Abstract

Plant growth and devleopment are controlled largely by the soil environment in the root region, an environment which the plant itself helps to create and where microbial activity constitutes a major influencing force. Availability of the nutrients in the rhizosphere is governed by the combined effects of soil properties, plant characteristics and the interactions of plant roots with microorganisms and the surrounding soil. Different plant species as well as genotypes within a species, differently influence the quantitative and qualitative composition of microbial population in the rhizosphere. These differences are due to quantitative and qualitative variance in root exudation among species or genotypes. Mycorrhizal plants have a distinct microflora in the rhizosphere — the mycorrhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ames, R.N. 1987 Mycorrhizosphere - morphology and Microbiology. In, “Mycorrhizae in the next decade”. (eds. Sylvia, D.M., Hung, L.L. and Graham, S.H.) Proceedings 7th NACOM, Gainewille Florida, U.S.A. pp. 77.

    Google Scholar 

  2. Anderson, J.P. and Domsch, K. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry 10: 215–221.

    Article  CAS  Google Scholar 

  3. Balandreau, J. and Knowles, R 1978. The Rhizophere. In, “Interactions between non-pathogenic soil microorganisms and plants. Developments in agricultural and managed-forest ecology” (eds. Dommrgues, Y.R and Krupa, S.V.), Elsevier Publishing Company, New York, pp. 243–268.

    Book  Google Scholar 

  4. Bansal, M, Chamola, B.P., Sarwar, N. and Mukerji, K.G. 2000. Mycorrhizosphere: Interactions between rhizosphere microflora and VAM fungi. In, “Mycorrhizal Biology” (eds. Mukerji, K.G., Chamola, B.P. and Singh, J.). Kluwer Academic! Plenum Publishers, New York, Dordrecht, London, pp. 143–152.

    Google Scholar 

  5. Banal, M. and Mukerji, K. G. 1994. Positive correlation between VAM induced changes in root exudation and mycorrhizosphere mycoflora. Mycorrhiza, 5: 39–44.

    Article  Google Scholar 

  6. Bansal, M. and Mukerji, K.G. 1996. Root exudation in rhizosphere biology. In, “Concepts in Applied Microbiology and Biotechnology”, (eds. Mukerji, K.G. Singh, V.P. and Suvercha). Aditya Books, New Delhi, pp. 97–119.

    Google Scholar 

  7. Barber, D.A. and Martin, J.K. 1976. The release of organic substances by cereal roots in soil. New Phytologist, 76: 69–80.

    Article  CAS  Google Scholar 

  8. Barea, J.M., Azcon-Aguillar, C., Azcon, R., Gange, A.C. 1997. Interactions between mycorrhizal fungi and rhizosphere microganisms within the context of sustainable soil-plant systems. In, “Multitrophic Interactions in Terrestrial System” (ed. Brown, VK. ). British Ecological Society, University of London, U.K. pp. 65–77.

    Google Scholar 

  9. Bianciotto, V, Minerdi, D. Perotto, S. and Bonfante, P. 1996. Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma, 193: 123–131.

    Google Scholar 

  10. Bowen, G.D. 1978. Disfunction and shortfalls in symbiotic responses. In, “Plant Disease” (eds. Horsfall, J.C. and Cowling, F.B.) Vol. 3: 231–256. Academic Press, New York.

    Google Scholar 

  11. Bowen, G.D. 1979. Integrated and experimental approaches to the growth of organisms around roots. In, “Soil-borne plant pathogens” (eds. Schippers, B. and Gams, W) Academic Press, London pp. 209–227.

    Google Scholar 

  12. Bowen, G.D. 1980. Misconceptions, concepts and approaches in rhizosphere biology. In, “Contemporary Microbial Ecology” (eds. Ellwood, D.C., Hedger, J.N., Latham, M.J., Lynch, J.M. and Slater, J.H.). Academic Press, London, pp. 283–304.

    Google Scholar 

  13. Bowen, G.D. 1991. Microbial dynamics in the rhizosphere: Possible strategies in managing rhizosphere populations. In, “The rhizosphere and plant growth”. (eds. Keister, D.L. and Cregan, B.). Kluwer Academic Publishers Netherlands pp. 25–32.

    Google Scholar 

  14. Bowen, G.D. and Foster, R.C. 1979. Dynamics of microbial colonisation of Plant Roots. In, “Symposium on Soil Microbiology and Plant Nutrition” (eds. Broughton, W.J. and John, C.K.). University of Malaya, Kaula Lumpur, pp. 14–31.

    Google Scholar 

  15. Bowen, G.D. and Rovira, A.D. 1973. Are modelling approaches useful in rhizosphere microbiology? Bulletion of Ecological Research Communications, Stockholm, 17: 443–450.

    Google Scholar 

  16. Bowen, G.D. and Rovira, A.D. 1976. Microbial colonisation of plant roots. Annual Review of Phytopathology, 14: 121–144.

    Article  Google Scholar 

  17. Bowen, G.D. and Rovira, A.D. 1999. The rhizosphere and its management to improve plant growth. Advances in Agronomy, 66: 1–102.

    Article  Google Scholar 

  18. Chrush, J R. 1976. Endomycorrhizas and Legume growth in soils of the MacKenzie Basin, Canterbury, New Zealand. New Zealand Journal of Agricultural Research, 19: 473–476.

    Article  Google Scholar 

  19. Clapperton, M.J. Janzen, H.H. and Johnston A.M. 1997. Suppression of VAM fungi and micronutrient uptake by low level fertilisation in long term wheat rotations. American Journal of Alternative Agriculture, 12: 59–63.

    Google Scholar 

  20. Clark, F.E. 1949. Soil microorganisms and plant roots. Advances in Agronomy, 1: 242–288.

    Article  Google Scholar 

  21. Curl, E.A. and Truelove, B. 1986. The rhizosphere. Advanced series in Agricultural Sciences. Vol. 15. Springer, Berlin. p. 288.

    Google Scholar 

  22. Dommergues, Y.R. 1978. The plant microorganism system. In, “Interaction between non-pathogenic microorganisms and plants”. (eds. Dommergues, Y.R and Krupa, S. V.). Flsevier Publishing Company, New York pp. 2–37.

    Google Scholar 

  23. Filion, M., St-Arnaud, M. and Fortin, J.A. 1999. Direct interactions between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytologist, 141: 525–533.

    Article  Google Scholar 

  24. Fitter, A.H. 1987. An architectural approach to the comparative ecology of plant root system. New Phytologist, 106: 61–77.

    Article  Google Scholar 

  25. Fitter, A.H. and Garbaye, J. 1994. Interactions between mycorrhizal fungi and other soil organisms. Plant and Soil, 159: 123–132.

    Google Scholar 

  26. Foster, R.C. 1981. The ultrastructure and histochemistry of the rhizosphere. New Phytologist, 89: 263–275.

    Google Scholar 

  27. Foster, RC., Rovria, A.D. and Cock, T.W. 1983. Ultrastructure of the Root-soil Interface. The American Phytopathological Society, St. Paul, Minesotta, 157 p.

    Google Scholar 

  28. Gams, W 1992. The analysis of communities of saprophytic microfungi with special reference to soil fungi. In, “Fungi in vegetation science” (ed. Wmterhoff, W). Kluwer, Dordrecht. pp. 183–223.

    Google Scholar 

  29. Garbaye, J. 1991. Biological interactions in the mycorrhizosphere Experientia, 47: 370–375.

    Google Scholar 

  30. Gardner, J.M., Feldman, A.W. and Zablotowdez, R.M. 1982. Identity and behaviour of xylem residing bacteria in rough lemon roots of Florida citrus trees. Applied Environmental Microbiology, 43: 1335–1342.

    CAS  Google Scholar 

  31. Gerhardson, B. and Clorholtu, M. 1986. Microbial communities on plant roots. In, “Microbial communities in soil”. (eds. Jensen, V, Kjoller, A. and Sorensen, L.H.). Elsevier, London. pp. 18–34.

    Google Scholar 

  32. Gerik, J.S. Lommel, S.A. and Huisman, O.C. 1987. A specific serological staining procedure for Verticillium dahliae in cotton root tissue. Phytopathology, 77: 261–266.

    CAS  Google Scholar 

  33. Gibson, A.H. 1966. The Carbohydrate requirements for symbiotic nitrogen fixation: A “whole plant” growth analysis approach. Australian Journal of Biological Science, 19: 499–515.

    CAS  Google Scholar 

  34. Giddens, J. and Todd. RL. 1984. Rhizosphere microorganisms. In, “MirobialPlant Interactions” (eds. Todd, R.L. and Giddens, J.). Soil Science Society of America, Proceedings, 47: 51–68.

    Google Scholar 

  35. Gould, W.D., Coleman, D.C. and Rubink, A.J. 1979. Effect of bacteria and amoebae on rhizosphere phosphate activity. Applied Environmental Microbiology, 37: 943–946.

    CAS  Google Scholar 

  36. Graham, J.H., Leonard, R.T. and Menge, J.A. 1981. Membrane mediated decrease in root exudation responsible for phosphorus inhibition of vesiculararbuscular mycorrhizae formation. Plant Physiology, 68: 548–552.

    Article  PubMed  CAS  Google Scholar 

  37. Grayston, S.J., Wang, S.Q., Campbell, C.D. and Edward, A.C. 1998. Selective influence of plant species on microbial diveristy in the rhizosphere. Soil Biology and Biochemistry, 30: 369–378.

    Article  CAS  Google Scholar 

  38. Greaves, M.P. and Darbyshire, J.F. 1972, the ultrastructure of mucilaginous layer on plant roots. Soil Biology and Biochemistry, 4: 443–449.

    Google Scholar 

  39. Griffin, G.J., Hale, M.G. and Shay, F.J. 1975. Nature and quantity of sloughed organic matter produced by roots of axenic peanut plants. Soil Biology and Biochemistry, 8: 29–32.

    Article  Google Scholar 

  40. Hale, M.G. and Moore L.D. 1979. Factors affecting root excddation. H. 1970–78 Advances in Agronomy 31: 93–124.

    CAS  Google Scholar 

  41. Harley, J.L. 1975. Problems of mycotrophy. In “Endomycorrhizas” (eds. Sanders, F.E., Mosse, B. and Tinker, P.B.) Academic Press, London, pp. 1–24.

    Google Scholar 

  42. Hawes, M. C. 1990. Living plant cells released from the root cap: A regulator of microbial population in the rhizosphere? Plant and Soil, 129: 19–27.

    Article  Google Scholar 

  43. Hawes, M.C. 1991. Living plant cells released from the root cap. A regulator of microbial population in the rhizosphere? In, “The rhizosphere and plant growth” (eds. Keister, D.L. and Cregan, P.B.). Kluwer Academic Publishers, Netherlands. pp. 51–60.

    Google Scholar 

  44. Henry, C.M. and Deacon, J.W. 1981. Natural (non-pathogenic) death of cortex of wheat and barley seminal roots as evidenced by nuclear staining with acridine organe. Plant and Soil, 60: 255–274.

    Article  Google Scholar 

  45. Highinbotham, N. 1968. Cell electropotential and ion transport in higher plants. In, “Transport and Distribution of matter in cells of Higher Plants”. (eds. Mothes, K., Muller, I., Nelles, A. and Newmann, D) Academic-Verlag, Berlin, pp. 167–177.

    Google Scholar 

  46. Hiltner, L. 1904. Uber neuere erfahrungen and probleme auf dem gebiet der bodenbacteriologie and besonderer berucksichügund der grundingung and brache. Arbeitskreis Deutsche Landow. Gesellschaft, 98: 59–78.

    Google Scholar 

  47. Ishizawa, S.T., Suzuki, T., Sato. O. and Toyoda, H. 1957. Studies on mirobial population in the rhizosphere of higher plants with special reference to the method of study. Soil Plant Food (Tokyo), 3: 85–94.

    CAS  Google Scholar 

  48. Jalali, B.L. and Jalali, I. 1991. Mycorrhiza in plant disease control. In, “Hand Book of Applied Mycology”, Vol. I, Soil and Plants (eds. Arora, D.K., Rai, B., Mukerji, K.G. and Knudsen, G.R). Marcel and Dekker, New York, pp. 131–154.

    Google Scholar 

  49. Jayaratne, J. 1995. The rhizosphere microorgnaisms. Bulletin of the Rubber Research Institute, Sri Lanka, 32: 88–96.

    Google Scholar 

  50. Jenny, H. and Grossenbacker, H. 1963, Root-soil boundry zone as seen in the electron microscope. Soil Science Society of America, Proceedings, 27: 273–277.

    Google Scholar 

  51. Katznelson, H. 1965. Nature and importance of the rhizosphere. In, “Ecology of soil borne plant pathogens” (eds., Baker, K.F. and Snyder, W.C.) John Murray, Press.

    Google Scholar 

  52. Katznelson, H., Lockhead, A.G. and Timonin, M.I. 1948. Soil microorganisms and the rhizosphere. Candian Journal of Microbiology, 14: 543–587.

    Google Scholar 

  53. Koide, RT. and Kabir, Z. 2000. Extramatrical hyphae of the mycorrhizal fungus Glomus intradices can hydrolse organic phosphates. New Phytologist, 148: 511–517.

    Article  CAS  Google Scholar 

  54. Linderman, RG. 1988. Mycorrhizal interactions with rhizosphere microflora: the mycorrhizosphere effect. Phytopathology, 78: 366–371.

    Google Scholar 

  55. Linderman, R.G. 1991. Mycorrhizal interactions in the rhizosphere. In, “The Rhizosphere and plant growth” (eds. Keister, D.L. and Cregan, P.B.) Kluwer Academic Publishers, Netherlands. pp. 343–348 ).

    Book  Google Scholar 

  56. Linderman, R G. 2000. Effect of mycorrhizas on plant tolerance to diseases. In, “Arbuscular mycorrhizas: physiology and function” (eds. Kapulnick, Y. and Douds, D.D., Jr. ), Kluwer Academic Press. pp. 345–366.

    Book  Google Scholar 

  57. Louw, H.A. and Webley, D.M. 1959. The bacteriology of the root region of the oat plant grown under controlled pot culture conditions. Journal Applied Bacteriology, 22: 216–226.

    Article  CAS  Google Scholar 

  58. Lynch, J.M. 1982. The rhizosphere. In, “Experimental Microbial Ecology” (eds. Bums, RG. and Slater, J.H.). Blackwell Scientific Publications, Oxford, England pp. 295–411.

    Google Scholar 

  59. Lynch, J.M. and Whipps, J.M. 1991. Substrate flow in the rhizosphere. In, “The rhizosphere and plant growth”, (eds, Keister, D.L. and Cregan, P.B.). Kluwer Academic Publishers, Netherlands. pp. 15–24.

    Book  Google Scholar 

  60. Martin, J.K. 1977. Factors influencing the loss of organic and carbon from wheat roots. Soil Biology and Biochemistry, 9: 1–9.

    Article  CAS  Google Scholar 

  61. Martin, J.K. 1978. The variation with plant age of root carbon available to soil microflora. In, “Microbial Ecology” (eds. Loutit, M.W. and Miles, J.A.R.) Springer-Verlag, Berlin. pp. 299–302.

    Google Scholar 

  62. Miller, S.A. and Martin, J.K. 1988. Molecular diagnosis of plant disease. Annual Review of Phytopathology, 26: 409–432.

    Article  CAS  Google Scholar 

  63. Mukerji, K.G. and Garg, K.L. (eds.) 1988a Biocontrol of Plant Diseases. Vol. I. pp. 211. CRC Press, Florida, U.S.A.

    Google Scholar 

  64. Mukerji, K.G. and Garg, K.L. (eds.) 1988b. Biocontrol of Plant Diseases. Vol. 11. pp. 198. CRC Press, Florida, U.S.A.

    Google Scholar 

  65. Mukerji, K.G., Mandeep and Varma, A. 1998. Mycorrhizosphere microorganisms: Screening and Evaluation. In, “Mycorrhiza Manual” (ed, Verma, A.) Springer, Berlin. pp. 85–97.

    Google Scholar 

  66. Mullen, M.D. 1999. Transformations of other elements. In, “Principles and Applications of Soil Microbiology” (eds. Sylvia, D.M., Fuhrmann, J.J., Hastal P. G. and Zuberer, D. A,) Prentice Hall, pp. 369–386.

    Google Scholar 

  67. Mushin, T.M. and Nema, J.N. 1997. Interactions between endomycorrhizae and rhizosphere fungi in soils of Iraq. Acta Myclogia, 32: 41–50.

    Google Scholar 

  68. Newman, E.I. 1978, Root microorganisms: their significance in the ecosystem. Biological Review, 53: 511–554.

    Article  CAS  Google Scholar 

  69. Newman, E.I. and Watson, A. 1977. Microbial abundance in the rhizosphere. A computer model. Plant and Soil, 48: 17–56.

    Article  Google Scholar 

  70. Newman, E.I., Campbell, R, Christie, P., Heap, A.J. and Lawlay, R 1979. Root microorganisms in mixture and monocultures of grassland plants. In, “The Soil-Root Interface” (eds. Harlay, J.L. and Russell, R.S.) Academic Press, Londonpp. 161–173.

    Google Scholar 

  71. Old, K.M. and Nicolson, T.H. 1975. Electron microscopical studies of the microflora of roots of sand dune grasses. New Phytologist, 74: 51–58.

    Article  Google Scholar 

  72. Paulitz, T.C. and Linderman, R. G. 1991. Mycorrhizal interactions with soil organisms. In, “Hand Book of Applied Mycology, Vol. I. Soil and Plants”. (eds. Arora, D.K., Rai, B., Mukerji, K.G. and Knudsen, G.R.). Marcel and Dekker, New York. pp. 77–129.

    Google Scholar 

  73. Ranga Rao, V. and Mukerji, KG. 1971. Fungi in the root zone of four cultivars of wheat. Annals Institute Pasteur, 121: 533–544.

    Google Scholar 

  74. Rovira, A.D. 1985. Manipulation of the rhizosphere microflora to increase plant production. In, “Reviews of rural science” 6 (eds. Lengi, R.A., Barker, J.S.F., Adams, D.B. and Hutchinson, K.J.). University of New England Press, Biddeford, Me. pp. 185–197.

    Google Scholar 

  75. Rovira, A.D. 1991. Rhizosphere research–85 years of progress and fmstation. In, “The Rhizosphere and Plant Growth”, (eds. Keister, D.L. and Cregan, P.B.). Kluwer Academic Publishers, The Netherlands, pp. 3–13.

    Google Scholar 

  76. Rovira, A.D., Bowen, G.D. and Foster, R.C. 1980. The nature of the rhizosphere and the influence of the rhizosphere microflora and mycorrhizas on plant nuitriton. In, “Encyclopedia of Plant Physiology”. New Series (eds. Lauchi, A. and Bieleski, RL.) Vol. 12, Springer-Verlag, Berlin.

    Google Scholar 

  77. Roving, A.D., Bowen, G.D. and Foster, RC. 1983. The significance of rhizosphere microflora and mycorrhizas on plant nutrition. In, “Encyclopedia of Plant Physiology”. New series Vol. 15 (eds. Lauchli, A. and Bielaski, R.L.) Springer Verlag, Berlin. pp. 61–93.

    Google Scholar 

  78. Rovira, A.D. and Campbell, R 1974. Scanning electron microscopy of microorganisms on the roots of wheat. Microbial Ecology, 1: 15–23.

    Article  Google Scholar 

  79. Rovira, A.D. and Davey, C.B. 1974. Biology of the rhizosphere. In, “The Plant root and its environment” (ed. Carson, E.W.). University of Virginia Press, Charlottesville, Virginia, pp. 153–204.

    Google Scholar 

  80. Rovira, A.D. Foster, R.C. and Martin, J.K. 1979. Note on Terminology: origin, nature and nomenclature of the organic materials in the rhizophere. In, “Soil-Root Interface” (eds. Harley, J.C. and Russell, R S.). Academic Press, London pp. 1–4.

    Google Scholar 

  81. Rovira, A.D., Newman, E.I., Bowen, H.J. and Campbell, R 1974. Quantitative assessment of the rhizosphere microflora by direct microscopy. Soil Biology and Biochemistry, 6: 211–216.

    Article  Google Scholar 

  82. Schank, S.C., Smith, RL., Weiser, G.C., Zuberer, D., Bonito’’, J.H., Quesenberry, K.H., Tyler, M.E., Milam, J.R. and Littell, R.C. 1979. Florescent antibody technique to identifyAzospirillum brasilense associated with roots of grasses. Soil Biology Biochemistry, 11: 287–295.

    Article  Google Scholar 

  83. Schisler, D.A. and Linderman, R.G. 1989. The influence of volatiles purged from soil around Douglas-fir ectomycorrhizae on soil microbial population. Soil Biology and Biochemiitry, 21: 389–396.

    Article  Google Scholar 

  84. Schmidt, E.L., Bankole, R.O. and Bohool, B.B. 1968. Fluorescent antibody approach of study of rhizobia in soil. Journal of Bacteriology, 95: 1987–1992.

    PubMed  CAS  Google Scholar 

  85. Schottelndreier, M. and Falkengren-Greup, U. 1999. Plant induced alteration in the rhizosphere and the utilisation of soil heterogeneity. Plant and Soil, 209: 297–309.

    Article  CAS  Google Scholar 

  86. Schreiner, R.P. and Bethlenfalvay, G.J. 1995. Mycorrhizal interactions in sustainable agriculture. Critical Reviews in Biotechnology, 15: 271–285.

    Article  Google Scholar 

  87. Schreiner, RP. and Koide, RT. 1993. Streptomycin reduces plant response to mycorrhizal infection. Soil Biology and Biochemistry, 25: 1131–1133.

    Article  CAS  Google Scholar 

  88. Sharma, M. and Mukerji, K.G. 1992. Mycorrhiza-tool for biological control of plant diseases. In, “Recent Developments in biocontrol of plant diseases (eds., K.G. Mukerji, J.P. Tewari, D.K. Arora and G. Saxena) Aditya Books, New Delhi. pp. 468–471.

    Google Scholar 

  89. Sivasitamparam, K. and Parker, C.A. 1979. Rhizosphere microorganisms of seminal and nodal roots of wheat grown in pots. Soil Biology and Biochemistry 11: 155–160.

    Article  Google Scholar 

  90. Slankis, V. 1973. Hormonal relationships in mycorrhizal development. In, “Ectomycorrhizae” (eds. G.C. Marks and T.T. Kozlowskü) Academic Press, London pp. 231–298.

    Google Scholar 

  91. Smit, E., Leeflang, P., Glandorf. B., van Elsas, J.D., Wemars, K. 1999. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCRamplified genes encoding 185 rRNA and temperature gradient gel electrophroesis. Applied and Environmental Microbiology, 65: 2614–2621.

    CAS  Google Scholar 

  92. Sorensen, J., van Elsas, J.D. and Trevors, J.T. 1997. The rhizosphere as a habitat for soil microorganisms. In, “Modern Soil Microbiology” (ed. Wellington, E.M.H. ). pp. 21–45.

    Google Scholar 

  93. Starkey, RL. 1929. Some influences of the development of higher plants upon the microorganism in the soil. I. Historical and introductory. Soil Science, 27: 319–334.

    Article  CAS  Google Scholar 

  94. Starkey, RL. 1938. Some influences of the development of higher plants upon the microorganisms in the soil. IV. Microscopic examination of the rhizosphere. Soil Science, 45: 207–249.

    Article  CAS  Google Scholar 

  95. Summerbell, R.C. 1989. Microfungi associated with the mycorrhizal mantle and adjacent microhabitats within the rhizosphere of black spruce. Canadian Journal of Botany, 67: 1085–1095.

    Article  Google Scholar 

  96. Sutton, J.C. and Sheppard, B.R. 1976. Aggregation of sand-dune soil by endomycorrhizal fungi. Canadian Journal of Botany, 54: 326–333.

    Article  Google Scholar 

  97. Tarafdar, J. C. and Marschner, H. 1994. Phosphate activity in the rhizosphere and hyphosphere of VAmycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biology and Biochemistry, 26: 387–395.

    Article  CAS  Google Scholar 

  98. Timonin, M.I. 1946, Micoflora of the rhizsphere in relation to the manganese deficiency disease of oats. Soil Science Society of America Proceedings, 11: 284–292.

    Article  Google Scholar 

  99. Timonin, M.I. 1966. Rhizosphere effect of healthy and diseased lodgepole pine seedlings. Canadian Journal of Microbiology, 12: 531–537.

    Article  Google Scholar 

  100. Tisdall, J.M. 1991. Fungal hyphae and structural stability of soil. Australian Journal of Soil Research, 29: 729–743.

    Article  Google Scholar 

  101. Umali-Garcia, M., Hubbell, D.H., Gaskins, M.H. and Dazzo, F.B. 1980. Associations of Azospirillum with grass roots. Applied Enoirnmental Microbiology, 39: 219–226.

    CAS  Google Scholar 

  102. Vancura, V. and Kune, F. 1977. The effect of streptomycin and actidione on respiration in the rhizosphere and non rhizosphere soil. Zentralblatt fur Bakteriologie Parasitenkunde “Infektionskrankheiten Hygiene Abteilung”, 132: 472–478.

    CAS  Google Scholar 

  103. Warenbourg, F.R and Estelrich, H.D. 2000. Towards a better understanding of carbon flow in the rhizosphere: a time dependent approach using carbone 14. Biology and Fertility of Soils, 30: 528–534.

    Article  Google Scholar 

  104. Whipps, J.M. and Lynch, J.M. 1983. Substrate flow and utilization in the rhizophere of cereals. New Phytologist, 95: 605–623.

    Article  CAS  Google Scholar 

  105. Whipps, J.M. and Lynch J.M. 1985. Energy losses by the plant in rhizodeposition. Annual Proceedings Phytochemistry Society of Europe, 26: 59–71.

    Google Scholar 

  106. Wright, S.F., Foster, J.G. and Bennett, O.C. 1986. Production and use of monoclonal antibodies for identification of strains of Rhizobium trijlou. Applied Environmental Microbiology, 52: 119–125.

    CAS  Google Scholar 

  107. Yang-Ching, H., Crowley, D.E. and Yang, C.H. 2000. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Applied and Environmental Microbiology, 66: 345–351.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mukerji, K.G. (2002). Rhizosphere Biology. In: Mukerji, K.G., Manoharachary, C., Chamola, B.P. (eds) Techniques in Mycorrhizal Studies. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3209-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3209-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5985-7

  • Online ISBN: 978-94-017-3209-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation