PubMed  Google Scholar 

  • Srivani P, Srinivas E, Raghu R, Sastry GN (2007) Molecular modeling studies of pyridopurinone derivatives—potential phosphodiesterase 5 inhibitors. J Mol Graph Model 26:378–390

    Article  CAS  PubMed  Google Scholar 

  • Srivastava HK, Sastry GN (2012) MD investigation on a series of HIV protease inhibitors: assessing the performance of MM-PBSA and MM-GBSA approaches. J Chem Inf Model 52:3088–3098

    Article  CAS  PubMed  Google Scholar 

  • Srivastava HK, Choudhury C, Sastry GN (2012) The efficacy of conceptual DFT descriptors and docking scores on the QSAR models of HIV protease inhibitors. Med Chem 8:811–825

    Article  CAS  PubMed  Google Scholar 

  • Stahl M, Bohm HJ (1998) Development of filter functions for protein-ligand docking. J Mol Graph Model 16:121–132

    Article  CAS  PubMed  Google Scholar 

  • Stahl M, Rarey M (2001) Detailed analysis of scoring functions for virtual screening. J Med Chem 44:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Todeschini R, Consonni V (2000) Handbook of molecular descriptors. In: Mannhold R, Kubinyi H, Timmermann H (eds) Methods and principles in medicinal chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Tschop W, Kremer K, Batoulis J, Burger T, Hahn O (1998) Simulation of polymer melts. I. Coarse graining procedure for polycarbonates. Acta Polym 49:61–74

    Article  Google Scholar 

  • Twycross J, Band LR, Bennett MJ, King JR, Krasnogor N (2010) Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study. BMC Syst Biol 4:34–45

    Article  PubMed Central  PubMed  Google Scholar 

  • Vijay D, Sastry GN (2010) The cooperativity of cation-Ï€ and Ï€-Ï€ interactions. Chem Phys Lett 485:235–242

    Article  CAS  Google Scholar 

  • Vijay D, Zipse H, Sastry GN (2008) On the cooperativity of cation-Ï€ and hydrogen bonding interactions. J Phys Chem B 112:8863–8867

    Article  CAS  PubMed  Google Scholar 

  • Wadehra A, Ghosh SK (2005) A density functional theory-based chemical potential equalization approach to molecular polarizability. J Chem Sci 117:401–409

    Article  CAS  Google Scholar 

  • Walker DC, Southgate J (2009) The virtual cell-a candidate co-ordinator for ‘middle-out modelling of biological systems. Briefings Bioinf 10:450–461

    Article  CAS  Google Scholar 

  • Wang Yi, McCammon JA (2012) Introduction to MD: theory and applications. In: Dokholyan NV (ed) Biomolecular modeling computational modeling of biological systems. From molecules to pathways. Springer, USA, pp 3–30

    Google Scholar 

  • Wermuth CG (2006) Pharmacophores: historical perspective and viewpoint from a medicinal chemist. In: Langer T, Hoffmann RD (eds) Wiley-VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  • Wermuth CG, Ganellin CR, Lindberg P, Mitscher LA (1998) Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). Pure Appl Chem 70:1129–1143

    Article  CAS  Google Scholar 

  • Wolber G, Seidel T, Bendix F, Langer T (2008) Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov Today 13:23–29

    Article  CAS  PubMed  Google Scholar 

  • Wold S. (1991) Validation of QSARs. Quant Struct Act Relat 10:191–193

    Article  CAS  Google Scholar 

  • Yang SY (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15:444–450

    Article  CAS  PubMed  Google Scholar 

  • Young DC (2009) Computational drug design: a guide for computational and medicinal chemists. Wiley, Hoboken

    Google Scholar 

  • Zeigler B, Praehofer H, Kim T (eds) (2000) Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems, 2nd edn. Academic Press, New York

    Google Scholar 

Download references

Acknowledgement

Department of Science and Technology, New Delhi is thanked for the Swarnajayanti Fellowship to GNS, Women Scientist Fellowship to PB and INSPIRE Fellowship to CC. Department of Biotechnology and Council of Scientific and Industrial Research, New Delhi are also thanked for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Narahari Sastry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Badrinarayan, P., Choudhury, C., Sastry, G. (2015). Molecular Modeling. In: Singh, V., Dhar, P. (eds) Systems and Synthetic Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9514-2_6

Download citation

Publish with us

Policies and ethics

Navigation