Part of the book series: Focus on Biotechnology ((FOBI,volume 10A))

  • 180 Accesses

Abstract

Legumes are important sources of proteins for the growing population in many develo** countries of the world. Their production is limited due to the crop’s susceptibility to fungal, bacterial and viral diseases, insect pests and besides many other undesirable agronomic traits. Genetic improvement of legumes by classical breeding has met with limited success due to the lack of genetic variability within the germplasm. Strategies for increasing and stabilizing the production of legume crops depend on the development of varieties resistant to diseases, pests and with other desirable agronomic traits. Recent biotechnological advances have offered the opportunity to develop new germplasms. The development of such technology largely depends on the availability of efficient regeneration protocols. In the present review, regeneration via organogenesis in legumes is described. The advantages and limitations of this technique along with directions for future research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adkins A L, Godwin 1 D and Adkins S W (1995) An efficient in vitro regeneration system for Australian grown chickpea (Cicer arietinum) cultivars. Aust. J Bot., 43: 491–497.

    Article  Google Scholar 

  • Ahmad M, Fautrier A G, McNeil D L, Hill G D and Burritt D J (1997) In vitro propagation of Lens species and their F1 interspecific hybrids. Plant Cell Tiss. Org. Cult., 47: 169–176.

    Article  Google Scholar 

  • Ahuja P S, Lu D Y, Cocking E C and Davey M R (1983) An assessment of the cultural capabilities of Trifolium repens L. (white clover) and Onobrychis viciaefolia Scop. (sainfoin) mesophyll protoplasts. Plant Cell Rep., 2: 269–272.

    Article  Google Scholar 

  • Altinkut A, Gozukirmiz N, Bajrovic K and Altman A (1997) High percentage of regeneration and transformation in chickpea. Acta Hort., 447: 319–320.

    Google Scholar 

  • Amitha K and Reddy T P (1996) Regeneration of plantlets from different explants and callus cultures of cowpea (Vigna unguiculata L.). Phytomorphology, 46: 207–211.

    Google Scholar 

  • Archana S, Singh N P, Astana A N and Singh A (1997) Callus induction and direct regeneration from immature embryo in chickpea. Int. Chickpea Pigeonpea Newslett., 4: 39–40.

    Google Scholar 

  • Arcioni S and Mariotti D (1982) Tissue culture and plant regeneration in the legumes. Onobrychis viciaefolia Scop., Coronilla varia and Lotus corniculatus L. In: Plant Tissue Culture (Ed Fujiwara A ), Japan Association for Plant Tissue Culture, Tokyo, pp. 707–708.

    Google Scholar 

  • Atreya C D, Rao J and Subramanyam N C (1984) In vitro regeneration of peanut (Arachis hypogaea L.) plantlets from embryo axes and cotyledon segments. Plant Sci. Lett., 34: 379–383.

    Article  Google Scholar 

  • Bajaj Y P S and Dhanju M S (1979) Regeneration of plants from apical meristem tips of some legumes. Curr. Sci., 48: 906–907.

    Google Scholar 

  • Bajaj Y P S, Ram A K, Labana K S and Singh H (1981) Regeneration of genetically variable plants from the anther-derived callus of Arachis hypogaea and Arachis villosa. Plant Sci. Lett., 23: 35–39.

    Google Scholar 

  • Barnett O W, Gibson P B and Seo A (1975) A comparison of heat treatment, cold treatment and meristem tip-culture for obtaining virus-free plants of Trifolium repens. Plant Disease Rep., 59: 834–837.

    Google Scholar 

  • Beach K H and Smith R R (1979) Plant regeneration from callus of red and Crimson clover. Plant Sci. Leu., 16: 231–237.

    Article  CAS  Google Scholar 

  • Bharal S and Rashid A (1979) Regeneration of plants from tissue cultures of the legume Indigofera enneaphylla Linn. Pflanzenphysiologie, 92: 443–447.

    CAS  Google Scholar 

  • Bhatia C R, Murty G S S and Mathews V H (1985) Regeneration of plants from “de-embryonated” peanut cotyledons cultured without nutrients and agar. Pflanzenzuchtung, 94: 149–155.

    Google Scholar 

  • Bhojwani S S (1981) A tissue culture method for propagation and low temperature storage of Trifolium repens genotypes. Physiol. Plant., 52: 187–190.

    Article  CAS  Google Scholar 

  • Bhojwani S S, Mullins K and Cohen D (1984) lntra-varietal variation for in vitro plant regeneration in the genus Trifolium. Euphytica, 33: 915–921.

    Google Scholar 

  • Bianchi S, Flament P and Dattee Y (1988) Somatic embryogenesis and organogenesis in alfalfa: Genotypic variation in regeneration ability. Agronomie, 8: 121–126.

    Article  Google Scholar 

  • Brar M S, Al-Khayri J M, Morelock T E and Anderson E J (1999) Genotypic response of cowpea (Vigna unguiculata L.) to in vitro regeneration from cotyledon explants. In Vitro Cell. Dev. Biol. Plant, 35: 8–12.

    Google Scholar 

  • Brar M S, Al-Khayri J M, Shamblin C E, McNew R W, Morelock T E and Anderson E J (1997) In vitro shoot- tip multiplication of cowpea Vigna unguiculata (L.) Walp. In Vitro Cell. Dev. Biol. Plant, 33: 114–118.

    Article  CAS  Google Scholar 

  • Broda Z (1984) Red clover (Trifolium pratense L.) vegetative propagation by tissue cultures with special consideration of genetic conditioning of the ability to regenerate from callus of Wegetatywna propagacja koniczyny czerwonej (Trifolium pratense L.). (in Pl., summary in Eng.). Roczniki Ad-adeni Rolnicze, W Poznaniu Rozprawy Naukowe, 140: 5–41.

    Google Scholar 

  • Burtnik O J and Mroginski L A (1990) Regeneration of Arachis pintoi (Leguminosae) plants throughout the in vitro culture of leaf tissue (in Sp. and Fr., summary in Eng.). Oleagineux, 40: 609–612.

    Google Scholar 

  • Busse G (1986) In vitro cultivation of Vicia faba and induction of morphogenesis. Biologisches Zentralbiatt, 105: 97–104.

    Google Scholar 

  • Campbell C T and Tomes D T (1984) Establishment and multiplication of red clover plants by in vitro shoot-tip culture. Plant Cell Tiss. Org. Cult., 3: 49–57.

    Article  CAS  Google Scholar 

  • Chandra M and Pal A (1995) Differential response of the two cotyledons of Vigna radiata in vitro. Plant Cell Rep., 15: 3–4.

    Article  Google Scholar 

  • Chen H K, Mok M C and Mok D W S (1990) Somatic embryogenesis and shoot organogenesis from inter-specific hybrid embryos of Vigna glabrescens and V radiata. Plant Cell Rep., 9: 77–79.

    Article  Google Scholar 

  • Cheng M, His D C H and Philips G C (1992) In vitro regeneration of valencia type peanut (Arachis hypogaea L.) from cultured petioles, epicotyl sections and other seedling explants. Peanut Sci., 19: 82–87.

    Article  Google Scholar 

  • Cheng T Y, Saka H and Voqui-Dinh T H (1980) Plant regeneration from soybean cotyledonary node segments in culture. Plant Sci. Lett., 19: 91–99.

    Article  CAS  Google Scholar 

  • Cheyne V A and Dale P J (1980) Shoot-tip culture in forage legumes. Plant Sci Lett., 19: 303–309.

    Article  CAS  Google Scholar 

  • Collins G B and Phillips G C (1982) In vitro tissue culture and plant regeneration in Trifolium pratense L. In: Regeneration from Cells and Tissue Culture (Eds Earle E D and Demarly Y), Praeger Scientific Publishing, New York, USA, pp. 22–34.

    Google Scholar 

  • Crocomo O J, Peters J E and Sharp W R (1976) Interactions of phytohormones on the control of growth and root morphogenesis in cultured Phaseolus vulgaris leaf explants. Turriable, 26: 232–236.

    CAS  Google Scholar 

  • Daimon H and Mii (1991) Multiple shoot formation and plantlet regeneration from cotyledonary node in peanut (Arachis hypogaea L.). Jpn. J Breed., 41: 461–466.

    Google Scholar 

  • Dos Santos A V P, Outka D E, Cocking E C and Davey M R (1980) Organogenesis and somatic embryogenesis in tissues derived from leaf protoplasts and leaf explants of Medicago sativa. Pflanzenphysiologie, 99: 261–270.

    Google Scholar 

  • Eapen S and George L (1993) Plant regeneration from leaf discs of peanut and pigeonpea: Influence of benzyladenine, indoleacetic acid and amino acid conjugates. Plant Cell Tiss. Org. Cult., 35: 223–227.

    Article  CAS  Google Scholar 

  • Franklin C I, Trieu T N, Gonzales R A and Dixon R A (1991) Plant regeneration from seedling explants of green bean (Phaseolus vulgaris L.) via organogenesis. Plant Cell Tiss. Org. Cult., 24: 199–206.

    Article  Google Scholar 

  • FuY Q, Lucchin M and Lupotto (1995) Rapid and efficient regeneration from cotyledonary explants of soybean cultivars (Glycine max L.). J Gen. Breed., 49: 339–342.

    Google Scholar 

  • Geetha N, Venkatachalam P and Rao GR (1997) In vitro selection and plant regeneration from polyethylene glycol adapted callus of blackgram. Curr Agri., 21: 1–2.

    Google Scholar 

  • Gharyal P K and Maheshwari S C (1981) In vitro differentiation of somatic embryos in a leguminous tree Albizzia lebbeck L. Naturwissenshaten, 68: 379–380.

    Google Scholar 

  • Gharyal P K and Maheshwari S C (1982) Plantlet formation in tissue cultures of the sensitive plant Mimosa pudica L. Pflanzenphysiologie, 105: 179–182.

    Google Scholar 

  • Gill R, Eapen S and Rao P S (1986) Tissue culture studies in mothbean — factors influencing plant regeneration from seeding expiants of different cultivars. Proc. Indian Acad. Sci., 96: 55–61.

    CAS  Google Scholar 

  • Gregory H M, Hag N and Evans P K (1980) Regeneration of plantlets from leaf callus of the winged bean Psophocarpus tetragonolobus (L.) DC. Plant Sci. Lett., 18: 395–400.

    Article  CAS  Google Scholar 

  • Gresshoff P M (1980) In vitro culture of white clover: callus, suspension, protoplast culture and plant regeneration. Bot. Gaz., 141: 157–164.

    Google Scholar 

  • Gulati A and Jaiwal P K (1990) Culture conditions affecting plant regeneration from cotyledon of Vigna radiata (L.) Wilczek. Plant Cell Tiss. Org. Cult., 23: 1–7.

    Article  CAS  Google Scholar 

  • Gulati A and Jaiwal P K (1992) In vitro induction of multiple shoots and plant regeneration from shoot-tips of mungbean (Vigna radiata (L.) Wilczek). Plant Cell Tiss. Org. Cult., 29: 199–205.

    CAS  Google Scholar 

  • Gulati A and Jaiwal P K (1994) Plant regeneration from cotyledonary node explants of mungbean (Vigna radiata (L.) Wilczek). Plant Cell Rep., 13: 523–527.

    Article  CAS  Google Scholar 

  • Gupta N and Srivastava P S (1996) In vitro regeneration and isozyme patterns in Zizyphus mauritiana. J. Plant Biochem. Biotech., 5: 87–90.

    Article  CAS  Google Scholar 

  • Hammad A H A (1996) Regeneration of some bean cultivars via in vitro organogenesis after irradiation by gamma rays. Ann. Agri. Sci., 34: 1117–1122.

    Google Scholar 

  • Hammatt N, Nelson R S and Davey M R (1987a) Plant regeneration from seedlings explants of perennial Glycine species. Plant Cell Tiss. Org. Cult., 11: 3–11.

    Article  Google Scholar 

  • Hammatt N, Nelson R S and Davey M R (1987b) Plant regeneration from seedling cotyledons, petioles and leaves of Glycine clandestina. Plant Physiol., 68: 125–128.

    Article  Google Scholar 

  • Hammatt N, Nelson R S and Davey M R (1989) Plant regeneration from seedling explants and cotyledon protoplasts of Glycine argyrea Tind. In vitro Cell. Dev. Biol. Plant, 25: 669–672.

    Google Scholar 

  • Harzic N, Guilloteau A and Huyghe C (1998) ln vitro shoot formation of Lupinus albus from cotyledonary node. In: 3rd European Conference on Grain Legumes. Opportunities fin-high quality healthy and added-value crops to meet European demands. Valladolid, Spain, p. 369.

    Google Scholar 

  • Hisajima S (1985) Micropropagation through multiple shoot formation from pea seeds (Pisum sativum L. var. arvense poir). Jpn. J Trop. Agri., 29: 176–179.

    Google Scholar 

  • Hymowitz T, Chalmers N L, Constanza S H and Saam M M (1986) Plant regeneration from leaf explants of Glycine clandestina Wendl. Plant Cell Rep., 3: 192–194.

    Article  Google Scholar 

  • Ignacimuthu S and Franklin G (1999) Regeneration of plantlets from cotyledon and embryonal axis explants of Vigna mungo L. Hepper. Plant Cell Tiss. Org. Cult., 55: 75–78.

    Article  Google Scholar 

  • Ignacimuthu S, Franklin G and Melchias G (1997) Multiple shoot formation and in vitro fruiting of Vigna mungo (L.) Hepper. Curr. Sci., 73: 733–735.

    Google Scholar 

  • Illingworth J E (1974) Peanut plants from single de-embryonated cotyledons or cotyledonary fragments. Hort. Sci., 9: 462.

    Google Scholar 

  • Jaiwal P K and Gulati A (1995) Current status and future strategies of in vitro culture techniques for genetic improvement of mungbean (Vigna radiata (L.) Wilczek). Euphytica, 86: 167–181.

    Google Scholar 

  • Kalyan Kumar De (1992) An Introduction to Plant Tissue Culture. New Central Book Agency, Calcutta, pp. 1–185.

    Google Scholar 

  • Kameya T and Widholm J M (1981) Plant regeneration from hypocotyl sections of Glycine species. Plant Sci. Lett., 21: 289–294.

    Article  CAS  Google Scholar 

  • Kaneda Y, Tabei Y, Nishimura S, Harada K, Akihama T and Kitamura K (1997) Combination of thidiazuron and basal media with low salt concentrations increases the frequency of shoot organogenesis in soybeans (Glycine max (L.) Merr). Plant Cell Rep., 17: 8–12.

    Article  CAS  Google Scholar 

  • Kartha K K, Pahl K, Leung N L and Mroginski L A (1981) Plant regeneration from meristems of grain legumes soybean, cowpea, peanut, chickpea and bean. Can. J. Bot., 59: 1671–1679.

    Article  CAS  Google Scholar 

  • Krishnamurthy K V, Godbole D A and Mascarenhas A F (1984) Studies on a drought resistant legume: The moth bean, Vigna aconitifolia (Jacq) Marechal. I. Protoplast culture and organogenesis. Plant Cell Rep., 3: 30–32.

    Article  Google Scholar 

  • Kubalakova M, Tejklova E and Griga M (1988) Some factors affecting root formation on in vitro regenerated pea shoots. Biol. Plant., 30: 179–184.

    Article  CAS  Google Scholar 

  • Kuchuk N, Komarnitski I, Shakhovsky A and Gleba Y (1990) Genetic transformation of Medicago species by Agrobacterium tumejaciens and electroporation of protoplasts. Plant Cell Rep., 8: 660–663.

    Article  CAS  Google Scholar 

  • Kulothungan S (1997) In vitro culture studies on cowpea (Vigna unguiculata (L.) Walp). Ph.D Thesis, Department of Biotechnology, Bharathidasan University, Tiruchirappalli, India.

    Google Scholar 

  • Kulothungan S, Baskaran A, Kashinathan P, Shajahan A and Ganapathi A (1993) Morphogenetic studies on excised embryo culture of cowpea Vigna unguiculata (L.) Walp. Legume Res., 16: 71–74.

    Google Scholar 

  • Kumar A S, Reddy T and Reddy G M (1983) Plantlet regeneration from different callus cultures of pigeonpea (Cajanus cajan L.). Plant Sci. Lett., 32: 271–278.

    Article  CAS  Google Scholar 

  • Kunjumon A, Kannan V R and Jasrai Y T (1996) Plant regeneration from leaf explants of three grain legumes on same medium. J Plant Biochem. Biotech., 5: 27–29.

    Article  Google Scholar 

  • Ladeinde T A Q and Soh W H (1991) Effect of different growth regulators on organogenesis and total fresh weight gain in cultured leaf tissues of cowpea (Vigna unguiculata (L.) Walp). Phytomorphology, 41: 99–107.

    Google Scholar 

  • Li X Q and Demarly Y (1995) Characterization of factors affecting plant regeneration frequency of Medicago lupulina L. Euphytica, 86: 143–148.

    Article  Google Scholar 

  • Luo J P and Jia J F (1998) Callus induction and plant regeneration from hypocotyl explants of the forage legume Astrogalus adsurgens. Plant Cell Rep., 17: 6–7.

    Google Scholar 

  • Malik K A and Saxena P K (1991) Regeneration in Phaseolus vulgaris L. promote role of N6-benzylaminopurine in cultures from juvenile leaves. Planta, 814: 148–150.

    Google Scholar 

  • Mariotti D, Arcioni S and Pezzotti M (1984) Regeneration of Medicago arborea L. plants from tissue culture and protoplast cultures of different organ. Plant Sci. Lett., 37: 149–156.

    Article  Google Scholar 

  • Martin J P and Rabechault H (1976) The culture in vitro of groundnut stamens (Arachis hypogaea L.)—I1. Establishment of tissue cultures and organogenesis (in Fr., summary in Eng.). Oleagineux, 31: 19–25.

    CAS  Google Scholar 

  • Mathews H (1987) Morphogenetic response from in vitro cultured seedling explants of mungbean (Vigna radiata (L.) Wilczek). Plant Cell Tiss. Org. Cult., 11: 233–246.

    Article  Google Scholar 

  • Mathews H (1988) In vitro responses of Brassica juncea and Vigna radiata to the antibiotic kanamycin. Ann. Bot., 62: 671–675.

    Google Scholar 

  • Mathews H and Rao P S (1984) In vitro production of multiple seedlings from single seeds of mungbean (Vigna radiata L. Wilczek). Pflanzen Physiologie., 113: 325–329.

    Google Scholar 

  • Mathews V H, Rao P S and Bhatia C R (1986) Somaclonal variation in cotyledonary plants of mungbean. Pflanzenzuchtung, 96: 169–173.

    Google Scholar 

  • McClean P and Grafton K F (1989) Regeneration of dry bean (Phaseolus vulgaris L.) via organogenesis. Plant Sci., 60: 117–122.

    Article  Google Scholar 

  • McKently A H, Moore G A and Gardner FP (1990). In vitro plant regeneration of peanut. Crop Sci., 30: 192–196.

    Google Scholar 

  • Mehta V and Mohan Ram H Y (1980) Regeneration of plantlets from the cotyledons of Cajanus cajan L. Indian J Exp. Biol., 18: 800–802.

    Google Scholar 

  • Meijer E G M and Broughton W J (1981) Regeneration of whole plants from hypocotyl-, root-, and leaf-derived tissue cultures of the pasture legume Stylosanthes guyanensis Physiol. Plant, 52: 280–284.

    Article  CAS  Google Scholar 

  • Mendoza A B, Hattori K, Nishimura T and Futsuhara Y (1992) Shoot regeneration from the callus of immature primary leaves in mungbean (Vigna radiata (L.) Wilczek). Jpn. J Breed., 42: 134–149.

    Google Scholar 

  • Miah S A R, Rao R and Rao R (1996) Regeneration of plantlets from excised roots of Albizia lebbeck Benth. Indian J. Exp. Biol., 34: 188–189.

    Google Scholar 

  • Mohamed M F, Read P E and Coyne D P (1991) Plant regeneration in vitro from the embryonic axis of common and tepary beans. Annu. Rep. Bean Improve. Co-op., 34: 150–151.

    Google Scholar 

  • Mohan M L and Krishnamurthy K V (1998) Plant regeneration in pigeonpea (Cajanus cajan (L.) Millsp.) by organogenesis. Plant Cell Rep., 17: 705–710.

    Article  CAS  Google Scholar 

  • Mohan Ram H Y, Mehta U, Ramanuja Rao I V and Narasimham M (1982) Haploid induction in legumes. In: Plant Tissue Culture (Ed Fujiwara A ), Japanese Association for Plant Tissue Culture, Tokyo, Japan, pp. 541–542.

    Google Scholar 

  • Mroginski L A and Fernandez A (1980) Obtain plantlets by in vitro culture of anthers of wild species of Arachis (Leguminosae) (in Sp., summary in Eng.), Oleagineux, 35: 89–92.

    Google Scholar 

  • Mroginski L A and Kartha K K (1981a) Regeneration of pea (Pisum sativum L. cv Century) plants by in vitro culture of immature leaflets. Plant Cell Rep., 1: 64–66.

    Article  Google Scholar 

  • Mroginski L A and Kartha K K (1981b) Regeneration of plants from callus tissue of the forage legume Stylosanthes guianensis. Plant Sci. Lett., 23: 245–251.

    Article  CAS  Google Scholar 

  • Mroginski L A, Kartha K K and Shyluk J P (1981e) Regeneration of peanut (Arachis hypogaea) plantlets by in vitro culture of immature leaves. Can. J. Bot., 59: 826–830.

    Article  CAS  Google Scholar 

  • Mukhopadhyay A and Mohan Ram H Y (1981) Regeneration of plantlets from excised roots of Dalbergia sissoo. Indian J Exp. Biol., 19: 1113–1115.

    Google Scholar 

  • Murthy B N S, Victor J,Singh R P, Fletcher R A and Saxena P K (1996) In vitro regeneration of chickpea (Cicer arietinum L.): Stimulation of direct organogenesis and somatic embryogenesis by thidiazuron. Plant Growth Reg.,19: 233–240.

    Google Scholar 

  • Muthukumar B, Mariamma M and Gnanam A (1995) Regeneration of plants from primary leaves of cowpea. Plant Cell Tissue Org. Cult., 42: 153–155.

    Article  Google Scholar 

  • Muthukumar B, Mariamma M, Veluthambi K and Gnanam A (1996) Genetic transformation of cotyledon explants of cowpea (Vigna unguiculata (L.) Walp) using Agrobacterium tumefaciens. Plant Cell Rep., 15: 980–985.

    CAS  Google Scholar 

  • Myers J R, Lazzeri P A and Collins G B (1989) Plant regeneration of wild Glycine species from suspension culture derived protoplasts. Plant Cell Rep., 8: 112–115.

    Article  Google Scholar 

  • Nagl W, Ignacimuthu S and Becker J (1997) Genetic engineering and regeneration of Phaseolus and Vigna. State of the art and new attempts. J Plant Physiol., 150: 625–644.

    Article  CAS  Google Scholar 

  • Nangia S, Singh N and Singh N (1996) Micropropagation of Leucaena leucocephala (Lam.) de wit. Ann. Biol. (Ludhiana), 12: 82–85.

    Google Scholar 

  • Narasimhulu S B and Reddy G M (1983) Plant regeneration from different callus cultures of Arachis hypogaea L. Plant Sci. Lett., 31: 157–163.

    Article  CAS  Google Scholar 

  • Narasimhulu S B and Reddy G M (1985) Callus induction and morphogenesis in Arachis hypogaea L. In: Proceedings of an International Workshop on Cytogenetics ofArachis, 31 Oct. —2 Nov 1983 (Eds Moss J P and Feakin S D ), International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India, pp. 159–163.

    Google Scholar 

  • Nef-Campa C, Chaintreuil-Dongmo C and Dreyfus B L (1996) Regeneration of the tropical legume Aeschynomene sensitiva Sw from root explants. Plant Cell Tiss. Org. Cult., 44: 149–154.

    Article  Google Scholar 

  • Oelck M M and Schieder 0 (1983) Genotypic differences in some legume species affecting the redifferentiation ability from callus to plants. Pflanzenzuchtung, 91: 312–321.

    Google Scholar 

  • Ono Y, Takahata Y and Kaizuman N (1994) Effect of genotype on shoot regeneration from cotyledonary explants of rapeseed (Brassica napus L.). Plant Cell Rep., 14: 13–17.

    Article  CAS  Google Scholar 

  • Oswald T H, Smith A E and Phillips D V (1977) Callus and plantlet regeneration from cell cultures of ladino clover and soybean. Physiol. Plant., 39: 129–134.

    Article  CAS  Google Scholar 

  • Ozean S (1995) In vitro micropropagation of pea (Pisum sativum L.) from immature embryos. Turkish J. Bot., 19: 427–429.

    Google Scholar 

  • Ozcan S, Sevimary C S, Vildiz M, Sancak C and Ozgen M (1996) Prolific shoot regeneration from immature embryo explants of sainfoin (Onobrychis viciaefolia Scop.). Plant Cell Rep., 16: 3–4.

    Google Scholar 

  • Ozgen M, Ozcan S, Sevimay C S, Sancak C and Yildiz M (1998) High frequency adventitious shoot regeneration in Sainfoin (Onobrychis viciaefolia). Plant Cell Tiss. Org. Cult., 52: 205–208.

    Article  CAS  Google Scholar 

  • Pandey P and Bansal Y K (1989) Plantlet formation from callus cultures of cowpea (Vigna sinensis). Curr. Sci., 58: 394–395.

    CAS  Google Scholar 

  • Pandey P and Bansal Y K (1992). Plant regeneration from leaf and hypocotyl explants of Glycine wightii (Wand A) verdc. var longicauda. Jpn. J. Breed., 42: 1–5.

    Google Scholar 

  • Parrott W A and Collins G B (1983) Callus and shoot-tip culture of eight Trifolium species in vitro with regeneration via somatic embryogenesis of T. rubens. Plant Sci. Lett., 28: 189–194.

    Google Scholar 

  • Patel D B, Barve D M, Nagar N and Mehta A R (1992) In vitro development of immature and hybrid embryos of Cajanus cajan (L.) Mill sp. Indian J Exp. Biol., 30: 871–873.

    Google Scholar 

  • Patel M B, Bhardwaj B R and Joshi A (1991) Organogenesis in Vigna radiata (L.) Wilczek. Indian J. Exp. Biol., 29: 619–622.

    Google Scholar 

  • Pellegrineschi A (1997a) In vitro plant regeneration via organogenesis of cowpea (Vigna unguiculata (L.) Walp). Plant Cell Rep., 17: 89–95.

    CAS  Google Scholar 

  • Pellegrineschi A, Fatokun C A, Thottappilly G and Adepoju A A (1997b) Cowpea embryo rescue: 1. Influence of culture media composition on plant recovery from isolated immature embryos. Plant Cell Rep., 17: 133–138.

    Article  CAS  Google Scholar 

  • Phillips G C and Collins G B (1979a) Virus symptom-free plants of red clover using meristem culture. Crop Sci., 19: 213–216.

    Google Scholar 

  • Phillips G C and Collins G B (1979b) In vitro tissue culture of selected legumes and plant regeneration from callus cultures of red clover. Crop. Sci., 19: 59–664.

    Google Scholar 

  • Pittman R N, Banks D J, Kirby J S, Mitchell E D and Richardson P E (1983) In vitro culture of immature peanut (Arachis spp.) leaves: Morphogenesis and plantlet regeneration. Peanut Sci., 10: 21–25.

    Google Scholar 

  • Pittman R N, Johnson B B and Banks D J (1984) In vitro differentiation of a wild peanut, Arachis villosulicarpa Hoehine. Peanut Sci., 11: 24–27.

    Google Scholar 

  • Polanco M C, Pelaez M I and Ruiz M L (1988) Factors affecting callus and shoot formation from in vitro cultures of Lens Culinaris Medik. Plant Cell Tiss. Org. Cult., 15: 175–182.

    Article  Google Scholar 

  • Polisetty R, Paul V, Dereshwar J J, Khetarpal S, Suresh K and Chandra R (1997) Multiple shoot induction by benzyladenine and complete plant regeneration from seed explants of chickpea (Cicer arietinum L.). Plant Cell Rep., 16: 565–571.

    CAS  Google Scholar 

  • Prem Anand R, Ganapathi A, Anbazhagan V R, Vengadesan G, Kolothungan S and Selvaraj N (2001) Plant regeneration from immature derived cotyledons of Vigna unguiculata (L.) Walp. Curr. Sci., 80: 671–674.

    Google Scholar 

  • Rahim M A, Caligari P D S and Hill G D (1999) Multiple shoot regeneration in Lupinus mutabilis Sweet. Towards the 21st Century. In: Proceedings of the 8th International Lupin Conference, Asilomar, California, USA, pp. 264–266.

    Google Scholar 

  • Ramsay G (1993) Regeneration in grain legume tissue culture. Grain Legumes (Paris) 2: 16–17.

    Google Scholar 

  • Rao S and Patel P (1997) In vitro selection of atrazine tolerant cell lines and regeneration of plantlets from the selected lines in Cicer arietinum (L.). Phytomorphology, 47: 269–272.

    Google Scholar 

  • Rao S H K and Narayanaswamy B (1975) Effect of gamma irradiation in cell proliferation and regeneration in explanted tissues of pigeonpea (Cajanus cajan (L.) Mill sp.). Radiation Bot., 15: 301–305.

    Article  Google Scholar 

  • Raruqui O R, Shahi V K, Harsh-Kumar and Kumar H (1996) Tissue culture response in Pisum. Crop Improv., 23: 39–43.

    Google Scholar 

  • Reddy G M and Narasimhulu S B (1985) Plantlet regeneration and in vitro flowering in Arachis hypogaea L. Genet Manipulat. Crops News Lett., 1: 44–50.

    Google Scholar 

  • Rubluo A, Kartha K K, Mroginski L A and Dyck J (1984) Plant regeneration from pea leaflets cultured in vitro and genetic stability of regenerants. J. Plant Physiol., 117: 119–130.

    Article  PubMed  CAS  Google Scholar 

  • Rugman E E and Cocking E C (1985) The development of somatic hybridization techniques for groundnut improvement. In: Proceeding of an International Workshop on Cytogenetics of Arachis, 31 Oct. —2 Nov. 1983 (Eds Moss J P and Feakin S D ), International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India, pp. 167–174.

    Google Scholar 

  • Ruiz M L, Pelaez Rueda J, Espino F J and Vasquesz A M (1986). A comparative study of callus formation and plant regeneration from different explants of Phaseolus vulgaris and Phaseolus coccineus. In: Genetic Manipulation in Plant Breeding (Eds Horn W, Jenson DJ, Oden Bach W and Scheider O ), Berlin, Germany, and New York, USA, pp. 495–497.

    Google Scholar 

  • Sanago M H M, Shattuck V I and Strommer J (1996) Rapid plant regeneration of pea using thidiazuron. Plant Cell Tiss. Org. Cult., 45: 145–168.

    Article  Google Scholar 

  • Sanghamitra S, Rout G R, Premananda D, Samantaray S and Das P (1998) Plant regeneration from callus cultures of Crotalaria spp. Bio. Bratislava, 53: 115–120.

    Google Scholar 

  • Santalla M, Power J B and Davey M R (1998) Efficient in vitro shoot regeneration responses of Phaseolus vulgaris and P. coccineus. Euphytica, 102: 195–202.

    Article  Google Scholar 

  • Sator C (1990) Lupinus (Lupinus spp.). In: Biotechnology in Agriculture and Forestry, Vol. 10. Legumes and Oilseed Crops I (Ed Bajaj Y P S ), Springer-Verlag, Berlin, Germany, pp. 288–311.

    Chapter  Google Scholar 

  • Schaefer M A, Czerwinski T and Busmann A (1988). The use of embryo culture for the regeneration of inter-specific hybrids from Lupinus mutabilis X Lupinus hartwegii. Landbauforschung-Volkenrode (Germany FR), 38: 173–177.

    Google Scholar 

  • Sharma V K and Kothari S C (1991) High frequency of plant regeneration in tissue culture of Glycine clandestina, a wild relative of soybean. Phytomorphology, 43: 29–33.

    Google Scholar 

  • Shiva Prakash N, Pental D and Sarin N B (1994) Regeneration for pigeonpea (Cajanus cajan) from cotyledonary node via multiple shoot formation. Plant Cell Rep., 13: 623–627.

    Article  CAS  Google Scholar 

  • Singh A, Singh N P, Asthana A N and Singh A (1997) Callus induction and direct regeneration from immature embryos in chickpea. Int. Chickpea Pigeonpea News Lett., 4: 39–40.

    CAS  Google Scholar 

  • Skoog F and Miller C O (1957) Chemical regulation of growth and organ formation in plant tissue cultured in vitro. Symp. Soc. Exp. Biol., 11: 118–131.

    CAS  Google Scholar 

  • Skucinska B and Miszke W (1980) In vitro propagation of red clover. Pflanzenzuchtung, 85: 328–331.

    Google Scholar 

  • Szabados L and Roca W M (1986) Regeneration of isolated mesophyll and cell suspension protoplasts to plants in Stylosanthes guianesis, a tropical legume. Plant Cell Rep., 3: 174–177.

    Article  Google Scholar 

  • Thome G C H, Santarem E R and Ferreira A G (1995) Adventitious bud induction and plant regeneration from soybean cotyledonary nodes. Phyton, (Buenos-Aires), 57: 127–135.

    Google Scholar 

  • Tomar U K and Gupta S C (1988) Somatic embryogenesis and organogenesis in callus cultures of a tree legume–Albizzia lebbeck King. Plant Cell Rep., 7: 70–73.

    Article  CAS  Google Scholar 

  • Vajranabhaiah S N, Purushotham M G, Reddy P C and Prakash A H (1993) Regeneration potential of hypocotyls derived long term callus cultures in groundnut (Arachis hypogaea L.) cv TMV-2. Cure. Sci., 65: 806–807.

    Google Scholar 

  • Vani A K S and Reddy V D (1996) Morphogenesis from callus cultures of chickpea (Cicer arietinum L.). Indian J. Exp. Biol., 34: 285–287.

    Google Scholar 

  • Vaquero F, Robles C and Riz M L (1993) A method for long term micropropagation of Phaseolus coccineus L. Plant Cell Rep., 12: 395–398.

    Article  CAS  Google Scholar 

  • Veliky I A and Martin S M (1970). A fermenter for plant cell suspension cultures. Can. J Microbiol., 16: 223–226.

    Article  PubMed  CAS  Google Scholar 

  • Vlachova M, Metz B A, Schell J and de Bruijn F J (1987) The tropical legume Sesbania rostrata: Tissue culture, plant regeneration and infection with Agrobacterium tumefaciens and rhizogenes strains. Plant Sci., 50: 213–223.

    Article  CAS  Google Scholar 

  • Webb K J, Fay M F and Dale P J (1987) An investigation of morphogenesis within the genus Trifolium. Plant Cell Tiss. Org. Cult., 11: 37–46.

    Article  Google Scholar 

  • Wei Z (1988) Plant regeneration from protoplasts of soybean (Glycine max L.). Plant Cell Rep., 7: 348–35.

    Article  Google Scholar 

  • White D W R (1984) Plant regeneration from long term suspension cultures of white clover. Planta, 162: 1–7.

    Article  Google Scholar 

  • White P R (1939) Potentially unlimited growth of excised plant callus in an artificial medium. Am. J. Bot., 26: 59–64.

    Article  Google Scholar 

  • Widholm J M and Rick S (1993) Shoot regeneration from Glycine canescens tissue culture. Plant Cell Rep., 2: 19–20.

    Google Scholar 

  • Williams D J and McHughen A (1986) Plant regeneration of the legume Lens culinaris Medik. (Lentil) in vitro. Plant Cell Tiss. Org. Cult., 7: 149–153.

    Article  Google Scholar 

  • Wilson V M, Haq N and Evans P K (1985) Protoplast isolation, culture and plant regeneration in the winged bean, Psophocarpus tetragonolobus (L.) DC. Plant Sci., 41: 61–68.

    Article  CAS  Google Scholar 

  • Yamada T (1989) Selection of a highly-regenerative genotype of white clover (Trifolium repens L.) and plant regeneration from protoplasts derived from this genotype. Euphytica, 44: 181–186.

    Article  Google Scholar 

  • Zagorska N, Dimitrov B, Gadcva P and Robeva P (1997) Regeneration and characterization of plants obtained from anther cultures in Medicago sativa L. In Vitro Cell. Dev. Biol. Plant, 33: 107–110.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ganapathi, A., Anbazhagan, V.R., Amutha, S., Anand, R.P. (2003). In Vitro Organogenesis. In: Jaiwal, P.K., Singh, R.P. (eds) Improvement Strategies of Leguminosae Biotechnology. Focus on Biotechnology, vol 10A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0109-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0109-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6331-1

  • Online ISBN: 978-94-017-0109-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation