Bacterial Pathogens Associated with Aquaculture Products

  • Chapter
  • First Online:
Zoonoses - Infections Affecting Humans and Animals

Abstract

According to FAO statistics, aquaculture is contributing to nearly half of the global food fish production. Fish contributes to both nutritional and food security in many develo** economies. Fish is also one of the most extensively traded food commodities; most of global aquaculture production takes place in develo** countries and the major markets are in the developed world. European Union, Japan and United States together account for about 70 % of global fish imports. Generally, fish and fishery products have a very good safety record. But there are some bacterial hazards associated with aquaculture products. The chapter discusses the bacterial pathogens that may be associated with products of aquaculture, pathways of contamination and risk management measures reported for these bacterial hazards. In terms of antibiotic usage, there is limited data from develo** countries, and a number of studies have looked at antimicrobial resistance in bacterial pathogens associated with fish and fishery products. Aspects related to antimicrobial resistance in aquaculture products are also presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allerberger F, Wagner M (2009) Listeriosis: a resurgent food-borne infection. Clin Microbiol Infect 16:16–23

    Google Scholar 

  • Andrews LS, Jahncke M, Millikarjunan K (2003) Low-dose gamma irradiation to reduce pathogenic Vibrios in live oysters (Crassostreavirginica). J Aquat Food Prod T 12:71–82

    Google Scholar 

  • Anonymous (2000) Ten year summary of outbreaks due to V. parahaemolyticus in Japan. (1989–1999), The Ministry of Health and Welfare, Japan. Cited in Risk assessment of Vibrio spp in seafood. www.fao.org/docrep/008/y8145e/y8145e08.htm. Accessed 6 July 2013

  • Armugaswamy RK, Rusul G, Abdul Hamid SN, Cheh CT (1995) Prevalence of Salmonella in raw and cooked food in Malaysia. Food Microbiol 12:3–8

    Google Scholar 

  • Asai Y, Kaneko M, Ohtsuka K, Morita Y, Kaneko S, Noda H, Furukawa I, Takatori K, Hara-Kudo Y (2008) Salmonella prevalence in seafood imported into Japan. J Food Protect 71:1460–1464

    CAS  Google Scholar 

  • Baker-Austin C, McArthur JV, Tuckfield RC, Najarro M., Lindell AH, Gooch J, Stepanauskas R (2008) Antibiotic resistance in the shellfish pathogen Vibrio parahaemolyticus isolated from the coastal water and sediment of Georgia and South Carolina, USA. J Food Protect 71:2552–2558

    CAS  Google Scholar 

  • Baker-Austin C, McArther JV, Lindell AH, Wright MS, Tuckfield RC, Gooch J, Warner L, Oliver J, Stepanauskas R (2009) Multi-site analysis reveals widespread antibiotic resistance in the marine pathogen Vibrio vulnificus. Microb Ecol 57:151–159

    CAS  Google Scholar 

  • Baker-Austin C, Stockley L, Rangdale Rand Martinez-Urtaza J (2010) Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: A European perspective. Environ Microbiol Rep 2:7–18

    PubMed  Google Scholar 

  • Bangtrakulnonth A, Pornreongwong S, Pulsrikarn C, Sawanpanyalert P, Hendriksen RS, Lo Fo Wong DMA, Aarestrup FM (2004) Salmonella serovars from humans and other sources in Thailand, 1993–2002. Emerg Infect Dis 1:131–136

    Google Scholar 

  • Baudart J, Lemarchand K, Brisabois A, Lebaron P (2000) Diversity of Salmonella strains isolated from the aquatic environment as determined by seroty** and amplification of the ribosomal DNA spacer regions. Appl Environ Microbiol 66:1544–1552

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benbrook CM (2002) Antibiotic drug use in US aquaculture. In: Institute of agriculture and trade policy report. 18 pp. http://www.healthobservatory.org/library.cfm?RefID=37397. Accessed 3 Oct 2013

  • Bhullar K, Waglechner L, Pawlowski L, Koteva K, Banks ED, Johnston MD, Barton HA, Wright GD (2012) Antibiotic resistance is present in an isolated cave microbiome. PLoS ONE 7:e34953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blake PA, Allegra DT, Snyder JD, Barrett TJ, McFarland L, Caraway CT, Feeley JC, Craig JP, Lee JV, Puhr ND, Feldman RA (1980) Cholera—a possible endemic focus in the United States. New Eng J Med 302:305–309

    CAS  PubMed  Google Scholar 

  • Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B (2000) Salmonella nomenclature. J Clin Microbiol 38:2465–2467

    CAS  Google Scholar 

  • Burridge L, Weis J, Cabello F, Pizzaro J, Bostick K (2010) Chemical use in salmon aquaculture: A review of current practices and possible environmental effects. Aquaculture 306:7–23

    CAS  Google Scholar 

  • Byappanahally MN, Sawdey R, Ishii S, Shively DA, Ferguson JA, Whitman RL, Sadowsky MJ (2009) Seasonal stability of Cladophora-associated Salmonella in Lake Michigan watersheds. Water Res 43:806–814

    Google Scholar 

  • Cann DC, Taylor LY, Merican Z (1981) A study of the incidence of Vibrio parahaemolyticus in Malaysian shrimp undergoing processing for export. J Hyg (London) 87:485–491

    CAS  Google Scholar 

  • Canton R, Gonzalez-Alba JM, Galan JC (2012) CTX-M enzymes: origin and diffusion. Frontiers in Microbiol 3:110

    Google Scholar 

  • Catalao Dionisio LP, Joao M, Soares Ferreiro V, Leonor Hidalgo M, García Rosado ME, Borrego JJ (2000) Ocurrence of Salmonella spp. in estuarine and coastal waters of Portugal. Anton Leeuw Int J G 78:99–106

    CAS  Google Scholar 

  • Cesar-Javier G, Teresa- Maria L, Garcia-Lopez M, Miguel P, Andrei O (1999) Bacterial flora of wild brown trout (Salmo trutta), Wild Pike (Esox Lucius), and aquaculture rainbow trout (Oncorhynchus mykiss). J. Food Prot 62:1270–1277

    Google Scholar 

  • Chai JY, Murrell KD, Lymbery AJ (2005) Fish-borne parasitic zoonoses: status and issues. Int J Parasitol 35:1233–1254

    PubMed  Google Scholar 

  • Chan KY, Woo ML, Lam LY, French GL (1989) Vibrio parahaemolyticus and other halophilicvibrios associated with seafood in Hong Kong. J Appl Bacteriol 66:57–64

    CAS  PubMed  Google Scholar 

  • Chen CH, Shimada T, Elhadi N, Radu S, Nichibuchi M (2004) Phenotypic and genotypic characteristics and epidemiological significance of ctx+ strains of Vibrio cholerae isolated from seafood in Malaysia. Appl Environ Microbiol 70:1964–1972

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen B, Pyla R, Kim T, Sylva JL, Jung Y (2010) Prevalence and contamination patterns of Listeria monocytogenes in catfish processing environments. Food Microbiol 27:645–652

    PubMed  Google Scholar 

  • Ciccio PD, Meloni D, Festino AR, Conter M, Zanardi E, Ghidini S, Vergara A, Mazzette R, Ianieri A (2012) Longitudinal study on the sources of Listeria monocytogenes contamination in cold smoked salmon and its processing environment in Italy. Int J Food Microbiol 158:79–84

    Google Scholar 

  • Coleman M, Marks H (1998) Topics in dose-response modelling. J Food Prot 61:1550–1559

    CAS  PubMed  Google Scholar 

  • Colwell RR, West PA, Maneval D, Remmers EF, Elliot EL, Carlson NE (1984) Ecology of pathogenic vibrios in Chesapeake Bay. In: Colwell RR (ed) Vibrios in the environment. Wiley, New York, pp 367–387

    Google Scholar 

  • Cook DW (1994) Effect of time and temperature on multiplication of Vibrio vulnificus in postharvest gulf coast shellstock oysters. Appl Environ Microbiol 60:3483–3484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cook DW (1997) Refrigeration of oyster shellstock: conditions which minimize the outgrowth of Vibrio vulnificus. J Food Prot 60:349–352

    Google Scholar 

  • Cook DW (2003) Sensitivity of Vibrio species in phosphate-buffered saline and in oysters to high pressure treatment. J. Food Prot 66:2276–2292

    CAS  PubMed  Google Scholar 

  • Cook DW, Ruple AD (1992) Cold storage and mild heat treatment as processing aids to reduce the numbers of Vibrio vulnificus in raw oysters. J Food Prot 55:985–989

    Google Scholar 

  • Cook DW, Bowers JC, De Paola A (2002) Density of total and pathogenic (tdh+) Vibrio parahaemolyticus in Atlantic and Gulf coast molluscan shellfish at harvest. J. Food Prot 65:1873–1880

    PubMed  Google Scholar 

  • CSPI (Center for Science in the Public Interest) (2013) Outbreal Alert! 2001–2010. http://cspinet.org/new/pdf/outbreak_alert_2013_final.pdf. Accessed 12 August 2013

  • D’Aoust J-Y, Maurer J (2007) Salmonella species. In: Doyle MP, Beuchat LR (eds) Food microbiology: fundamentals and frontiers, 3rd edn. ASM, Washington, DC, pp 187–236

    Google Scholar 

  • D’Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD (2011) Antibiotic resistance is ancient. Nature 477:457–461

    PubMed  Google Scholar 

  • Dalsgaard A, Huss HH, H-Kithikun A, Larsen JL (1995a) Prevalence of Vibrio cholerae and Salmonella in a major shrimp production area in Thailand. Int J Food Microbiol 28:101–113

    Google Scholar 

  • Dalsgaard A, Serichantalergs O, Shimada T, Sethabuthr O, Echeverria P (1995b) Prevalence of Vibrio choleraewith heat-stable enterotoxin (NAG-ST) and cholera toxin genes: restriction fragment length polymorphisms (RFLP) of NAG-ST genes among V. choleraeOserogroups from a major shrimp production area in Thailand. J Medical Microbiol 43: 216–220

    Google Scholar 

  • Dang H, Zhao J, Song L, Chen M, Chang Y (2009) Molecular characterizations of chloramphenicol and oxytetracycline genes in mariculture waters of China. Mar Pollut Bull 58:987–994

    CAS  PubMed  Google Scholar 

  • Daniels NA, MacKinnon L, Bishop R, Altekruse S, Ray B, Hammod RM, Thompson S, Wilson S, Bean NH, Griffin PM, Slutsker L (2000) Vibrio parahaemolyticus infections in United States, 1973–1998. J Infect Dis 181:1661–1666

    CAS  PubMed  Google Scholar 

  • Dauros P, Bello H, Dominguez M, Hormazabal JC, Ganzales G (2011) Characterisation of Vibrio parahaemolyticus strains isolated in Chile in 2005 and in 2007. J Infect Dev Ctries 5:502–510

    PubMed  Google Scholar 

  • Deepanjali A, Sanath Kumar H, Karunasagar I, Karunasagar I (2005) Seasonal variation in abundance of total and pathogenic Vibrio parahaemolyticus bacteria in oysters along the Southwest coast of India. Appl Environ Microbiol 71:3575–3580

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Paola A (1981) Vibrio cholerae in marine foods and environmental waters: A literature review. J Food Sci 46: 66–70

    Google Scholar 

  • De Paola A, Rivadeneyra C, Gelli DS, Zuazua H, Grahn M (1993) Peruvian cholera epidemic: Role of seafood. Proceedings of the 16th Annual Tropical and Subtropical Fisheries Technology Conference of the Americas, pp 28–33

    Google Scholar 

  • De Paola A, Capers GM, Alexander D (1994) Densities of Vibrio vulnificus in the intestines of fish from the U.S. Gulf Coast. Appl Environ Microbiol 60:984–988

    Google Scholar 

  • De Paola A, Ulaszek J, Kaysner CA, Tenge B J, Nordstrom JL, Wells J, Puhr N, Gendel SM (2003) Molecular serological and virulence characteristics of Vibrio parahaemolyticus isolated from environmental, food and clinical sources in North America and Asia. Appl Environ Microbiol 69:3999–4005

    Google Scholar 

  • Dhanashree B, Otta S K, Karunasagar I, Goebel W, Karunasagar I (2003). Incidence of Listeria spp. in clinical and food samples in Mangalore, India. Food Microbiol 20:447–453

    Google Scholar 

  • Drake SL, De Paola A, Jaykus L (2007) An overview of Vibrio vulnificus and Vibrio parahaemolyticus. Compr Rev Food Sci F 6:120–144

    CAS  Google Scholar 

  • Drevets DA, Bronze MS (2008) Listeria monocytogenes: epidemiology, human disease and mechanisms of brain invasion. FEMS Immunol Med Microbiol 53:151–165

    CAS  PubMed  Google Scholar 

  • Eberhart-Phillips J, Besser RE, Tormey MP, Feikin D, Araneta MR, Wells J, Kilman L, Rutherford GW, Griffin PM, Baron R, Mascola L (1996) An outbreak of cholera from food served on an international aircraft. Epidemiol Infect 116:9–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • EFSA (European Food Safety Authority), ECDC (European Center for Disease Prevention and Control) (2013) The European Union Summary Report on Trends and Sources of Zoonoses, zoonotic agents, and foodborne outbreaks in 2011. EFSA J 11(4):3129

    Google Scholar 

  • FAO (2010) Report of FAO Expert Workshop on the Application of Biosecurity Measures to Control Salmonella Contamination in Sustainable Aquaculture. FAO Fisheries and Aquaculture Report No. 937

    Google Scholar 

  • FAO (2012) The State of the World Fisheries and Aquaculture. FAO, Rome

    Google Scholar 

  • FAO (2013) Cultured aquatic species—Fact sheets. http://www.fao.org/fishery/culturedspecies/search/en. Accessed 5 Oct 2013

  • FAO/OIE/WHO (2006) Report of A Joint FAO/OIE/WHO Expert Consultation on Antimicrobial Use in Aquaculture and Antimicrobial Resistance. WHO, Geneva, 97 pp

    Google Scholar 

  • FAO/OIE/WHO (2008) Report of a Joint FAO/WHO/OIE Expert Meeting on Critically Important Antimicrobials. FAO, Rome, pp 60

    Google Scholar 

  • FAO/WHO (2002) Risk assessments of Salmonella in eggs and broiler chicken. Microbial Risk Assess 2:302

    Google Scholar 

  • FAO/WHO (2003) Risk Assessment of Campylobacter spp. in broiler chickens and Vibrio spp. in seafood. FAO Food and Nutrition Paper 75:1–57

    Google Scholar 

  • FAO/WHO (2004) Risk assessment of Listeria monocytogenes in ready-to-eat foods. Microbial Risk Assess Ser 5:1–269

    Google Scholar 

  • FAO/WHO (2005) Risk assessment of choleragenic Vibrio cholerae O1 and O139 in warm water shrimp in international trade. Microbial Risk Assess Ser 9:1–90

    Google Scholar 

  • FAO/WHO (2005a) Risk assessment of choleragenic Vibrio vulnificus in raw oysters. Microbial Risk Assess Ser 8:1–114

    Google Scholar 

  • FAO/WHO (2011) Risk assessment of Vibrio parahaemolyticus in seafood. Microbial Risk Assess Ser 16:1–183

    Google Scholar 

  • Faruque SM, Albert MJ, Mekalanos JJ (1998) Epidemiology, genetics, and ecology of choleragenicVibrio cholerae. Microbiol Mol Biol Rev 62:1301–1314

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fenwick SG, Duignan PJ, Nocol CM, Leyland MJ, Hunter JEB (2004) A comparison of Salmonella serotypes isolated from New Zealand sea lions and feral pigs on the Auckland Islands by pulsefield gel electrophoresis. J. Wildlife Dis 40:566–570

    CAS  Google Scholar 

  • Fonseka TSG (1990) Microbial flora of pond cultured prawn (Penaeus monodon). FAO Fish Rep 401:24–31

    Google Scholar 

  • Food and Drug Administration (FDA) (2005) Quantitative risk assessment on the public health impact of pathogenic Vibrio parahaemolyticus in raw oysters. http://www.cfsan.fda.gov/~dms/vpra-toc.html. Accessed 3 July 2013

  • Gaertner J, Wheeler PE, Obafemi S, Valdez J, Forstner RJ, Bonner TH, Hahn D (2008) Detection of Salmonella in fish in a natural river system. J Aquat Animal Health 20:150–157

    Google Scholar 

  • Garau G, Di Guilmi AM, Hall BG (2005) Structure based phylogeny of metallo- β lactamases. Antimicrob Agents Chemother 49:2778–2784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garay E, Arnau A, Amaro C (1985) Incidence of Vibrio cholerae and related vibrios in a coastal lagoon and seawater influenced by lake discharges along an annual cycle. Appl Environ Microbiol 50:426–430

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gopal S, Otta SK, Kumar S, Karunasagar I, Karunasagar I (2005) The occurrence of Vibriospp in tropical aquaculture environments: implications for food safety. Int J Food Microbiol 102:151–159

    PubMed  Google Scholar 

  • Greig JD and Ravel A (2009) Analysis of foodborne outbreak data reported internationally by source attribution. Int J Food Microbiol 130:77–87

    Google Scholar 

  • Gudmundsdóttir S, Gudbjörnsdóttir B, Lauzon HL, Einarsson H, Kristinsson KG, Kristjánsson M (2005) Tracing Listeria monocytogenes isolates from cold-smoked salmon and its processing environment in Iceland using pulsed-field gel electrophoresis. Int J Food Microbiol 101:41–51

    PubMed  Google Scholar 

  • Gudmundsdottir S, Gudmundsdottir B, Einarsson H, Kristinsson K G, Kristjansson M (2006) Contamination of cooked peeled shrimp (Pandalus borealis) by Listeria monocytogenes during processing at two processing plants. J Food Prot 69:1304–1311

    PubMed  Google Scholar 

  • Hansen JM, Gerner-Smidt P, Bruun B (2005) Antibiotic susceptibility of Listeria monocytogenes in Denmark 1958–2001. APMIS 113:31–36

    CAS  PubMed  Google Scholar 

  • Hatha AA M and Lakshmanperumalsamy P (1997) Prevalence of Salmonella in fish and crustaceans from markets in Coimbatore, South India. Food Microbiol 14:111–116

    Google Scholar 

  • Heinitz ML, Ruble RD, Wagner DE, Tatini S R (2000) Incidence of Salmonella in fish and seafood. J Food Protect 63:579–592

    CAS  Google Scholar 

  • Helfrick D Bean NH, Slutsker L, Tauxe RV (1997) Annual Tabulation summary 1997. Salmonella surveillance Centers for Disease Control and Prevention, Altanta, GA

    Google Scholar 

  • Herwig RP, Gray JP, Weston DP (1997) Antibacterial resistant bacteria in surficial sediments near salmon net-cage farms in Puget Sound, Washington. Aquaculture 149:263–283

    CAS  Google Scholar 

  • Higgins R (2000) Bacteria and fungi of marine mammals: a review. Can Vet J 45:101–106

    Google Scholar 

  • Honda T, Ni YX, Miwatani T (1988) Purification and characterisation of hemolysin produced by a clinical isolate of Kanagawa phenomenon negative Vibrio parahaemolyticus and related to the thermostable direct hemolysin. Infect Immun 56:961–965

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hsueh PR, Lin CY, Tang HJ, Lee H, Liu J, Liu Y, Chuang Y (2004) Vibrio vulnificus in Taiwan. Emerg Infect Dis 10:1363–1369

    PubMed Central  PubMed  Google Scholar 

  • ICMSF (1996) Microorganisms in foods 5. Characteristics of microbial pathogens. Blackie Academic & Professional, London, pp 1–513

    Google Scholar 

  • Ingham SC, Alford RA, McCown AP (1990) Comparative growth rates of Salmonella typhimurium and Pseudomonas fragi on cooked crab meat stored under air and modified atmosphere. J Food Prot 53:566–567, 625

    Google Scholar 

  • Inoue Y, Ono T, Matsui T, Miyasaka J, Kinoshita Y, Ihn H (2008) Epidemiological survey of Vibrio vulnificus infection in Japan, between 1999–2003. J Dermatol 25:129–139

    Google Scholar 

  • Iwamoto M, Ayers T, Mahon BE, Swerdlow DL (2010) Epidemiology of seafood-associated infections in the United States. Clin Microbiol Rev 23:399–411

    Google Scholar 

  • Jones MK, Oliver JD (2009) Vibrio vulnificus: disease and pathogenesis. Infect Immun 77:1723–1733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jørgensen LV, Huss HH (1998) Prevalence and growth of Listeria monocytogenes in naturally contaminated seafood. Int J Food Microbiol 42:127–131

    PubMed  Google Scholar 

  • Joseph SW, Colwell R.R, Kaper JB (1982) Vibrio parahaemolyticus and related halophilic vibrios. CRC Cr Rev Microbiol 10:77–124

    CAS  Google Scholar 

  • Joseph B, Otta SK, Karunasagar I, Karunasagar I (2001) Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitisers. Int J Food Microbiol 64:367–372

    CAS  PubMed  Google Scholar 

  • Kaneko T, Colwell RR (1977) The annual cycle of Vibrio parahaemolyticus in Chesapeake Bay. Microb Ecol 4:135–155

    CAS  PubMed  Google Scholar 

  • Kaper JB, Morris JG, Levine MM (1995) Cholera. Clin Microbiol Rev 8:48–86

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karunasagar I, Karunasagar I (2000) Listeria in tropical fish and fishery products. Int J Food Microbiol 62:177–181

    CAS  PubMed  Google Scholar 

  • Karunasagar I, Venugopal MN, Karunasagar I (1984) Levels of Vibrio parahaemolyticus in Indian shrimp undergoing processing for export. Can J Microbiol 30:713–715

    CAS  PubMed  Google Scholar 

  • Karunasagar I, Susheela M, Malathi GR, Karunasagar I (1990) Incidence of human pathogenic vibrios in seafoods harvested along coast of Karnataka (India). FAO Fish Rep 401(Suppl):53–56

    Google Scholar 

  • Karunasagar I, Ismail SM, Amarnath HV, Karunasagar I (1992) Bacteriology of tropical shrimp and marine sediments. FAO Fish Rep 470(Suppl):1–8

    Google Scholar 

  • Karunasagar I, Pai R, Malathi GR, Karunasagar I (1994) Mass mortality of Penaeus monodon larvae due to antibiotic resistant Vibrio harveyi infection. Aquaculture 128:203–209

    Google Scholar 

  • Karunasagar I, Sugumar G, Karunasagar I, Reilly A (1995) Rapid detection of Vibrio cholerae contamination of seafood by polymerase chain reaction. Mol Mar Biol Biotechnol 4:365–368

    Google Scholar 

  • Karunasagar I, Sagumar G, Karunasagar I, Reilly A (1996) Rapid polymerase chain reaction method for detection of Kanagawa positive Vibrio parahaemolyticus in seafoods Int J Food Microbiol 31:317–323

    CAS  PubMed  Google Scholar 

  • Kaspar CW, Tamplin ML (1993) Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Appl Environ Microbiol 59:2425–2429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katoh H (1965) Studies on growth rate of various food bacteria. I. On the generation time of Vibrio parahaemolyticus Fu**o Japanese. J Bacteriol 20:94–100

    CAS  Google Scholar 

  • Kaysner CA, De Paola A Jr (2004) Vibrio. Chapter 9 Bacteriological Analytical Manual Online. http://www.cfsan.fda.gov/~ebam/bam-24.html. Accessed 14 August 2013

  • Kaysner CA, Tamplin ML, Wekell MM, Stott RF, Colburn KG (1989) Survival of Vibrio vulnificus in shellstock and shucked oysters (Crassostrea gigas and Crassostrea virginica) and effects of isolation medium on recovery. Appl Environ Microbiol 55:3072–3079

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kerry J, Koyne R, Gilroy D, Hiney M, Smith P (1996) Spatial distribution of oxytetracycline and elevated frequencies of oxytetracycline resistance in sediments beneath a marine salmon farm following oxytetracycline therapy. Aquaculture 145:31–39

    CAS  Google Scholar 

  • Khan AA, Cheng CM, Van Khanh T, West CS, Nawaz MS, Khan SA (2006) Characterization of class 1 integron resistance gene cassettes in Salmonella enterica serovars Oslo and Bareily from imported seafood. J Antimicrob Chemother 58:1308–1310

    CAS  PubMed  Google Scholar 

  • Kitaoka M, Miyata ST, Unterweger D, Pukatzki S (2011) Antibiotic resistance of Vibrio cholerae. J Med Microbiol 60:397– 407

    Google Scholar 

  • Kim S, Nonaka L, Suzuki S (2004) Occurrence of tetracycline resistance genes in bacteria from marine aquaculture sites. FEMS Microbiol Lett 237:147–156

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Nonaka L, Maruyama F, Suzuki S (2007) Molecular evidence for the ancient origin of the ribosomal protection protein that mediates tetracycline resistance in bacteria. J Mol Evol 65:228–235

    CAS  PubMed  Google Scholar 

  • Kolvin JL, Roberts D (1982) Studies on growth of Vibrio cholerae biotype El Tor and biotype cassical in foods. J Hyg Camb 89: 243–252

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koo J, De Paola A, Marshall DL (2000) Impact of acid on survival of Vibrio vulnificus and Vibrio vulnificus phage. J Food Prot 63:1049–1052

    CAS  PubMed  Google Scholar 

  • Koonse B, Burkhardt W, Chirtel S, Hoskin GP (2005) Salmonella and the sanitary quality of aquacultured shrimp. J Food Prot 68:2527–2532

    PubMed  Google Scholar 

  • Kruse H and Sorum H (1994) Transfer of multiple drug resistance plasmids between bacteria of diverse origins in natural microenvironments. Appl Environ Microbiol 60:4015–4021

    Google Scholar 

  • Kumar R, Surendran PK, Thampuran N (2009) Analysis of antimicrobial resistance and plasmid profiles in Salmonella serovars associated with tropical seafood of India. Foodborne Pathog Dis 6:621–625

    CAS  PubMed  Google Scholar 

  • Le TX, Munekage Y, Kato S (2005) Antibiotic resistance in bacteria from shrimp farming in mangrove areas. Sci Total Env 349: 95–105

    CAS  Google Scholar 

  • Liston J (1974) Influence of U.S. seafood handling procedures on Vibrio parahaemolyticus. In: Fu**o T, Sakaguchi G, Sakazaki R, Takeda Y (eds) International Symposium on Vibrio parahaemolyticus. Saikon Publishing Company, Tokyo, pp 123–128

    Google Scholar 

  • Liu X, Chen Y, Wang X, Ji R (2004). Food-borne disease outbreaks in China from 1992–2001—national food-borne disease surveillance system. J Hygiene Res 33:725–727

    Google Scholar 

  • Liu JW, Lee IK, Tang HJ, KO WC, Lee HC, Liu YC, Hseuh PR, Chang YC (2006) Prognostic factors and antibiotics in V. vulnificus septicaemia. Arch Intern Med 166:2117–2123

    PubMed  Google Scholar 

  • Lunestad BT, Nesse L, Lassen J, Svihus B, Nesbakken T, Fossum K, Rosnes JT, Krusse H, Yazdankhah S (2007) Salmonella in fish feed; occurrence and implications for fish and human health in Norway. Aquaculture 265:1–8

    Google Scholar 

  • Lungu B, O’Bryan CA, Muthaiyan A, Milillo SR, Johnson MG, Crandall PG, Ricke SC (2011) Listeria monocytogenes: antibiotic resistance in food production. Foodborne Pathog Dis 8:569–578

    PubMed  Google Scholar 

  • Martinez-Urtaza J, Liebana E (2005) Investigation of clonal distribution and persistence of Salmonella senftenberg in the marine environment and identification of potential sources of contamination. FEMS Microbiol Ecol 52:255–263

    CAS  PubMed  Google Scholar 

  • Martinez-Urtaza J, Peiteado J, Lozano-Lean A, Garcia-Martin O (2004b) Detection of Salmonella senftenberg associated with high saline environments in mussel processing facilities. J Food Prot 67:256–263

    Google Scholar 

  • Martinez-Urtaza J, Saco M, Novova J, Perez-Peniero P, Peiteado J, Lozano-Lean A, Garcia-Martin O (2004a) Influence of environmental factors and human activity on the presence of Salmonella serovars in the marine environment. Appl Environ Microbiol 70:2089–2097

    Google Scholar 

  • Mejlholm O, Gunvig A, Borggaard C, Blom-Hanssen J, Mellefont L, Ross T, Leroi F, Else T, Visser D, Dalgaard P (2010) Predicting growth rates and growth boundary of Listeria monocytogenes—an international validation study with focus on processed and ready-to-eat meat and seafood. Int J Food Microbiol 141:137–150

    PubMed  Google Scholar 

  • Miranda CD, Zemelman R (2002) Antimicrobial multiresistance in bacteria isolated from fresh water Chilean Salmon farms. Sci Total Environ 293:207–218

    CAS  Google Scholar 

  • Miyasaka J, Yahiro J, Arahira Y, Tokunaga H, Katsuki K, Hara-Kudo Y. (2006) Isolation of Vibrio parahaemolyticus and Vibrio vulnificus in wild birds in Japan. Epidemiol Infect 134:780–785

    CAS  PubMed Central  PubMed  Google Scholar 

  • Motes ML and De Paola A (1996) Offshore suspension relaying to reduce levels of Vibrio vulnificus in oysters (Crassostrea virginica). Appl Environ Microbiol 62:3875–3877

    Google Scholar 

  • Nair GB, Ramamurthy T, Bhattacharya SK, Dutta B, Takeda Y, Sack DA (2007) Global dissemination of Vibrio parahaemolyticus O3:K6 and its serovariants. Clin Microbiol Rev 20:39–48

    CAS  PubMed Central  PubMed  Google Scholar 

  • Natarajan R, Abraham M, Nair GB (1980) Distribution of Vibrio parahaemolyticus in Porto Novo environment. Indian J Med Res 71:679–687

    CAS  PubMed  Google Scholar 

  • Nesse LL, Nordby K, Heir E, Bergsjoe B, Wardund T, Nyagaard H, Holstad G (2003) Molecular analysis of Salmonella enterica isolates from fish feed factories and fish feed ingredients. Appl Environ Microb 69: 1075–1081

    CAS  Google Scholar 

  • Nishibuchi M, Kaper JB (1990) Duplication and variation of the thermostable direct haemolysin (tdh) gene in Vibrio parahaemolyticus. Mol Microbiol 4:87–99

    CAS  PubMed  Google Scholar 

  • Nishibuchi M, Kaper JB (1995) Thermostable direct hemolysin gene of Vibrio parahaemolyticus: a virulence gene acquired by a marine bacterium. Infect Immun 63:2093–2099

    CAS  PubMed Central  PubMed  Google Scholar 

  • Old DC, Crichton PB, Taylor A, Mather H (2001) An attempt to identify the evolutionary origin of a novel serotype of Salmonella enterica isolated from harbour porpoises. J Med Microbiol 50:415–420

    CAS  PubMed  Google Scholar 

  • Oliver JD, Kaper JB (2007) Vibrio spp. In: Doyle MP, Beuchat LR (eds) Food microbiology: fundamentals and frontiers, 3rd edn. ASM, Washington, DC, pp 343–379

    Google Scholar 

  • Otta SK, Karunasagar I, Karunasagar I (1999) Bacterial flora associated with shrimp culture ponds growing Penaeusmonodon in India. J Aquac Trop 14:309–318

    Google Scholar 

  • Pal A, Marshall DL (2009) Comparison of culture media for enrichment and isolation of Salmonella spp. from frozen channel catfish and Vietnamese basa fillets. Food Microbiol 26:317–319

    CAS  PubMed  Google Scholar 

  • Pan T-M, Wang T-K, Lee C-L, Chien S-W, Horng C-B (1997) Food-borne disease outbreaks due to bacteria in Taiwan, 1986 to 1995. J Clin Microbiol 35:1260–1262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parihar VS, Barbuddhe SB, Danielsson-Tham ML, Tham W (2008) Isolation and characterisation of Listeria species from tropical seafoods. Food Control 19:566–569

    CAS  Google Scholar 

  • Parker RW, Maurer EM, Childers AB, Lewis DH (1994) Effect of frozen storage and vacuum packaging on survival of Vibrio vulnificusin Gulf Coast oysters (Crassostreavirginica). J Food Prot 57:604–606

    Google Scholar 

  • Parvathi A, Kumar HS, Karunasagar I, Karunasagar I (2004) Detection and enumeration of Vibrio vulnificus in oysters from two estuaries along the southwest coast of India, using molecular methods. Appl Environ Microbiol 70:6909–6913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Phan TT, Khai LT, Ogasawara N, Tam NT, Okatani AT, Akiba M, Hayashidani H (2005) Contamination of Salmonella in retail meats and shrimp in Mekong delta, Vietnam. J Food Prot 68:1077–1080

    PubMed  Google Scholar 

  • Poirel L, Cattoir V, Nordmann P (2012) Plasmid-mediated quinolone resistance:interactions between human, animal and environmental ecologies. Front Microbiol 3:24

    PubMed Central  PubMed  Google Scholar 

  • Ponce E, Khan AA, Cheng CM, West SC, Cerniglia CE (2008) Prevalence and characterization of Salmonella enterica serovar Weltevreden from imported seafood. Food Microbiol 25:29–35

    CAS  PubMed  Google Scholar 

  • Pouillot R, Miconnet N, Afchain AL, Delignette-Muller ML, Beaufort A, Rosso L, Denis JB, Cornu M (2007) Quantitative risk assessment of Listeria monocytogenes in French cold-smoked salmon: I. Quantitative exposure assessment. Risk Anal 27:683–700

    PubMed  Google Scholar 

  • Pouillot R, Goulet V, Delignette-Muller ML, Mahé A, Cornu M (2009) Quantitative risk assessment of Listeria monocytogenes in French cold-smoked salmon: II. Risk characterization. Risk Anal 29:806–819

    PubMed  Google Scholar 

  • Prasad MM, Pandurangarao CC (1995) Occurrence of Salmonella infantis and S. newport in market prawns. J Food Sci Tech Mys 32:135–137

    Google Scholar 

  • Raghunath P, Acharya S, Bhanumathi A, Karunasagar I, Karunasagar I (2008) Detection and molecular characterization of Vibrio parahaemolyticus isolated from seafood harvested along southwest coast of India. Food Microbiol 25:824–830

    CAS  PubMed  Google Scholar 

  • Rattagool P, Wongchinda N, Methatip P, Sanghtong N (1990) Hygienic processing of shrimp in Thailand. FAO Fish Rep 401(Suppl):32–46

    Google Scholar 

  • Ravi Kiran K (1992) Potential pathogens and indicator bacteria associated with prawn gut. M. F. Scthesis University of Agricultural Sciences, College of Fisheries, Mangalore, p 1–54

    Google Scholar 

  • Reilly PJA, Twiddy DR (1992) Salmonella and Vibrio cholerae in brackish water tropical prawns. Int J Food Microbiol 16:293–301

    CAS  PubMed  Google Scholar 

  • Reilly A, Kaferstein F (1997) Food safety hazards and the application of the principles of the hazard analysis and critical control point (HACCP) system for their control in aquaculture production. Aquac Res 28:735–752

    Google Scholar 

  • Rodgers CJ, Furones MD (2009) Antimicrobial agents in aquaculture: practice, needs and issues. http://ressources.ciheam.org/om/pdf/a86/00801061.pdf. Accessed 12 June 2013

  • Roig JF, Fouz LB, Amaro C (2009) Spontaneous quinolone resistance in the zoonotic serovar of Vibrio vulnificus. Appl Environ Microbiol 75:2577–2580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosche TM, Yano Y, Oliver JD (2005) A rapid and simple PCR analysis indicates there are two subgroups of Vibrio vulnificus which correlate with clinical or environmental isolation. Microbiol Immunol 49:381–389

    CAS  PubMed  Google Scholar 

  • Rosche TM, Binder EA, Oliver JD (2010) Vibrio vulnificus genome suggests two distinct ecotypes. Environ Microbiol Rep 2:128–132

    CAS  PubMed  Google Scholar 

  • Ross T, Sumner J (2002) A simple, spreadsheet-based, risk assessment tool. Int J Food Microbiol 77:39–53

    PubMed  Google Scholar 

  • Sack RB, Siddique AK, Longini IM Jr, Nizam A, Yunus M, Islam MS, Morris JG Jr, Ali A, Huq A, Nair GB, Qadri F, Faruque SM, Sack DA, Colwell RR (2003) A 4-year study of the epidemiology of Vibrio cholerae in four rural areas of Bangladesh. J Infect Dis 187:96–101

    PubMed  Google Scholar 

  • Saheki K, Kobayashi S, Kawanishi T (1989) Salmonella contamination of eel culture ponds. Nippon Suisan Gakkashi 55:675–679

    Google Scholar 

  • Sanjuan E, Amaro C (2004) Protocol for specific isolation of virulent strains of Vibrio vulnificus serovar E (Biotype 2) from environmental samples. Appl Environ Microbiol 70:7024–7032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saraswathi K, Barve SM, Deodhar LP (1989) Septicaemia due to Vibrio vulnificus. Trans Royal Soc Trop Med Hyg 83:714

    CAS  Google Scholar 

  • Saravanan V, Kumar SH, Karunasagar I, Karunasagar I (2007) Putative virulence genes of Vibrio cholerae from seafoods and coastal environments of Southwest India. Int J Food Microbiol 119:329–333

    CAS  PubMed  Google Scholar 

  • Schmidt AS, Bruun MS, Dalsgaard I, Pedersen K, Larsen JL (2000) Occurrence of antimicrobial resistance in fish-pathogenic and environmental bacteria associated with four Danish Rainbow trout farms. Appl Environ Microbiol 66:4908–4915

    CAS  PubMed Central  PubMed  Google Scholar 

  • Setti I, Rodriguez-Castro A, Pata MP, Cadarso-Suarez C, Yacoubi B, Bensmael L, Moukrim A, Martinez-Urtaza J (2009) Characteristics and dynamics of Salmonella contamination along the coast of Agadir, Morocco. Appl Environ Microbiol 75:7700–7709

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shabarinath S, Kumar SH, Khushiramani R, Karunasagar I, Karunasagar I (2007) Detection and characterisation of Salmonella associated with tropical seafood. Int J Food Microbiol 114:227–233

    CAS  PubMed  Google Scholar 

  • Simonson J, Siebeling RJ (1986) Rapid serological identification of Vibrio vulnificus by anti-H coagglutination. Appl Environ Microbiol 52:1299–1304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stoddard AR, Gulland FMD, Atwill RE, Lawrance J, Jang S, Conrad PA (2005) Salmonella and Campylobacter spp. in northern elephant seals. Emerg Infect Dis 11:1967–1969

    PubMed Central  Google Scholar 

  • Strom MS and Paranjpye RN (2000) Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect 2:177–188

    Google Scholar 

  • Su Y, Liu C (2007) Vibrio parahaemolyticus, a concern for seafood safety. Food Microbiol 24:549–558

    PubMed  Google Scholar 

  • Swaminathan B, Cabanes D, Zhang W, Cossart P (2007) Listeria monocytogenes. In: Doyle MP, Beuchat LR (eds) Food microbiology: fundamentals and frontiers, 3rd edn. ASM, Washington, DC, pp 457–491

    Google Scholar 

  • Tavechio AT, Ghilardi AC, Peresi JT, Fuzihara TO, Yonamine TK, Jacabi M, Fernandes SA (2002) Salmonella serotypes isolated from nonhuman sources in Sao Paulo, Brazil from 1996 through 2000. J Food Prot 65:1041–1044

    Google Scholar 

  • Thamlikitkul V (1990) Vibrio bacteraemia in Siriraj hospital. J Med Assoc Thai 73:136–138

    CAS  PubMed  Google Scholar 

  • Tindall BJ, Grimont PAD, Garrity GM, Euzeby JP (2005) Nomenclature and taxonomy of the genus Salmonella. Int J Syst Bacteriol 55:521–524

    CAS  Google Scholar 

  • Van Hao TT, Moutafis G, Istivan T, Tran LT, Coloe PJ (2007) Detection of Salmonella spp in retail raw food samples from Vietnam and characterisation of their antibiotic resistance. Appl Envion Microbiol 73:6885–6890

    Google Scholar 

  • Venkateswaran K, Kiiyukia C, Nakanishi K, Nakano H, Matsuda O, Hashimoto H (1990) The role of sinking particles in the overwintering process of Vibrio parahaemolyticus in a marine environment. FEMS Microbiol Ecology 73:159–166

    Google Scholar 

  • Vongkanjan K, Roof S, Staciewicz MJ, Wiedmann M (2013) Persistent Listeria monocytogenes subtypes isolated from a smoked fish processing facility included both phage susceptible and resistant isolates. Food Microbiol 35:38–48

    Google Scholar 

  • Wachsmuth K, Olsvik O, Evins GM, Popovic T (1994) Molecular epidemiology of cholera. In: WachsmuthI K, Blake PA, Olsvik B (eds) Vibrio cholerae and cholera: molecular to global perspectives, ASM, Washington, DC, pp 357–370

    Google Scholar 

  • Walsh D, Duffy G, Sheridan JJ, Blair IS, McDowell DA (2001) Antibiotic resistance among Listeria, including Listeria monocytogenes in retail foods. J Appl Microbiol 90:517–522

    CAS  PubMed  Google Scholar 

  • Warner E, Oliver JD (2008) Population structures of two genotypes of Vibrio vulnificus in oysters (Crassostrea virginica) and seawater. Appl Environ Microbiol 74:80–85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilks SA, Michels HT, Keevil CW (2006) Survival of Listeria monocytogenes Scott A on metal surfaces: implications for cross-contamination. Int J Food Microbiol 111:93–98

    PubMed  Google Scholar 

  • Winfield MD, Groisman EA (2003) Role of non-host environments in the lifestyles of Salmonella and Escherichia coli. Appl Environ Microbiol 69:3687–3694

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wright AC, Hill RT, Johnson JA, Roghman MC, Colwell RR, Morris JG Jr (1996) Distribution of Vibrio vulnificus in the Chesapeake Bay. Diag Microbiol Infect Dis 24:165–167

    Google Scholar 

  • Wyatt LE, Nickelson R, Vanderzant C (1979) Occurrence and control of Salmonella in freshwater catfish. J. Food Sci 44:1067–1073

    Google Scholar 

  • Zhao S, Dutta AR, Ayers S, Friedman S, Walker RD, White DG (2003) Antibiotic-resistant Salmonella serovars isolated from imported foods. Int J Food Microbiol 84:87–92

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iddya Karunasagar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Karunasagar, I. (2015). Bacterial Pathogens Associated with Aquaculture Products. In: Sing, A. (eds) Zoonoses - Infections Affecting Humans and Animals. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9457-2_5

Download citation

Publish with us

Policies and ethics

Navigation