Abstract

The flat plate collector technology for the utilization of solar energy is a proven one and the de elopment efforts are primarily aimed at making them less expensive and more efficient. Other technologies like ‘Solar Ponds’ are inherently low cost, but further development is needed to make them work better with less maintenance. The term solar pond is commonly used to describe a number of different concepts, all of which involve the use of water as both a direct absorber of solar radiation and as a storage medium for the collected thermal energy. Most commonly, the concept referred to is a salt gradient pond in which a portion of the pond’s depth is stabilized against motion by dissolved salt with more salt towards the bottom than the top. Phis salt gradient counteracts the thermal density gradient caused by solar radiation absorbed at the pond’s bottom and prevents fluid motion within the gradient layer. This layer serves as both insulation and storage, and permits the lower layer of the pond, which does convect, to reach temperatures close to the boiling point, while the surface convective layer is near ambient temperature. Such a situation indeed occurs in nature in a few salt lakes (e.g. Madve Lagoon in Transylvania, Hungary). In such natural lakes, typical temperatures of around 70°C have been observed. Artificial salt gradient stabilized ponds, operating on the same principle as natural salt lake, have been developed in Israel, U.S.A., Australia, India, etc. These are known as Salt Gradient Solar Ponds or non-convective solar ponds or solar ponds. Ponds typically range in depth from one to three meters. Energy is extracted from the pond’s bottom layer by an in-pond heat exchanger, i.e. by cycling external water through a heat exchanger immersed in the lower layer of the pond. or by pim** the hot brine through an external heat exchanger. There are several possible applications for solar ponds, including power generation, space heating, greenhouse heating, process heat for industries space cooling, desalination, agricultural crop drying, and production of renewable liquid fuels such as ethanol for gasohol. In order to realise the full potential of ponds for these and other applications, our knowledge of how a pond operates must be expanded so that reliable ponds with predictable performance and minimal maintenance can be constructed and put into operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Kalecsinky, (1902), ‘Ungerische warme and Heisse Kochsolzeen’,Ann.D.Physik (4), 408–416.

    Google Scholar 

  2. C.G. Anderson, (1958), ‘Limnology of shallow saline Mermomistic Lake’, Limnology and Oceanography, 3, 259–269

    Article  Google Scholar 

  3. A.T. Wilson and H.W. Wellman, (1962), ‘Lake Vanda an antarctic Lake’, Nature, 196, 1171–1173

    Article  Google Scholar 

  4. R.A. Hoare, (1966), ‘Problems of heat transfer in lake vanda’, Nature, 218, 787

    Article  Google Scholar 

  5. F.D. Por, (1970), ‘Solar lake on the shore of the Red Sea’, Nature, 210, 860–861

    Google Scholar 

  6. J.M. Melack and P. Kilham, (1972), ‘Lake Mehaga: a mesotropic sulfactochoride lake in western Uganda’, African Journal of Tropical Hydrobiology and Fisheries, 2, 141.

    Google Scholar 

  7. P.P. Hudeca and P. Sonnefeld, (1974), ‘Hot brines on Los Roques, Venezuela’, Science, 185, 440.

    Article  Google Scholar 

  8. Y. Cohen, W. Krumbein and M. Whilo, (1977), ‘Solar lake (Sinai)’, Limnology and Oceanography, 22, 609–634.

    Article  Google Scholar 

  9. H. Tabor, (1959), ‘Solar collector developments’, Solar Energy, 3 (3), 8–9.

    Article  MathSciNet  Google Scholar 

  10. H. Tabor, (1961), ‘Large-area solar collectors (Solar Ponds) for power production’, U. N. Conf. New Sources of Energy, Publication S/47, Rome, 1961.

    Google Scholar 

  11. H. Tabor, (1963), ‘Solar Ponds’ Solar Energy, 7 (4), 189–194.

    Google Scholar 

  12. H. Tabor, (1964), ‘Solar Ponds’, Electron Power, 296–299.

    Google Scholar 

  13. H. Weinberger, (1964), ‘The Physics of the Solar Pond’, Solar Energy, 8 (2), 45–56.

    Article  MathSciNet  Google Scholar 

  14. C. Elata and O. Levin, (1965), ‘Hydraulics of the solar pond’, Cong. Int. Assoc. Hydraulic RCS,11th, Leningrad, USSR.

    Google Scholar 

  15. H. Tabor and R. Matz, (1965), ‘Solar pond: Status report’, Solar Energy, 9 (4), 177–182.

    Article  Google Scholar 

  16. J. Hirschmann, (1961), ‘Suppression of nautral convection in open ponds by a concentration gradient’, U.N. Conf., New Sources of Energy, Rome, 1961, p. 487.

    Google Scholar 

  17. J. Hirschmann and W.E. Gaete, (1962), ‘Collector solar, de Poza abiert con soluciones de clorure de magnesio, Rev. Sci., No. 120, 43–95.

    Google Scholar 

  18. K.D. Stolzenbach, J.M.K. Dake and D.R.F. Harleman, (1968), ‘Prediction of temperatures in solar ponds’, Annu. Meeting, Solar Energy Soc., Palo Alto, California, Oct. 21–23.

    Google Scholar 

  19. Yu. U. Usmanov, V. Eliseev and R.A, Zakhidov, (1969), ‘Salt water ponds as solar energy accumulators’, Applied Solar Energy, 5 (2), 49–55.

    Google Scholar 

  20. Yu. U. Usmanov, V. Eliseev, and G. Umarov, (1971), ‘On the optical characteristics of a solar pond’, Applied-Solar Energy, (Gelioteckhnika), 7 (3), 78–81.

    Google Scholar 

  21. R.A. Taybout, (1967), ‘A recursive alternative to Weinsberger’s Model of solar pond’, Solar Energy, 11 (2), 109–111.

    Article  Google Scholar 

  22. S.B. Savage, (1975), ‘Solar Ponds - A review’, Mc Gill Univeristy, Montreal, Tech. Report No. 75-J ( FML ), Aug., 1975.

    Google Scholar 

  23. S.B. Savage, (1977), ‘Solar pond’, Solar Energy Engineering, Edited by A.A.M. Sayigh, Academic Press, Inc., 217–232.

    Google Scholar 

  24. S.L. Sargent, (1979), ‘An overview of solar pond technology’, Proc. Solar Industrial Process heat conf., 355–371, Oct. 31-Nov. 2, 1979.

    Google Scholar 

  25. G.E. Nielson, (1980), ‘Non convective salt gradient Solar Ponds’, Solar Energy Technology Handbook, Part A edited by W.C. Dickinson, and Paul N. Cheremisinoff, New York: Marcel Dekker Inc. 1980.

    Google Scholar 

  26. H.P. Garg[1983],’Solar Ponds’ Energy Digest, Vol 2, pp 1–40, Oct-Nov. 1983.

    Google Scholar 

  27. H. Tabor and Z. Weinberger (1981), ‘Non convective solar ponds’, Chapt. 10, 10–1 to 10–29, Solar Energy Handbook, Edited by J.F. Krelder and F. Kreith, Mc Graw Hill Book Co.

    Google Scholar 

  28. H. Tabor, (1981), ‘Review article:Solar Ponds’, Solar Energy, 27 (3), 181–194.

    Article  MathSciNet  Google Scholar 

  29. N.D. Kaushik, (1982), ‘Solar Ponds’, Review of Renewable Energy Resources’, Report No.02/82 of Centre of Energy Studies, Indian Institute of Technology, New Delhi, India, Coordinated by M.S. Sodha and S.S. Mathur.

    Google Scholar 

  30. A. Rabl and C.E. Nielsen, (1975), ‘Solar ponds for space heating’, Solar Energy, 17 (1), 1–12.

    Article  Google Scholar 

  31. C.E. Nielsen and A. Rabl, (1975), ‘Operation of a small salt gradient solar pond’, Int. Solar Energy Soc. Congress, Los Angles, California, Extended Abstract 35 /5, p. 271.

    Google Scholar 

  32. C.E. Nielson, (1975), ‘Salt gradients for solar ponds for solar energy utilization’, Environ. Conserv., 2, 289–292.

    Article  Google Scholar 

  33. C.E. Nielsen, (1980). Nielsen, (1980), ‘Design and initial operation of a 400 m2 solar pond’, Proc. AS/ISES Annl. Meeting, Phoenix, Arizona, Vol. 3. 1, 381–385, Aug. 1980.

    Google Scholar 

  34. F. Zengrando and H.D. Bryant, (1976), ‘Solar ponds for residential heating’, New Mexico Energy Resources Board, Grant ERB-161, 1976.

    Google Scholar 

  35. T.H. Short, P.C. Badger, W.L. Roller, (1979), ‘The development and demonstration of a solar pond for heating greenhouses’, Proc. ISES Siver Jublee Congress, Sun II, Vol.2, Atlanta, Georgia, 1021–1025, 1979.

    Google Scholar 

  36. L.J. Wittenberg and M.J. Harris, (1981), ‘Construction and startup performance of the Miamisburg Salt gradient solar pond’, J. Solar Energy Engg., Trans. ASME, 103, 11–16.

    Article  Google Scholar 

  37. S.L. Sargent and D.L. Neeper, (1980), ‘Overview of the -DOE National and Internaional Program for Salt Gradient Solar Ponds’, Proc. AS/ISES Annl. Meet., Pheonix, Arizona, Vo13.1, 295–399, June 1980.

    Google Scholar 

  38. M. Edesess, J. Henderson and T.S. Jayadev, (1979), ‘A simple design tool for sizing solar ponds’, Report No. SERI/RR-351–347, Solar Energy Research Institute, Golden, Colorado.

    Google Scholar 

  39. J.P. Leshuk, R.J. Zaworski, D.K. Styris and D.K. Harling, (1978), ‘Solar Pond Stability Experiments’, Solar Energy, 21, 237–244.

    Article  Google Scholar 

  40. C.E. Nielsen, (1970), ‘Salt gradient solar pond development’, 3rd Annual solar heating and cooling RD comtractor’s meeting, Sept. 1978.

    Google Scholar 

  41. C.F. Kooi, (1979), ‘The steady state salt gradient solar pond’, Solar Energy, 23, 37–45.

    Article  Google Scholar 

  42. D.A. Neeper and K.A. Meyer, (1981), ‘Solar ponds as a source of low temperature heat’, submitted to 8th Energy Technology Conference and Exposition, March 911, 1981, Washington, D.C.

    Google Scholar 

  43. L. Bronicki (1980), ‘The solar pond development program in Isreal’, Proc. Non-convecting solar pond workshop, July 30–31, 1980, Nevada (USA), p.12–1 to 12–23, Report DOE/CS/30174-Te.

    Google Scholar 

  44. T.R.A. Davey, (1968), ‘The Aspendale Solar Pond’, Rep. R 15, CSIRO, Australia.

    Google Scholar 

  45. N.R. Sheridan, (1981), ‘Solar Ponds in Australia’, Solar Progress, 2135, 9.

    Google Scholar 

  46. A. Akbarzadeh and R.W.G. Macdonald, (1981), ‘Research in solar ponds at University of Melbourne for Salt production and other applications’, Presented in ISES Congr. Brighton, England, Aug. 23–28, 1981.

    Google Scholar 

  47. G.C. Jain (1973), ‘Heating of solar pond’, Int. Congress - Sun in the service of Mankind, UNESCO, Paries, 1973.

    Google Scholar 

  48. S.D. Gomkale, ‘Work on solar pond carried out at CSMCR I, Bhavnagar (India), Personal Communication, 26 March, 1982.

    Google Scholar 

  49. C.L. Gupta and Satish Patel (1979), ‘Experimental investigations on Laboratory solar ponds’, Proc. National Solar Energy Convention, Bombay 13–15, Dec. 1979, 119–123.

    Google Scholar 

  50. S.M. Patel and C.L. Gupta (1981), ‘Experimental solar pond in a hot humid climate’ Sun World, 5 (4), 115–118.

    Google Scholar 

  51. M.S. Sodha, N.D. Kaushik and S.K. Rao, (1981), ‘Thermal analysis of three zone solar pond’, Energy Research, 5, 321–340.

    Article  Google Scholar 

  52. N.D. Kaushika, P.K. Bansal, and M.S. Sodha, (1980), ‘Partitioned solar pond collector/storage system’, Applied Energy, 7, 169–190.

    Article  Google Scholar 

  53. P.K. Bansal and N.D. Kaushik, (1981), ‘Thermal analysis of constant flow partitioned solar pond’, Energy Convr. and Management, 21, 141–156.

    Article  Google Scholar 

  54. N.D. Kaushik and S.K. Rao, (1981), ‘Constant flow three zone solar pond collector/storage system’, Energy Research.

    Google Scholar 

  55. V.N. Eliseev, Yu. U. Usmanov and G. Ya, Umarov (1973), ‘Dertermining the efficiency of a solar salt pond’, Applied solar energy (Geliotekhnika), 9 (1–2), 36–38.

    Google Scholar 

  56. Yu. U. Usmanov, L.N. Teslenko, V.N. Eliseev, and G. Ya. Umarov., (1973), ‘Some results of a theoretical investigation of thermal conditions in a solar salt pond’, Applied solar energy (Geliotekhnika), 9(1–2), 91–95.

    Google Scholar 

  57. V.N. Eliseev, Yu. U. Usamnov and L.N. Teslenko (1971), ‘Theoretical investigation of the thermal regime of a solar pond’ Geliotekhnika, 7 (4), 17–23.

    Google Scholar 

  58. Yu.U. Usmanov, G. Ya. Umarov and R.A. Zakhidov (1969), ‘Salt water ponds as solar energy accumulators’ Geliotakhnika, 5 (2), 49–55.

    Google Scholar 

  59. Annon. (1981), ‘Solar Energy Research in U.K.’ Helios, No. 13, p. 22, Nov. 1981.

    Google Scholar 

  60. M.N.A. Hawlader and B.J. Brinkworth (1981), ‘An analysis of the non-convecting solar pond’, Solar Energy, 19, 321–322.

    Google Scholar 

  61. M.N.A. Hawlader and B.J. Brinkworth (1981), ‘An analysis of non-convecting solar pond’, Solar Energy, 27 (3), 195–204.

    Article  Google Scholar 

  62. J. Ewan and B.J. Brinkworth (1981), ‘Factors effecting solar pond performance in the UK’. Paper presetned in the ISES solar world forum, Brighton, England, Aug. 23–28, 1981, p. 307.

    Google Scholar 

  63. E. Wilkins and K.L. Pinder (1980), ‘Experiments with a non-convective model of a solar pond’, Solar Energy and Conservation, 210–225.

    Google Scholar 

  64. N. Chapurniy and S.B. Savage (1974), ‘An analytical and experimental investigation of a laboratory solar pond model’, ASME Paper No.74-WA/Soi-3, 1974.

    Google Scholar 

  65. J.R. Hirschaman (1955), ‘Suppression of natural convection in open ponds by concentration gradient’, Proc. First Int. Symp. Water Desalin4tion, Washington, p. 483.

    Google Scholar 

  66. J.R. Hirschmann and W.E. Gaete (1962), ‘Collector Solar de Poza Abierta con Solùciones de Cloruro de Magnesio’, Revista Scientia, No.120, 43–95, Oct.-Dec., 1962.

    Google Scholar 

  67. J.R. Hirschmann (197-0), ‘Salt flats as solar-heac collectors for industrial purposes’, Solar Energy, 13(1), 83–97.

    Google Scholar 

  68. J.R. Hirschmann (1970), ‘Progress in the utilization of solar energy in Chile’, Paper presented in the 1970 ISES Conference, Malbourne (Australia), 2–6 March, 1970, Paper No. 1 /20.

    Google Scholar 

  69. A. Akbarzadeh and G. Ahmadi (1980), ‘Under ground thermal storage in the operation of solar ponds’, Energy, 4 (6), 1119–1125.

    Article  Google Scholar 

  70. A. Akbarzadeh and G. Ahmadi (1980), ‘Computer simulation of the performance of a solar pond in the southern part of Iran’, Solar Energy 24 (2), 143–151.

    Article  Google Scholar 

  71. A. Akbarzadesh and G. Ahmadi (1981), ‘On the development of salt concentration profile in a solar pond’ Energy, 6, 369–382.

    Article  Google Scholar 

  72. J. Mangussi and L. Saravia (1977), ‘Pozas solares con gradiente salino saturado’, In Actas de la Tercera Reunion de Energia Solar, p. 65, ASADES, Argentina.

    Google Scholar 

  73. J. Mangussi and G. Lesino et al (1978), ‘Function-amineto de un modelo de poza solar con gradiente salino saturado’, In Actos de la Cuarta Reunion de Engriga Solar, P. 43, ASADES, Argentina.

    Google Scholar 

  74. J. Mangussi, L. Saravia and G. Lesino (1980), ‘The use of sodium sulphate in solar ponds’ Solar Energy, 25, 475–477.

    Article  Google Scholar 

  75. J.M. K. Dake, et al (1969), ‘Thermal stratification in Lakes: Analytical and laboratory studies’ WRR 5 (2), p. 484.

    Article  Google Scholar 

  76. J.M.K. Dake (1972), ‘Evaporative colling of a body of water’, WRR, 8 (4), p. 1087.

    Article  Google Scholar 

  77. J.M.K. Dake (1973), ‘The solar pond: Analytical and laboratory studies’ UNESCO Congress, Sun in the Service of Mankind, Paris, Paper No. E-17.

    Google Scholar 

  78. J.P. Jourdan (1979), ‘A pond filled with a gel’ International Solar Pond Newsletter’, Oct. 1979, Desert Research Institute, Nevada.

    Google Scholar 

  79. B. Nimmo, A. Dabbagh and S. Said (1981), ‘Salt gradient solar ponds’, Sun World, 5 (4), 113–114.

    Google Scholar 

  80. Tom Ochs, International Solar Pond Newsletter, Desert Research Institute, 1500 Buchavan Boulevard, Boulder City, Naveda (USA).

    Google Scholar 

  81. Non-convecting solar pond workshop, July 30–31, 1980, Desert Research Institute, University of Naveda System, USA.

    Google Scholar 

  82. G.D. Mahta (1975), ‘Non convecting solar ponds’ Tech. Rept. ETG-4 Hydronautics Inc.

    Google Scholar 

  83. K. Drumheller et al (1975), ‘Comparison of solar pond concepts for electric power generation’ BNWL-1951, Battelle Pacific Northwest Lab.

    Google Scholar 

  84. S.Q. Duntley, (1963), ‘Light in the Sea’, J. Opt. So. Am., 53, 214.

    Article  Google Scholar 

  85. G. Kullenberg, (1968), ‘Scattering of light by sargasso sea water’, Deep-Sea Res., 15, 423.

    Google Scholar 

  86. R. Vishkanta and J.S. Toor, (1972), ‘Radiant energy transfer in waters’, Water Resour, 8, 595.

    Article  Google Scholar 

  87. R. Viskanta and J.S. Toor, (1972), ‘Effect of multiple Scattering on radiant energy transfer in water’, J. Geophys. Res., 78, 3538.

    Article  Google Scholar 

  88. R. Viskanta and J.S. Toor, (1978), ‘Absorption of solar raidation in ponds’, Solar Energy, 21, 17–25.

    Article  Google Scholar 

  89. R.E. Pyne (1972), ‘Albedo of the sea surfacé’, J. Atm. Sci., 29, 959.

    Google Scholar 

  90. J. S. Toor, ‘Effect of boundary surface charteristics on reflectance of solar radiation from shallow bodies of water’, ASME Paper No. 73-WA-Sol-9.

    Google Scholar 

  91. P.I. Cooper, (1969), ‘The absorption of radiation in solar stills’, Solar Energy, 13, 333–346.

    Article  Google Scholar 

  92. P.G. Berardi, (1981), ‘Campo radiativo in mezzi assorbenti ad emittenti per sistemi unidimensiondi piani’, XXXVI AT1, Nat. Congr.

    Google Scholar 

  93. F.P. Incropera, T.R. Wagner and W.G, Houf, (1981), ‘A comparison of predictions and measurements of the radiation field in a shallow water layer’, Water Resources Research, 17 (1), 142–148.

    Article  Google Scholar 

  94. T.R. Wagner, W.G. Houf and F.P. Incropera, (1981), ‘Radiative property measurements for India ink suspensions of varying concentration’, Solar Energy, 25, 549554.

    Google Scholar 

  95. G.M. Hale and M.R. Querry, (1973), ‘Optical constants of water in the 200 nm to 200 pm wavelength region’, Appl. Opt. 12, 555–563.

    Article  Google Scholar 

  96. A. Defant, (1961), ‘Physical Oceanography Vol.1’, Per-gamon Press, Oxford.

    Google Scholar 

  97. N. Chepurniy and S.B. Savage, (1975), ‘The effect of diffusion on concentration profiles in a solar pond’, Solar Energy, 17, 203.

    Article  Google Scholar 

  98. N.D. Kaushika and P.K. Bansal (1981), ‘Transient behaviour of salt gradient stabilized shallow solar ponds’, Appl. Energy, 10 (1), 63.

    Google Scholar 

  99. G. Varonis, (1968), ‘Effect of a stabilizing gradient of solute on thermal convection’, J. Fluid Mech. 34, 315.

    Article  Google Scholar 

  100. J.S. Turner, (1973), ‘Buoyancy effects in fluids’, Cambridge, New York.

    Book  MATH  Google Scholar 

  101. T.R. Sundaram, (1974), ‘Transient thermal response of large lakes to atmospheric distrubances’, Proc. 17th Conf. Great Lakes Research, Int. Asso. of Great Lakes Research, 801.

    Google Scholar 

  102. C.E. Nielson and A. Rabl (1976), ‘Salt requirements and stability of solar ponds’, Proc. Joint Conf. Ame. and Canad. Solar Energy Societies, Sharing the Sun, Vol. 5, 183–187.

    Google Scholar 

  103. H.E. Huppert and D.R. Moore, (1976), ‘Non linear double diffusive convection, J. Fluid Mechanics, 78(4), 821854

    Google Scholar 

  104. F. Zangradno, (1980), ‘A simple method to establish salt gradient solar ponds’, Solar Energy, 25, 467–470.

    Article  Google Scholar 

  105. F. Zangrando, (1979), ‘Observations and analysis of a full scale experimental salt gradient solar pond’, Ph.D. Thesis, University of New Mexico.

    Google Scholar 

  106. C. Elata and O. Levin, (1962), ‘Selective flow in a pond with denisty gradient’, Hydraulic Laboratory Report, Technion, Haifa, Israel.

    Google Scholar 

  107. D.C. Daniels and M.F. Merrion, (1975), ‘Fluid dynamics of selective withdrawal in solar ponds’, ISES Cong., Los Angles, California.

    Google Scholar 

  108. J.P. Leshuk, R.J. Zaworski, D.L. Styris and O.K. Harling, (1978), ‘Solar pond stability experiments’, Solar Energy, 21, 237–244.

    Article  Google Scholar 

  109. C.E. Neilsen, (1979), ‘Control of gradient zone boundaries’, Proc. Int. Solar Energy Soc. Meet., Atlanta, Georgia, May 28, 1979.

    Google Scholar 

  110. T.L. Ochs and J.O. Bradley, (1979),, ‘Stability criteria for saturated solar ponds’, Proc. 14th Int. Soc. Energy Cover. Engineers Conf., Aug. 5–10, 1979, Boston, Mass.

    Google Scholar 

  111. D.L. Elwell, T.H. Short and P.C. Badger, (1977), ‘Stability criteria for solar (Thermal-saline) Ponds’, Proc. 1977 Annl. Meet. American Section, ISES, June 610, 1977, Orlando, Florida.

    Google Scholar 

  112. C.E. Nielsen, A. Rabl, J. Watson on and P. Weiler,(1977), ‘Flow system for maintenance of salt concentration gradient in solar ponds–Test in isothermal pond, Solar Energy, 19, 763–766.

    Google Scholar 

  113. H.C. Bryant and M.K. Rothmeyer, (1980), ‘Solar pond studies: Phase lit’, Fifth semiannual progress report to U.S.Deptt. of Energy, D.O.E. Contract No.EG-77–5-D4–3977.

    Google Scholar 

  114. J.R. Hull „ (1980), ‘Computer simulation of solar pond thermal behaviour’, Solar Energy, 25, 33–40.

    Article  Google Scholar 

  115. J.R. Hull, (1980), ‘Membrane stratified solar ponds’, Solar Energy, 25, 317–325.

    Article  Google Scholar 

  116. T.L. Ochs and J.O. Bradley, (1979), ‘The Physics of a saturated Na20 2B203.10H2O Non convecting solar pond’, Proc. ISES Silver Jublee Cong. Sun II, Vol.2, 1026–1028, Atlanta, Georgia.

    Google Scholar 

  117. T.S. Jayadev and J. Henderson (1979), ‘Salt concentration gradient solar ponds–modelling and optimization’, Presented at Annl. Meet. ISES, Atlanta, Georgia, May28-June 1, 1979, p. 1–5.

    Google Scholar 

  118. S.P. Gupta, J.S. Saini and C.P. Gupta, (1979), ‘Heat transfer in solar energy pond’, proc.IInd Miami Int. Conf. on Alternative Energy Sources, Florido, 515–525, 1979.

    Google Scholar 

  119. K.A. Meyer, D.P. Grimmer and G.F. Jones, (1982), ‘An experimental and theoretical study of salt gradient pond interface behaviour’, Proc. 1982 Annl. Meet. Ameridan Section of ISES, Houston, Texas,1–5 June, 1982.

    Google Scholar 

  120. K.A. Meyer, (1981), ‘A one dimensional model of the dynamic layer behaviour in a salt gradient solar pond’, Submitted to solar rising conf. and exposition, Philadelphia Civic Centre, May 26–30, 1981.

    Google Scholar 

  121. P.K. Bansal and N.D. Kaushika, (1981), ‘Salt gradient stablized solar collector’, Energy Conv. Mangmt., 21, 81–95.

    Google Scholar 

  122. L.J. Wittenberg and M.J. Harris, (1979), ‘Evaluation of a large nonconvective solar pond’, Proc.Solar Energy Storage Options, Vol. 1, March 19–20, 1979, San Antonio, Texas, 193–202.

    Google Scholar 

  123. L.J. Wittenberg, (1980), ‘Salt gradient solar ponds: Design construction and power production’, The 1980 International Symp. on Solar Energy Utilization, Aug. 1024, 1980, Univ. of West Ontario, London, Ontario, Canada.

    Google Scholar 

  124. P.C. Badger, T.H. Short, W.L. Roller and D.L. Elwell, (1977), prog. 1977 Annl. Meet. American Section of ISES, June 6–10, 1977, Orlando, Florida.

    Google Scholar 

  125. R.S. Brayant and R.P. Bowser (1979), ‘Construction and initial operation of the Miamisburg salt-gradient solar pond’, International Solar Energy Congress, Atlanta, May 28-June 1, 1979, 1–5.

    Google Scholar 

  126. F. Zangrando and H.C. Bryant, (1978), ‘A Salt gradient solar pond’, Solar Age, April 1978, 21–36.

    Google Scholar 

  127. K. Drumheller, J.B. Duffy, O.K. Harling, et al (1975), ‘Comparison of solar pond concepts for electrical power generation’, Report No.BNWL-151, Battelle, Pacitic Northwest Laboratories, Richland, Washington 99352, Oct. 1975.

    Google Scholar 

  128. H. Tabor (1980), ‘Storage capability of solar ponds’, proc. Int. TNO-Symp.on Thermal storage of solar energy Amsterdam, Nov. 5–6, 1980, Hague, 1981, 17–32.

    Google Scholar 

  129. H. Tabor, (1982), ‘Using solar ponds to store power from the sun’, ASSET, 4 (1), 20–24, Jan.1982.

    Google Scholar 

  130. R. Coates, R. French and S. Scheweitzer, (1981), ‘Solar pond construction and cost performance analysis’, Paper presented at ISES Congr. Exhib., Brighton, England, 23–28, Aug. 1981.

    Google Scholar 

  131. D.L. Styris and D.K. Harling, (1975), ‘The nonconvecting solar pond an overview of technological status and possible pond application’, Report no.BNWL-1891/UC-13, Prepared for U.S.Atomic Energy Commission, 1975.

    Google Scholar 

  132. S.A. Shah, T.H. Short and R.P. Fynn (1980), ‘A solar pond-assisted heat pump heating system for commercial greenhouses’, proc. 1980 Annl. Meet. of American Section ISES, June 1–8, 1980, Phoenix, Arizona.

    Google Scholar 

  133. S.A. Shah, T.H. Short and R.P. Fynn (1980), ‘Modelling of a salt gradient solar pond-greenhouse heating system’, proc. ASAE National Energy Symp., Sept. 29-Oct.1, 1980, Kansas City, Missouri.

    Google Scholar 

  134. R.P. Fynn., T.H. Short and S.A. Shah (1980), ‘The Practical operation and maintenance of a solar pond for greenhouse heating’, Proc. 1980 Annl. Meet. of ASAE Energy Symp., Sept. 30-Oct.1, 1980, Kansas City, Missouri.

    Google Scholar 

  135. R.P. Fynn. and T.H. Short (1980), ‘Monitoring sodium chloride concentration and density profiles in solar ponds by electrical conductivity and temperature measurement’, proc. 1980, Annl. Meet., American Section of ISES, June 1–0, 1980, Phoenix, Arizona.

    Google Scholar 

  136. C.E. Neilsen, (1976), ‘Experience with a prototype solar pond for space heating’, Proc. Winnepeg Conference, Vol. 5, 1976, 169–182.

    Google Scholar 

  137. T.L. Oach (1980), ‘Operational experience with a saturated Borax Solar Pond’, 15th Intersociety Energy Conversion Engineering Conf., Seattle, Washington, Aug. 18–22, 1980.

    Google Scholar 

  138. T.L. Ochs, S.C. Johnson and A. Sadan, (1981), ‘application of salt gradient solar pond to chemical process industry’, Proc. 1981 Annl. Meet. American Section of ISES, 205 B, McDowell Hall, Univ. of Delaware, Newark, 809–811.

    Google Scholar 

  139. T.L. Ochs, C.G. Stojanoff and D.L. Day, (1980), ‘One year’s experience with an operating saturated solar pond, Proc. 1980 Annl. Meet. American section of ISES, 205 B McDowell Hall, Univ. of Delaware, Newark, 391–394.

    Google Scholar 

  140. G. Assaf, B. Doron, Z. Weinberger, et al (1979), ‘Large size solar ponds for electricity production’, Proc. ISES Silver Jubilee Cong. Vol.Ii, Sun II, May 1979, Atlanta, Georgia, 1020.

    Google Scholar 

  141. M.S. Hipsher and R.F. Boehm, (1976), ‘Heat transfer considerations of a non convecting solar pond heat exchanger’, ASME Publication, 76-WA/SOL 4.

    Google Scholar 

  142. H. Kato and O.M. Phillips, (1959), ‘On the penetration of a turbulent layer into stratified fluid’, J.Fluid Mech., 37-WA/, 643–655.

    Google Scholar 

  143. M.J. Harris and L.J. Wittenberg, (1970), ‘Heat extraction from a large salt gradient solar pond’, Second Annl. Sol. Heat, and Cool. Conf., Colorado, Springs, Nov. 1979.

    Google Scholar 

  144. H. Tabor (1980), ‘Nonconvecting solar ponds’, Phil. Trans. R.Soc. London, A 295, 423–433, reprinted in the book Solar Energy, Royal Society of London.

    Google Scholar 

  145. B. Saulxier et al (1975), ‘Field testing of a solar pond’, ISES Conf. Los Angeles.

    Google Scholar 

  146. Yu.U. Usmanov.V. Eliseev and G. Umrnov., (1973), Experimental study on the removal of heat from a solar salt water pond’, Gelio-tekhnika, 9 (6), 23–26.

    Google Scholar 

  147. M. Edesess, (1980), ‘Solar pond economics’, Proc. Non-convecting solar pond workshop, Desert Research Institute, Univ. of Nevada System, July 30–31, 1980.

    Google Scholar 

  148. M.K. Selcuk et al (1975), ‘Priliminary technical and economic data on solar thermal conversion systems’, ISES Conf., Los Angeles.

    Google Scholar 

  149. G.D. Mehta et al, (1976), ‘Engineering and economics of a solar pond system,’ 16th Annl. ASME Symp. on Energy Alternatives, Albuquerque, New Mexico, Feb., 1976.

    Google Scholar 

  150. E.A. Platt et al (1978), ‘Engineering feasibility of a 150 KW irrigation pum** plant using shallow solar pond’, UCRL-52397, April 1978.

    Google Scholar 

  151. A. Morel (1974), ‘Optical aspects of Oceanography’, Edited by N.G.Jerlov and E.S.Nielsen’, Chapter 1, Academic Press, New York.

    Google Scholar 

  152. J.M. Raphael (1967), ‘Prediction of temperature in river reservoirs’ proc. ASCE, J.Power Div. P02, 157.

    Google Scholar 

  153. H.P. Garg (1982), - ‘Treatise on Solar Energy Vol. 1’, John Wiley Sons, Inc., 1982.

    Google Scholar 

  154. M. Centeno (1941), ‘The refractive index of liquid water in the near infrared spectrum’, J.Opt. Soc. America, 31, 245.

    Google Scholar 

  155. W.M. Irvine and J.D. Pollack (1968), Icarus, 8, 324.

    Article  Google Scholar 

  156. Yu.U. Usmanov, V. Elisev, and G.Ya. Umarov (1971), ‘Optical Characteristics of a solar reservoir’, 7(1), 28–32.

    Google Scholar 

  157. N.E. Dorsey (1940), ‘Properties of ordinary water substrate’, Reynhold, New York.

    Google Scholar 

  158. L.G. Morris, E.S. Trickett, F.H. Vanstone and D.A. Wells (1958), ‘The limitation of maximum temperature in a glass house by the use of a water film on the roof’. J.Ag.Engg. Res., 3 (2), 121.

    Google Scholar 

  159. H.V. Sverdrup, M.W. Johnson and R.H. Fleming (1942), ‘The Oceans, their Physics, Chemistry, and general Biology’ Prentice-Hall, New York.

    Google Scholar 

  160. J.R. Hull (1978), ‘The effects of radiation absorption on convective stability in salt gradient solar ponds’ proc. Am. Sec. of ISES Meet. pp. 37–40, Denver, Colorado.

    Google Scholar 

  161. M.N.A. Hawlader (1980), ‘The influence of the extinction coefficient on the effectivness of solar ponds’, Solar Energy, 25, 461–464.

    Article  Google Scholar 

  162. T.L. Ochs (1980), ‘Operational experience with a saturated borax solar pond’, 15th Interscoiety Energy Conversion Engineering Conference’, Seattle, Washington, Aug. 18–22, 1980, pp. 1446–1557.

    Google Scholar 

  163. C.F. Kooi (1981), ‘Salt gradient solar pond with reflective bottom: application to the saturated pond’, Solar Energy, 26 (2), 113.

    Article  Google Scholar 

  164. J.R. Hull, (1982), ‘Calculation of solar pond thermal efficiency with a diffusely reflecting bottom’, Solar Energy, 29 (5), 385–389.

    Article  Google Scholar 

  165. International Critical Tables’ Vol.3, National Academy Press, Washington, D.C., 1928.

    Google Scholar 

  166. M.N.A. Hawlader (1979), ‘The solar pond–A Collector and store of solar energy’ Sun at Work in Britain, No. 10, 12–18.

    Google Scholar 

  167. R.S. Schechter, I. Prigogine, and J.R. Hamm (1972), Physics of Fluids, 15, 379.

    Article  MATH  Google Scholar 

  168. P. Glansdorff and I. Prigogine 91971), ‘Thermodynamic theory of structure, stability and fluctuations’, Wiley Inter science.

    Google Scholar 

  169. T.G.L. Shirtcliff (1968), Nature, p. 489, Feb. 4, 1967.

    Google Scholar 

  170. J.S. Turner and H. Stommel (1964), Geophysics, 52, 49.

    Google Scholar 

  171. J.S. Turner (1968), J.Fluid Mechanics, 33, 183.

    Article  Google Scholar 

  172. G. Veronis (1965), Journal of Mar. Rea., 23, 1–17.

    Google Scholar 

  173. H. Tabor (1963), ‘Large area solar collectors for power production’, Solar Energy, 7, 189.

    Article  Google Scholar 

  174. H. Tabor (1966), ‘Solar Ponds’ Sci. J. 66–71.

    Google Scholar 

  175. S. Shahar (1968), U.S.Pat. 337291.

    Google Scholar 

  176. C.L. Gupta, R.R. Isaac and S.M. Patel 91980), ‘Design procedure for a solar pond’, Reg. J. of Energy Heat Mass Transfer’, 2(3), 193–203.

    Google Scholar 

  177. R.R. Isaac and C.L. Gupta (1982), ‘A parameteric design study of solar ponds’, Applied Energy, 11 (1), 35–49.

    Article  Google Scholar 

  178. J.R. Hull, K.V. Liu, Y.S. Cha, W.T. Sha, Jyoti Kamal and C.E.Nielsen (-1981),.’Dependence of ground heat loss upon solar pond size and perimeter insulation: calculated and experimental results’, Paper presented at ISES Congress, Brighton, England, Aug. 1981.

    Google Scholar 

  179. W.T. Sha et al (1978), ‘COMMIX-1: A three dimensional transient single-phase component program for thermalhydroulic analysis’, Report ANL-77–96.

    Google Scholar 

  180. L.H. Shaffer (1975), ‘Viscosity stablized solar pond’, US Patent 4138, 992 Filed July, 21.

    Google Scholar 

  181. L.H. Shaffer (1978), ‘Viscosity establised solar ponds’ SUN, Mankinds future source of energy, Proc. Int. Solar Energy Society Congress, New Delhi 1978, p. 1171–1175.

    Google Scholar 

  182. J.R. Hull (1979), ‘Membrane stratified solar ponds’, SUN II proc. ISES Silver Jubilee Congress, Atlanta, Georgia May 1979, Vol. 2, p. 1000–1004.

    Google Scholar 

  183. K.G.T. Hollands (1965), ‘Honeycomb devices in flat plate collectors’, Solar Energy, 9, 159–164.

    Article  Google Scholar 

  184. H. Buchberg, D.K. Edwards and U.A. Lalude (1968), ‘Design considerations for cellular solar collectors’, ASME Paper No. 68-WA/SOL-3.

    Google Scholar 

  185. U. Ortabasi, F.H. Dyksterhuis and N.D.Kaushika (1983), ‘Honeycomb stablized saltléss solar pond’, Solar Energy, 31 (2), 229–231.

    Article  Google Scholar 

  186. H.P. Garg, B. Bandyopadhyay, U. Rani and D.S. Hrishikasen, (1982), ‘Shallow solar pond: State of the art’, Energy Conversion and Management, 22, 117–131.

    Article  MATH  Google Scholar 

  187. E. Wilkins and K.L. Pinder (1979),’Experiments with a model solar pond’,Sunworld, 3(4), 110–117.

    Google Scholar 

  188. D.L. Styris, O.K. Harling, R.J. Zawarski, and J. Leshuk, (1976), ‘The non-convecting solar pond applied to building and process heating’, Solar Energy, 18, 245–251, 1976.

    Article  Google Scholar 

  189. H. Tabor (1980), ‘Solar power generation’, Lecture at Conference, ‘Solar Energy in the 80’s’, London, England, Jan., 1980.

    Google Scholar 

  190. H. Tabor (1975), ‘Solar ponds as heat source for low-temperature multi-effect distillation plants’, Desalination, 18, 289–302.

    Article  Google Scholar 

  191. K.A. Mayer 91980), ‘Research and Development to support commercialization in solar ponds’, Report No.LA-UR-80–2133 of Los Alamos Scientific Laboratory, New Mexico-1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Garg, H.P. (1987). Solar Ponds. In: Advances in Solar Energy Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0659-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0659-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8434-7

  • Online ISBN: 978-94-017-0659-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation