Part of the book series: Encyclopaedia of Mathematics ((ENMA))

  • 1112 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, F., and Fike, C.: ‘Norms and exclusion theorems’, Numer. Math. 2 (1960), 137–141.

    Article  MathSciNet  MATH  Google Scholar 

  2. Deif, A.: Sensitivity analysis in linear systems, Springer, 1986.

    Book  MATH  Google Scholar 

  3. Deif, A.: ‘Realistic a priori and a posteriori bounds for computed eigenvalues’, IMA J. Numer. Anal 9 (1990), 323–329.

    Article  MathSciNet  Google Scholar 

  4. Deif, A.: Advanced matrix theory for scientists and engineers, 2second ed., Gordon&Breach, 1991.

    Google Scholar 

  5. Deif, A.: ‘Rigorous perturbation bounds for eigenvalues and eigenvectors of a matrix’, J. Comput. Appl. Math. 57 (1995), 403–412.

    Article  MathSciNet  MATH  Google Scholar 

  6. Deif, A., Seif, N., and Hussein, S.: ‘Sylvester’s equation: accuracy and computational stability’, J. Comput. Appl. Math. 61 (1995), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  7. Golub, G., and Loan, C. Van: Matrix computations, John Hopkins Univ. Press, 1983.

    MATH  Google Scholar 

  8. Lawson, C., and Hanson, R.: Solving least-squares problems, Prentice-Hall, 1974.

    MATH  Google Scholar 

  9. Oettli, W., and Prager, W.: ‘Compatibility of approximate solution of linear equations with given error bounds for coefficients and right hand sides’, Numer. Math. 6 (1964), 405–409.

    Article  MathSciNet  MATH  Google Scholar 

  10. Skeel, R.: ‘Scaling for numerical stability in Gaussian elimination’, J. Assoc. Comput. Mach. 26 (1979), 494–526.

    Article  MathSciNet  MATH  Google Scholar 

  11. Stewart, G.: Introduction to matrix computations, Acad. Press, 1973.

    MATH  Google Scholar 

  12. Stewart, G., and Sun, J.: Matrix perturbation theory, Acad. Press, 1990.

    MATH  Google Scholar 

  13. Wedin, P.: ‘Perturbation theory for pseudo-inverses’, BIT 13 (1973), 217–232.

    Article  MathSciNet  MATH  Google Scholar 

  14. Wilkinson, J.: The algebraic eigenvalue problem, Clarendon Press, 1965.

    MATH  Google Scholar 

  15. Beth, T., Jungnickel, D., and Lenz, H.: Design theory, Cambridge Univ. Press, 1986.

    MATH  Google Scholar 

  16. Chen, Y.Q.: ‘On the existence of abelian Hadamard difference sets and generalized Hadamard difference sets’, Finite Fields and Appl. (to appear).

    Google Scholar 

  17. Jungnickel, D., and Pott, A.: ‘Difference sets: Abelian’, in Ch.J. Colbourn and J.H. Dinitz (eds.): CRC Handbook of Combinatorial Designs, CRC Press, 1996, pp. 297–307.

    Google Scholar 

  18. Kraemer, R.G.: ‘Proof of a conjecture on Hadamard 2-groups’, J. Combinatorial Th. A 63 (1993), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  19. Pott, A.: Finite geometry and character theory, Vol. 1601 of Lecture Notes in Mathematics, Springer, 1995.

    MATH  Google Scholar 

  20. Adler, M., and Moerbeke, P. van: ‘The Kowalewski and Hénon-Heiles motions as Manakov geodesic flows on SO(4): a two-dimensional family of Lax pairs’, Comm. Math. Phys. 113 (1988), 659–700.

    Article  MathSciNet  Google Scholar 

  21. Adler, M., and Moerbeke, P. van: ‘The complex geometry of the Kowalewski-Painlevé analysis’, Invent. Math. 97 (1989), 3–51.

    Article  MathSciNet  MATH  Google Scholar 

  22. Barth, W.: ‘Abelian surfaces with (1, 2)-polarization’: Algebraic Geometry, Sendai, 1985, Vol. 10 of Advanced Studies in Pure Math., 1987, pp. 41–84.

    Google Scholar 

  23. Barth, W.: ‘Quadratic equations for level-3 abelian surfaces’: Abelian Varieties, Proc. Workshop Egloffstein 1993, de Gruyter, 1995, pp. 1–18.

    Google Scholar 

  24. Barth, W., and Nieto, I.: ‘Abelian surfaces of type (1,3) and quartic surfaces with 16 skew lines’, J. Algebraic Geometry 3 (1994), 173–222.

    MathSciNet  MATH  Google Scholar 

  25. Birkenhake, Ch., and Lange, H.: ‘Moduli spaces of Abelian surfaces wih isogeny’: Geometry and Analysis, Bombay Colloquium 1992, Tata Institute of Fundamental Research, 1995, pp. 225–243.

    Google Scholar 

  26. Birkenhake, Ch., Lange, H., and Straten, D. van: ‘Abelian surfaces of type (1,4)’, Math. Ann. 285 (1989), 625–646.

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Lange, Ch. Birkenhake: Complex Abelian varieties, Vol. 302 of Grundlehren, Springer, 1992.

    MATH  Google Scholar 

  28. Horrocks, G., and Mumford, D.: ‘A rank 2 vector bundle on P4 with 15000 symmetries’, Topology 12 (1973), 63–81.

    Article  MathSciNet  MATH  Google Scholar 

  29. Hulek, K., and Lange, H.: ‘Examples of abelian surfaces in P4’, J. Reine Angew. Math. 363 (1985), 200–216.

    MathSciNet  Google Scholar 

  30. Naruki, I.: ‘On smooth quartic embeddings of Kummer surfaces’, Proc. Japan Acad. 67 A (1991), 223–224.

    Article  MathSciNet  MATH  Google Scholar 

  31. Nikulin, V. V.: ‘On Kummer surfaces’, Math USSR-Izv. 9 (1975), 261–275. (Translated from the Russian.)

    Article  Google Scholar 

  32. Ramanan, S.: ‘Ample divisors on abelian surfaces’, Proc. London Math. Soc. 51 (1985), 231–245.

    Article  MathSciNet  MATH  Google Scholar 

  33. Reider, I.: ‘Vector bundles of rank 2 and linear systems on algebraic surfaces’, Ann. of Math. 127 (1988), 309–316.

    Article  MathSciNet  MATH  Google Scholar 

  34. Vanhaecke, P.: ‘A special case of the Gamier system, (1,4)-polarized Abelian surfaces and their moduli’, Compositio Math. 92 (1994), 157–203.

    MathSciNet  MATH  Google Scholar 

  35. Moore, C.H.: Summable series and convergence factors, Dover, reprint, 1966.

    MATH  Google Scholar 

  36. Bradley, R.C.: ‘Basic properties of strong mixing conditions’, in E. Eberlein and M.S. Taqqu (eds.): Dependence in Probability and Statistics, Birkhäuser, 1986, pp. 165–192.

    Google Scholar 

  37. Doukhan, P.: Mixing, Vol. 85 of Lecture Notes in Statistics, Springer, 1995.

    Google Scholar 

  38. Heinrich, L.: ‘Bounds for the absolute regularity coefficient of a stationary renewal process’, Yokohama Math. J. 40 (1992), 25–33.

    MathSciNet  MATH  Google Scholar 

  39. Heinrich, L.: ‘Normal approximation for some mean-value estimates of absolutely regular tesselations’, Methods Math. Statist. 3 (1994), 1–24.

    MathSciNet  MATH  Google Scholar 

  40. Veretennikov, A.Yu.: ‘Bounds for the mixing rate in the theory of stochastic equations’, Th. Prob. Appl. 32 (1987), 273–281.

    Article  MATH  Google Scholar 

  41. VolkonskiÏ, V.A., and Rozanov, Yu.A.: ‘Some limit theorems for random functions F, Th. Prob. Appl. 4 (1959), 178–197.

    Google Scholar 

  42. Yoshihara, K.-I.: ‘Limiting behaviour of U-statistics for stationary absolutely regular processes’, Z. Wahrscheinlichkeit-sth. verw. Gebiete 35 (1976), 237–252.

    Article  MathSciNet  MATH  Google Scholar 

  43. Diestel, J., Jarchow, H., and Tonge, A.: Absolutely summing operators, Cambridge Univ. Press, 1995.

    Book  MATH  Google Scholar 

  44. Jameson, G.J.O.: Summing and nuclear norms in Banach space theory, Cambridge Univ. Press, 1987.

    Book  MATH  Google Scholar 

  45. Pietsch, A.: Operator ideals, North-Holland, 1980.

    MATH  Google Scholar 

  46. Berenger, J.P.: ‘A perfectly matched layer for the absorption of electromagnetic waves’, J. Comp. Phys. 114 (1994), 185–200.

    Article  MathSciNet  MATH  Google Scholar 

  47. Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M.: ‘A non-reflecting boundary condition for discrete acoustic and elastic wave equations’, Geophysics 50 (1985), 705–708.

    Article  Google Scholar 

  48. Clayton, R.W., and Engquist, B.: ‘Absorbing boundary conditions for acoustic and elastic wave equations’, Bull. Seis. Soc. Amer. 67 (1977), 1529–1540.

    Google Scholar 

  49. Engquist, B., and Majda, A.: ‘Radiation boundary conditions for acoustic and elastic wave calculations’, Comm. Pure Appl. Math. 32 (1979), 313–357.

    Article  MathSciNet  MATH  Google Scholar 

  50. Halpern, L., and Trefethen, L.N.: ‘Wide-angle one-way wave equations’, J. Acoust. Soc. Amer. 84 (1988), 1397–1404.

    Article  MathSciNet  Google Scholar 

  51. Lindman, E.L.: ‘Free space boundary conditions for the time dependent wave equation’, J. Comp. Phys. 18 (1975), 66–78.

    Article  MATH  Google Scholar 

  52. Mur, G.: ‘Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations’, IEEE Trans. Electromagn. Compat. 23 (1981), 377–382.

    Article  Google Scholar 

  53. Renaut, R.A., and Fröhlich, J.: ‘A pseudospectral Cheby-chev method for the 2D wave equation with domain stetching and absorbing boundary conditions’, J. Comp. Physics 124 (1996), 324–336.

    Article  MATH  Google Scholar 

  54. Renaut, R.A., and Peterson, J.: ‘Stability of wide-angle absorbing boundary conditions for the wave equation’, Geophysics 54 (1989), 1153–1163.

    Article  Google Scholar 

  55. Renaut, R. A.: ‘Absorbing boundary conditions, difference operators and stability’, J. Comp. Phys. 102 (1992), 236–251.

    Article  MathSciNet  MATH  Google Scholar 

  56. Reynolds, A.C.: ‘Boundary conditions for the numerical solution of wave propagation problems’, Geophysics 43 (1978), 1099–1110.

    Article  Google Scholar 

  57. Tirkas, P.A., Balanis, C.A., and Renaut, R.A.: ‘Higher order absorbing boundary conditions for the finite-difference time-domain method’, IEEE Trans. Antennas and Propagation 40, no. 10 (1992), 1215–1222.

    Article  MathSciNet  MATH  Google Scholar 

  58. Altomare, F., and Campiti, M.: Korovkin-type approximation theory and its applications, W. de Gruyter, 1994.

    Book  MATH  Google Scholar 

  59. Asimow, L., and Ellis, A.J.: Convexity theory and its applications in functional analysis, Acad. Press, 1980.

    MATH  Google Scholar 

  60. Keimel, K., and Roth, W.: Ordered cones and approximation, Vol. 1517 of Lecture Notes in Mathematics, Springer, 1992.

    MATH  Google Scholar 

  61. Korovkin, P.P.: Linear operators and approximation theory, Vol. Ill of Russian Monographs and Texts on advanced Math., Gordon&Breach, 1960.

    Google Scholar 

  62. Prolla, J.B.: Approximation of vector valued functions, North-Holland, 1977.

    MATH  Google Scholar 

  63. Roth, W.: ‘A Korovkin type theorem for weighted spaces of continuous functions’, Bull. Austral. Math. Soc. 55 (1997), 239–248.

    Article  MathSciNet  MATH  Google Scholar 

  64. Ginsburg, S.: Algebraic and automata-theoretic properties of formal languages, North-Holland, 1975.

    MATH  Google Scholar 

  65. Ginsburg, S., Greibach, S., and Hopcroft, J.: Studies in abstract families of languages, Vol. 87 of Memoirs, Amer. Math. Soc, 1969.

    Google Scholar 

  66. Mateescu, A., and Salomaa, A.: ‘Aspects of classical language theory’, in G. Rozenberg and A. Salomaa (eds.): Handbook of Formal Languages, Vol. 1, Springer, 1997, pp. 175–251.

    Chapter  Google Scholar 

  67. Nivat, M.: ‘Transduction des langages de Chomsky’, Ann. Inst. Fourier Grenoble 18 (1968), 339–455.

    Article  MathSciNet  MATH  Google Scholar 

  68. Salomaa, A.: Formal languages, Acad. Press, 1973.

    MATH  Google Scholar 

  69. Azbelev, N.V., Maksimov, V.P., and Rakhmatullina, L.F.: Introduction to the theory of functional differential equations, Nauka, 1991. (In Russian.)

    MATH  Google Scholar 

  70. Barbu, V.: Nonlinear semigroups and differential equations in Banach spaces, Noordhoff, 1976.

    Book  MATH  Google Scholar 

  71. Bugheim, A.L.: Introduction to the theory of inverse problems, Nauka, 1988. (In Russian.)

    Google Scholar 

  72. Corduneanu, C.: Integral equations and applications, Cambridge Univ. Press, 1991.

    Book  MATH  Google Scholar 

  73. Corduneanu, C.: ‘Equations with abstract Volterra operators and their control’: Ordinary Differential Equations and their Applications, Firenze-Bologna, 1995.

    Google Scholar 

  74. Gokhberg, I.C., and Krein, M.G.: Theory of Volterra operators in Hilbert space and its applications, Nauka, 1967. (In Russian.)

    Google Scholar 

  75. Gripenberg, G., Londen, S.O., and Staffans, O.: Volterra integral and functional equations, Cambridge Univ. Press, 1990.

    Book  MATH  Google Scholar 

  76. Neustadt, L.: Optimization (a theory of necessary conditions), Princeton Univ. Press, 1976. Pruss, J.: Evolutionary integral equations, Birkhäuser, 1993.

    Google Scholar 

  77. Renardy, M., Hrusa, W.J., and Nohel, J.A.: Mathematical problems in viscoelasticity, Longman, 1987.

    MATH  Google Scholar 

  78. Sandberg, I.W.: ‘Expansions for nonlinear systems, and Volterra expansions for time-varying nonlinear systems’, Bell System Techn. J. 61 (1982), 159–225.

    MathSciNet  MATH  Google Scholar 

  79. Schetzen, M.: The Volterra and Wiener theories of nonlinear systems, Wiley, 1980.

    MATH  Google Scholar 

  80. Tonelli, L.: ‘Sulle equazioni funzionali di Volterra’, Bull. Calcutta Math. Soc. 20 (1929).

    Google Scholar 

  81. Tychonoff, A.N.: ‘Sur les équations fonctionnelles de Volterra et leurs applications à certains problèmes de la physique mathématique’, Bull. Univ. Moscou Ser. Internat. Al, no. 8 (1938).

    Google Scholar 

  82. Volterra, V.: Opere Matematiche, Vol. 1–3, Accad. Naz. Lincei, 1954–1955.

    Google Scholar 

  83. Azbelev, N.V., Maksimov, V.P., and Rakhmatullina, L.F.: Introduction to the theory of functional differential equations, Nauka, 1991. (In Russian.)

    MATH  Google Scholar 

  84. Barbu, V.: Nonlinear semigroups and differential equations in Banach spaces, Noordhoff, 1976.

    Book  MATH  Google Scholar 

  85. Bugheim, A.L.: Introduction to the theory of inverse problems, Nauka, 1988. (In Russian.)

    Google Scholar 

  86. Corduneanu, C.: Integral equations and applications, Cambridge Univ. Press, 1991.

    Book  MATH  Google Scholar 

  87. Corduneanu, C.: ‘Equations with abstract Volterra operators and their control’: Ordinary Differential Equations and their Applications, Firenze-Bologna, 1995.

    Google Scholar 

  88. Gokhberg, I.C., and Krein, M.G.: Theory of Volterra operators in Hilbert space and its applications, Nauka, 1967. (In Russian.)

    Google Scholar 

  89. Gripenberg, G., Londen, S.O., and Staffans, O.: Volterra integral and functional equations, Cambridge Univ. Press, 1990.

    Book  MATH  Google Scholar 

  90. Neustadt, L.: Optimization (a theory of necessary conditions), Princeton Univ. Press, 1976.

    MATH  Google Scholar 

  91. Pruss, J.: Evolutionary integral equations, Birkhäuser, 1993.

    Book  Google Scholar 

  92. Renardy, M., Hrusa, W.J., and Nohel, J.A.: Mathematical problems in viscoelasticity, Longman, 1987.

    MATH  Google Scholar 

  93. Sandberg, I.W.: ‘Expansions for nonlinear systems, and Volterra expansions for time-varying nonlinear systems’, Bell System Techn. J. 61 (1982), 159–225.

    MathSciNet  MATH  Google Scholar 

  94. Schetzen, M.: The Volterra and Wiener theories of nonlinear systems, Wiley, 1980.

    MATH  Google Scholar 

  95. Tonelli, L.: ‘Sulle equazioni funzionali di Volterra’, Bull. Calcutta Math. Soc. 20 (1929).

    Google Scholar 

  96. Tychonoff, A.N.: ‘Sur les équations fonctionnelles de Volterra et leurs applications à certains problèmes de la physique mathématique’, Bull. Univ. Moscou Ser. Internat. A1, no. 8 (1938).

    Google Scholar 

  97. Volterra, V.: Opere Matematiche, Vol. 1–3, Accad. Naz. Lincei, 1954–1955.

    Google Scholar 

  98. Kleinstein, J., and Rosenberg, A.: ‘Succinct and representational Witt rings’, Pacific J. Math. 86 (1980), 99 – 137.

    MathSciNet  MATH  Google Scholar 

  99. Marshall, M.: Abstract Witt rings, Queen’s Univ., 1980.

    MATH  Google Scholar 

  100. Meeker, W.Q., and Escobar, L.A.: ‘A review of recent research and current issues in accelerated testing’, Int. Statist. Rev. 61, no. 1 (1993).

    Google Scholar 

  101. Nelson, W.: Accelerated testing: statistical models, test plans, and data analyses, Wiley, 1990.

    Google Scholar 

  102. Viertl, R.: Statistical methods in accelerated life testing, Vandenhoeck and Ruprecht, 1988.

    MATH  Google Scholar 

  103. Viertl, R.: Statistical methods for non-precise data, CRC Press, 1996.

    Google Scholar 

  104. Viertl, R., and Gurker, W.: ‘Reliability estimation based on fuzzy life time data’, in T. Onisawa and J. Kacprzyk (eds.): Reliability and Safety Analyses under Fuzziness, Physica-Verlag, 1995.

    Google Scholar 

  105. Axelsson, O.: Iterative solution methods, Cambridge, New York, 1994.

    MATH  Google Scholar 

  106. Gustafson, K.: Lectures on computational fluid dynamics, mathematical physics, and linear algebra, Kaigai & World Sci., 1996/7.

    Google Scholar 

  107. Hackbusch, W.: Iterative solution of large sparse systems of equations, Springer, 1994.

    Book  MATH  Google Scholar 

  108. Saad, Y.: Numerical methods for large eigenvalue problems, Halsted, 1992.

    MATH  Google Scholar 

  109. Saad, Y.: Iterative methods for sparse linear systems, PWS Publishing, 1996.

    MATH  Google Scholar 

  110. Eringen, A.C., and Suhubi, E.S.: Elastodynamics, Vol. I, Acad. Press, 1975.

    MATH  Google Scholar 

  111. Hadamard, J.: Leçons sur la propagation des ondes et les équations de l’hydrodynamique, Dunod, 1903.

    MATH  Google Scholar 

  112. McCarthy, M.F.: ‘Singular surfaces and waves’, in A.C. Eringen (ed.): Continuum Physics II: Continuum Mechanics of Single Surface Bodies, Acad. Press, 1975.

    Google Scholar 

  113. Wang, C.-C., and Truesdell, C.: Introduction to rational elasticity, Noordhof, 1973.

    MATH  Google Scholar 

  114. Montgomery, D.: Introduction to statistical quality control, 2second ed., Wiley, 1991.

    Google Scholar 

  115. Keefe, G.: ‘Attribute sampling — MIL-STD-105’, Industrial Quality Control (1963), 7–12.

    Google Scholar 

  116. Montgomery, D.: Introduction to statistical quality control, 2second ed., Wiley, 1991.

    Google Scholar 

  117. Montgomery, D.: Introduction to statistical quality control, 2second ed., Wiley, 1991.

    Google Scholar 

  118. Hermes, H.: ‘On local and global controllability’, SI AM J. Control 12, no. 2 (1974), 252–261.

    Article  MathSciNet  MATH  Google Scholar 

  119. Jurjevic, V.: ‘Certain controllability properties of analytic control systems’, SI AM J. Control 10, no. 2 (1972), 354–360.

    Article  Google Scholar 

  120. Lobry, C.: ‘Dynamical polysystems and control theory’, in D.Q. Mayne and R.W. Brockett (eds.): Geometric Methods in System Theory. Proc. NATO Advanced Study Institute, London, August 27-September 7, 1973, D. Reidel, 1973, pp. 1–42.

    Google Scholar 

  121. Sussmann, H.J., and Jurjevic, V.: ‘Controllability of nonlinear systems’, J. Differential Equations 12 (1972), 95–116.

    Article  MathSciNet  MATH  Google Scholar 

  122. Budhiraja, A., and Kallianpur, G.: ‘Multiple Ogawa integrals, multiple Stratonovich integrals and the generalized Hu-Meyer formula’, Techn. Report Dep. Stat. Univ. North Carolina 442 (1994).

    Google Scholar 

  123. Hida, T., Kuo, H.H., Potthoff, J., and Streit, L.: White noise. An infinite dimensional calculus, Kluwer Acad. Publ., 1993.

    MATH  Google Scholar 

  124. Iked, A., N., and Watanabe, S.: Stochastic differential equations and diffusion processes, 2second ed., North-Holland, 1989.

    Google Scholar 

  125. Johnson, G.W., and Kallianpur, G.: ‘Homogeneous chaos, p-forms, scaling and the Feynman integral’, Trans. Amer. Math. Soc. 340 (1993), 503–548.

    Article  MathSciNet  MATH  Google Scholar 

  126. Kallianpur, G.: Stochastic filtering theory, Springer, 1980.

    MATH  Google Scholar 

  127. Kallianpur, G., and Karandikar, R.L.: White noise theory of prediction, filtering and smoothing, Gordon&Breach, 1988.

    MATH  Google Scholar 

  128. Kallianpur, G., and Karandikar, R.L.: ‘Nonlinear transformations of the canonical Gauss measure on Hilbert space and absolute continuity’, Acta Math. Appl. 35 (1994), 63–102.

    Article  MathSciNet  MATH  Google Scholar 

  129. Bush, W.B., and Fendell, F.E.: ‘Asymptotic analysis of laminar flame propagation for general Lewis numbers’, Comb. Sci. and Technol. 1 (1970), 421.

    Article  Google Scholar 

  130. Zel’dovich, Ya.B., Barenblatt, G.I., Librovich, V.B., and Makhviladze, G.M.: The mathematical theory of combustion and explosions, Consultants Bureau, 1985. (Translated from the Russian.)

    Book  Google Scholar 

  131. Zel’dovich, Y.B., and Frank-Kamenetskii, D.A.: ‘The theory of thermal flame propagation’, Zhur. Fiz. Khim. 12 (1938), 100. (In Russian.)

    Google Scholar 

  132. Alperin, R.C., and Berrick, A.J.: ‘Linear representations of binate groups’, J. Pure Appl. Algebra 94 (1994), 17–23.

    Article  MathSciNet  MATH  Google Scholar 

  133. Baumslag, G., Dyer, E., and Heller, A.: ‘The topology of discrete groups’, J. Pure Appl. Algebra 16 (1980), 1–47.

    Article  MathSciNet  MATH  Google Scholar 

  134. Baumslag, G., and Gruenberg, K.W.: ‘Some reflections on cohomological dimension and freeness’, J. Algebra 6 (1967), 394–409.

    Article  MathSciNet  Google Scholar 

  135. Berrick, A.J.: An approach to algebraic K-theory, Pitman, 1982.

    MATH  Google Scholar 

  136. Berrick, A.J.: ‘Two functors from abelian groups to perfect groups’, J. Pure Appl. Algebra 44 (1987), 35–43.

    Article  MathSciNet  MATH  Google Scholar 

  137. Berrick, A.J.: ‘Universal groups, binate groups and acyclicity’: Proc. 1987 Singapore Group Theory Conf., W. de Gruyter, 1989.

    Google Scholar 

  138. Berrick, A.J.: ‘Remarks on the structure of acyclic groups’, Bull. London Math. Soc. 22 (1990), 227–232.

    Article  MathSciNet  MATH  Google Scholar 

  139. Berrick, A.J.: ‘Groups with no nontrivial linear representations’, Bull. Austral. Math. Soc. 50 (1994), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  140. Berrick, A. J.: ‘Corrigenda: Groups with no nontrivial linear representations’, Bull. Austral. Math. Soc. 52 (1995), 345–346.

    Article  MathSciNet  MATH  Google Scholar 

  141. Berrick, A.J., and Casacuberta, C.: ‘A universal space for plus-constructions’, Topology (to appear).

    Google Scholar 

  142. Berrick, A.J., and Miller, III, C.F.: ‘Strongly torsion generated groups’, Proc. Cambridge Philos. Soc. 111 (1992), 219–229.

    Article  MathSciNet  MATH  Google Scholar 

  143. Harpe, P. de la, and McDuff, D.: ‘Acyclic groups of automorphisms’, Comment. Math. Helv. 58 (1983), 48–71.

    Article  MathSciNet  MATH  Google Scholar 

  144. Epstein, D.B.A.: ‘A group with zero homology’, Proc. Cambridge Philos. Soc. 68 (1968), 599–601.

    Article  Google Scholar 

  145. Greenberg, P., and Sergiescu, V.: ‘An acyclic extension of the braid group’, Comment. Math. Helv. 66 (1991), 109–138.

    Article  MathSciNet  MATH  Google Scholar 

  146. Heller, A.: ‘On the homotopy theory of topogenic groups and groupoids’, Illinois Math. J. 24 (1980), 576–605.

    MathSciNet  MATH  Google Scholar 

  147. Higman, G.: ‘A finitely generated infinite simple group’, J. London Math. Soc. 26 (1951), 61–64.

    Article  MathSciNet  MATH  Google Scholar 

  148. Kan, D.M., and Thurston, W.P.: ‘Every connected space has the homology of a K(n, 1)’, Topology 15 (1976), 253–258.

    Article  MathSciNet  MATH  Google Scholar 

  149. Mather, J.N.: ‘The vanishing of the homology of certain groups of homeomorphisms’, Topology 10 (1971), 297–298.

    Article  MathSciNet  MATH  Google Scholar 

  150. Sankaran, P., and Varadarajan, K.: ‘Acyclicity of certain homeomorphism groups’, Canad. J. Math. 42 (1990), 80–94.

    Article  MathSciNet  MATH  Google Scholar 

  151. Segal, G.B.: ‘Classifying spaces related to foliations’, Topology 17 (1978), 367–382.

    Article  MathSciNet  MATH  Google Scholar 

  152. Wagoner, J.B.: ‘Develop** classifying spaces in algebraic K-theory’, Topology 11 (1972), 349–370.

    Article  MathSciNet  MATH  Google Scholar 

  153. Aigner, M., Triesch, E., and Tuza, Zs.: ‘Searching for acyclic orientations of graphs’, Discrete Math. 144 (1995), 3–10.

    Article  MathSciNet  MATH  Google Scholar 

  154. Alon, N., and Tuza, Zs.: ‘The acyclic orientation game on random graphs’, Random Structures Algorithms 6 (1995), 261–268.

    Article  MathSciNet  MATH  Google Scholar 

  155. Chvatal, V.: ‘Perfectly ordered graphs’: Topics on perfect graphs, Vol. 88 of North-Holland math, stud., North-Holland, 1984, pp. 63–65.

    Google Scholar 

  156. Fisher, D.C., Fraughnaugh, K., Langley, L., and West, D.B.: ‘The number of dependent edges in an acyclic orientation’, J. Comb. Theory Appl. (to appear).

    Google Scholar 

  157. Gallai, T.: ‘On directed paths and circuits’, in P. Erdos AND G. Katona (eds.): Theory of Graphs (Proc. Tihany 1966), Acad. Press, 1968, pp. 115–118.

    Google Scholar 

  158. Greene, C.: ‘Acyclic orientations’, in M. Aigner (ed.): Higher combinatorics, Proc. NATO Adv. Study Inst. (1976), Reidel, 1977, pp. 65–68.

    Google Scholar 

  159. Minty, G.J.: ‘A theorem on n-coloring the points of a linear graph’, Amer. Math. Monthly 69 (1962), 623–624.

    Article  MathSciNet  MATH  Google Scholar 

  160. Pruesse, G., and Ruskey, F.: ‘The prism of the acyclic orientation graph is Hamiltonian’, Electron. J. Combin. 2(1995).

    Google Scholar 

  161. Roy, B.: ‘Nombre chromatique et plus longs chemins d’un graphe’, Rev. Française Automat. Informat. Recherche Operationelle Ser. Rouge 1 (1967), 127–132.

    Google Scholar 

  162. Savage, C.D., and Zhang, C.-Q.: ‘A note on the connectivity of acyclic orientation graphs’, Discrete Math, (to appear).

    Google Scholar 

  163. Stanley, R.P.: ‘Acyclic orientations of graphs’, Discrete Math. 5 (1973), 171–178.

    Article  MathSciNet  MATH  Google Scholar 

  164. Stanley, R.P.: ‘A symmetric function generalization of the chromatic polynomial of a graph’, Adv. Math. 111 (1995), 166–194.

    Article  MathSciNet  MATH  Google Scholar 

  165. Vertigan, D.L., and Welsh, D.J.A.: ‘The computational complexity of the Tutte plane: the bipartite case’, Combin. Probab. Comput. 1 (1992), 181–187.

    Article  MathSciNet  MATH  Google Scholar 

  166. Vitaver, L.M.: ‘Determination of minimal coloring of vertices of a graph by means of Boolean powers of the incidence matrix’, Dokl. Akad. Nauk. SSSR 147 (1962), 758–759. (In Russian.)

    MathSciNet  Google Scholar 

  167. Zaslavsky, T.: ‘Orientation of signed graphs’, European J. Combin. 12 (1991), 361–375.

    MathSciNet  MATH  Google Scholar 

  168. Adams, J.F.: ‘On the groups J(X). I’, Topology 2 (1963), 181–195.

    Article  MathSciNet  Google Scholar 

  169. Becker, J., and Gottlieb, D.: ‘The transfer map and fiber bundles’, Topology 14 (1975), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  170. Friedlander, E.: ‘Fibrations in etale homotopy theory’, IHES Publ. Math. 42 (1972).

    Google Scholar 

  171. Quillen, D.G.: ‘Some remarks on etale homotopy theory and a conjecture of Adams’, Topology 7 (1968), 111–116.

    Article  MathSciNet  MATH  Google Scholar 

  172. Quillen, D.G.: ‘The Adams conjecture’, Topology 10 (1971), 67–80.

    Article  MathSciNet  MATH  Google Scholar 

  173. Adams, J.F., and Hilton, P.J.: ‘On the chain algebra of a loop space’, Comment. Math. Helv. 30 (1955), 305–330.

    Article  MathSciNet  Google Scholar 

  174. Anick, D.J.: ‘Hopf algebras up to homotopy’, J. Amer. Math. Soc. 2 (1989), 417–453.

    Article  MathSciNet  MATH  Google Scholar 

  175. Félix, Y., and Lemaire, J.-M.: ‘On the Pontrjagin algebra of the loops on a space with a cell attached’, Internat. J. Math. 2 (1991).

    Google Scholar 

  176. Félix, Y., and Thomas, J.-C.: ‘Module d’holonomie d’une fibration’, Bull. Soc. Math. France 113 (1985), 255–258.

    MathSciNet  MATH  Google Scholar 

  177. Halperin, S., Félix, Y., and Thomas, J.-C.: Rational homotopy theory, Univ. Toronto, 1996.

    Google Scholar 

  178. Hess, K., and J.-M -Lemaire: ‘Nice and lazy cell attachments’, J. Pure and Applied Algebra 112 (1996), 29–39.

    Article  MathSciNet  MATH  Google Scholar 

  179. Davis, P.J., and Rabinowitz, P.: Methods of numerical integration, 2second ed., Acad. Press, 1984.

    MATH  Google Scholar 

  180. Krommer, A.R., and Ueberhuber, C.W.: Numerical integration on advanced computer systems, Vol. 848 of Lecture Notes in Computer Science, Springer, 1994.

    Book  Google Scholar 

  181. Novak, E.: ‘On the power of adaption’, J. Complexity 12 (1196), 199–237.

    Article  Google Scholar 

  182. Piessens, R., Doncker-Kapenga, E. de, Überhuber,C.W., and Kahaner, D.K.: Quadpack, Springer, 1983.

    Book  MATH  Google Scholar 

  183. Traub, J.F., Wasilkowski, G.W., and Wozniakowski, H.: Information-based complexity, Acad. Press, 1988.

    MATH  Google Scholar 

  184. Zwillinger, D.: Handbook of integration, Jones and Bartlett, 1992.

    MATH  Google Scholar 

  185. Strehmel, K., and Weiner, R.: ‘Partitioned adaptive Runge-Kutta methods and their stability’, Numer. Math. 45 (1984), 283–300.

    Article  MathSciNet  MATH  Google Scholar 

  186. Strehmel, K., and Weiner, R.: ‘B-convergence results for linearly implicit one step methods’, BIT 27 (1987), 264–281.

    Article  MathSciNet  MATH  Google Scholar 

  187. Flajolet, P.: ‘On adaptive sampling’, Computing 34 (1990), 391–400.

    Article  MathSciNet  Google Scholar 

  188. Flajolet, P., and Martin, G.N.: ‘Probabilistic counting algorithms for data base applications’, J. Computer and System Sci. 31, no. 2 (1985), 182–209.

    Article  MathSciNet  MATH  Google Scholar 

  189. Knuth, D.E.: The art of computer programming, Vol. 3. Sorting and Searching, Addison-Wesley, 1973.

    Google Scholar 

  190. Lum, V.Y., Yuen, P.S.T., and Dodd, M.: ‘Key to address transformations: a fundamental study based on large existing format files’, Commun. ACM 14 (1971), 228–239.

    Article  Google Scholar 

  191. Motwani, R., and Raghavan, P.: Randomized algorithms, Cambridge Univ. Press, 1995.

    MATH  Google Scholar 

  192. Sedgewick, R.: Algorithms, 2second ed., Addison-Wesley. 1988.

    Google Scholar 

  193. Aström, K.J.: ‘Adaptive feedback control’, Proc. IEEE 75 (1987), 185–217.

    Article  Google Scholar 

  194. Aström, K.J., and Wittenmark, B.: Adaptive control, Addison-Wesley, 1989.

    MATH  Google Scholar 

  195. Fradkov, A.L.: ‘Continuous-time model reference adaptive systems, an east-west review’: Proc. IFAC Symp. Adaptive Control and Signal Processing (Grenoble, France, July 1992), 199?

    Google Scholar 

  196. Ioannou, P.A., and Sun, J.: Robust adaptive control, Prentice-Hall, 1996.

    MATH  Google Scholar 

  197. Narendra, K.S.: ‘The maturing of adaptive control’, in P.V. Kokotovic (ed.): Foundations of Adaptive Control, Vol. 160 of Lecture Notes on Control and Information Systems, Springer, 1991, pp. 3–36.

    Google Scholar 

  198. Narendra, K.S., and Annaswamy, A.M.: Stable adaptive systems, Prentice-Hall, 1989.

    MATH  Google Scholar 

  199. Ortega, R., and Yu, T.: ‘Robustness of adaptive controllers: a survey’, Automaica 25 (1989), 651–678.

    Article  MATH  Google Scholar 

  200. Sastry, S., and Bodson, M.: Adaptive control: Stability, convergence and robustness, Prentice-Hall, 1989.

    MATH  Google Scholar 

  201. Askey, R.: Orthogonal polynomials and special functions, Vol. 21 of Reg. Conf. Ser. Appl. Math., SIAM, 1975.

    Book  Google Scholar 

  202. Koelink, E.: ‘Addition formuleis for q-special functions’, in M.E.H. Ismail et al. (ed.): Special Functions, q-Series and Related Topics, Vol. 14 of Fields Inst. Commun., Amer. Math. Soc, 1997, pp. 109–209.

    Google Scholar 

  203. Stanton, D.: ‘Orthogonal polynomials and Chevalley groups’, in R.A. Askey et al. (eds.): Special Functions: Group Theoretical Aspects and Applications, 1984, pp. 87–128.

    Chapter  Google Scholar 

  204. Vilenkin, N.J.: Special functions and the theory of group representations, Vol. 22 of Transi. Math. Monographs, Amer. Math. Soc, 1968. (Translated from the Russsian.)

    Google Scholar 

  205. Vilenkin, N.J., and Klimyk, A.U.: Representation of Lie groups and special functions, Kluwer Acad. Publ., 1991–1993. (Translated from the Russsian.)

    Google Scholar 

  206. Watson, G.N.: Theory of Bessel functions, 2second ed., Cambridge Univ. Press, 1944.

    MATH  Google Scholar 

  207. Przeslawski, K., and Yost, D.: ‘Continuity properties of selectors and Michael’s theorem’, Michigan Math. J. 36 (1989), 113–134.

    Article  MathSciNet  MATH  Google Scholar 

  208. Schneider, R.: Convex bodies: the Brunn-Minkowski theory, Cambridge Univ. Press, 1993.

    Book  MATH  Google Scholar 

  209. Vitale, R.A.: ‘The Steiner point in infinite dimensions’, Israel J. Math. 52 (1985), 245–250.

    Article  MathSciNet  MATH  Google Scholar 

  210. Zivaljevic., R.: ‘Extremal Minkowski additive selections of compact convex sets’, Proc. Amer. Math. Soc. 105 (1989), 697–700.

    MathSciNet  Google Scholar 

  211. Bratijchuk, N.S., and Gusak, D.V.: Boundary problems for processes with independent increments, Naukova Dumka, 1990. (In Russian.)

    MATH  Google Scholar 

  212. Grigelionis, B.: ‘Martingale characterization of stochastic processes with independent increments’, Lietuvos Mat. Rinkinys 17 (1977), 75–86. (In Russian.)

    MathSciNet  Google Scholar 

  213. Skorokhod, A.V.: Random processes with independent increments, Kluwer Acad. Publ., 1991. (Translated from the Russian.)

    MATH  Google Scholar 

  214. Bonotto, C.: ‘Synonymy for Bressan’s modal calculus MC v . i Part I: A synonymy relation for MC v Atti 1st. Veneto di Sci., Lettere ed Arti CXL (1982), 11–24.

    MathSciNet  Google Scholar 

  215. Bonotto, C.: ‘Synonymy for Bressan’s modal calculus MC v . Part II: A sufficient criterium’, Atti Ist. Veneto di Sci., Lettere ed Arti CXL (1982), 85–99.

    MathSciNet  Google Scholar 

  216. Bonotto, C.: ‘An adequacy theorem for the quasi-senses: used in certain theories which are extensional, modal, or strongly intensional’, Atti Ist. Veneto di Sci., Lettere ed Arti CXLVII (1988–89), 31–39.

    MathSciNet  Google Scholar 

  217. Bonotto, C.: ‘A generalization of the adequacy theorem for the quasi-senses’, Notre Dame J. Formal Logic 31 (1990), 560–575.

    Article  MathSciNet  MATH  Google Scholar 

  218. Bonotto, C., and Bressan, A.: ‘On generalized synonymy notions and corresponding quasi-senses’, Mem. Atti Accad. Naz. Lincei (VIII), Sect. I 17 (1984), 163–209.

    MathSciNet  Google Scholar 

  219. Bressan, A.: A general interpreted modal calculus, Yale Univ. Press, 1972.

    MATH  Google Scholar 

  220. Bressan, A.: On the interpreted sense calculus (math) in G. Dorn and P. Weingartner (eds.): Foundations of Logic and Linguistic, Plenum, 1985, pp. 427–463.

    Google Scholar 

  221. Carnap, R.: Meaning and necessity, Chicago Univ. Press, 1947.

    MATH  Google Scholar 

  222. Carnap, R.: ‘Meaning and synonymy in natural languages’, Philosophical Studies 6 (1955), 33–47.

    Article  Google Scholar 

  223. Church, A.: ‘A formulation of the logic of sense and denotation’: Structure, Method, and Meaning. Essays in honor of H. Sheffer, Liberal Art Press, 1951.

    Google Scholar 

  224. Cresswell, M.J.: Structured meanings, MIT, 1985.

    Google Scholar 

  225. Kaplan, D.: ‘How to Russell a Frege-Church’, J. Philosophy 72 (1975), 716–729.

    Article  Google Scholar 

  226. Lewis, D.K.: ‘General semantics’, Synthese 22 (1972), 18–67.

    Article  Google Scholar 

  227. Parsons, T.: ‘Intensional logic in extensional language’, J. Symbolic Logic 47 (1982), 289–328.

    Article  MathSciNet  MATH  Google Scholar 

  228. Bathe, K.J. (ed.): Nonlinear finite element analysis and DINA. Computers and Structures. 9–1 lth ADINA Conf. Proc, Vol. 47 (4/5); Pergamon, 1993–1997

    Google Scholar 

  229. Bathe, K.J. (ed.): Nonlinear finite element analysis and DINA. Computers and Structures. 9–1 lth ADINA Conf. Proc 56 (2/3); Pergamon, 1993–1997

    Google Scholar 

  230. Bathe, K.J. (ed.): Nonlinear finite element analysis and DINA. Computers and Structures. 9–1 lth ADINA Conf. Proc 64 (5/6), Pergamon, 1993–1997.

    Google Scholar 

  231. Bathe, K.J.: Finite element procedures, Prentice-Hall, 1996.

    Google Scholar 

  232. Bathe, K.J.: ‘Simulation of structural and fluid flow response in engineering practice’, Computer Modelling and Simulationin Engineering 1 (1996), 47–77.

    Google Scholar 

  233. Inc., ADINA R&D: ADINA: Theory and Modeling Guide, Reports ARD 97–7; 97–8. ADINA R&D Inc., 1997.

    Google Scholar 

  234. Clément, Ph., Diekmann, O., Gyllenberg, M., Heijmans, H.J.A.M., and Thieme, H.R.: ‘Perturbation theory for dual semigroups, Part I: The sun-reflexive case’, Math. Ann. 277 (1987), 709–725.

    Article  MathSciNet  MATH  Google Scholar 

  235. Pagter, B. de: ‘A characterization of sun-reflexivity’, Math. Ann. 283 (1989), 511–518.

    Article  MathSciNet  MATH  Google Scholar 

  236. Pagter, B. de: ‘A Wiener-Young type theorem for dual semigroups’, Acta Appl. Math. 27 (1992), 101–109.

    Article  MathSciNet  MATH  Google Scholar 

  237. Grabosch, A., and Nagel, R.: ‘Order structure of the semigroup dual: A counterexample’, Indagationes Mathematicae 92 (1989), 199–201.

    Article  MathSciNet  Google Scholar 

  238. Phillips, R.S.: ‘The adjoint semi-group’, Pacific J. Math. 5 (1955), 269–283.

    MathSciNet  MATH  Google Scholar 

  239. Neerven, J.M.A.M. Van: The adjoint of a semigroup of linear operators, Vol. 1529 of Lecture Notes in Mathematics, Springer, 1992.

    Google Scholar 

  240. Neerven, J.M.A.M. van: ‘A dichotomy theorem for the adjoint of a semigroup of operators’, Proc. Amer. Math. Soc. 119 (1993), 765–774.

    Article  MathSciNet  MATH  Google Scholar 

  241. Neerven, J.M.A.M. van, and Pagter, B. de: ‘The adjoint of a positive semigroup’, Comp. Math. 90 (1994), 99–118.

    MATH  Google Scholar 

  242. Neerven, J.M.A.M. van, Pagter, B. de, and Schep, A.R.: ‘Weak measurability of the orbits of an adjoint semigroup’, in G. Ferreyra, G.R. Goldstein, and F. Neubrander (eds.): Evolution Equations, Vol. 168 of Lecture Notes in Pure and Appl. Math., M. Dekker, 1994, pp. 327–336.

    Google Scholar 

  243. Beltrametti, M.C., and Sommese, A.J.: The adjunction theory of complex projective varieties, Vol. 16 of Expositions in Mathematics, De Gruyter, 1995.

    Book  Google Scholar 

  244. Beltrametti, M.C., and Sommese, A.J.: ‘On the dimension of the adjoint linear system for threefolds’, Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser. (4) XXII (1995), 1–24.

    MathSciNet  Google Scholar 

  245. Beltrametti, M.C., Sommese, A.J., and Wisniewski, J.A.: ‘Results on varieties with many lines and their applications to adjunction theory (with an appendix by M.C. Beltrametti and A.J. Sommese)’, in K. Hulek, T. Peternell, M. Schneider, and F.-O. Schreyer (eds.): Complex Algebraic Varieties, Bayreuth 1990, Vol. 1507 of Lecture Notes in Mathematics, Springer, 1992, pp. 16–38.

    Chapter  Google Scholar 

  246. Fujita, T.: Classification theories of polarized varieties, Vol. 155 of London Math. Soc. Lecture Notes, Cambridge Univ. Press, 1990.

    Book  Google Scholar 

  247. Roth, L.: Algebraic threefolds with special regard to problems of rationality, Springer, 1955.

    Google Scholar 

  248. Sommese, A.J.: ‘Hyperplane sections of projective surfaces, I: The adjunction map**’, Duke Math. J. 46 (1979), 377–401.

    Article  MathSciNet  MATH  Google Scholar 

  249. Blackadar, B.: K-theory for operator algebras, Vol. 5 of M SRI publication, Springer, 1986.

    Book  Google Scholar 

  250. Bratteli, O.: ‘Inductive limits of finite-dimensional C*-algebras’, Trans. Amer. Math. Soc. 171 (1972), 195–234.

    MathSciNet  MATH  Google Scholar 

  251. Bratteli, O., and Robinson, D.W.: Operator algebras and quantum statistical mechanics, Vol. II, Springer, 1981.

    MATH  Google Scholar 

  252. Effros, E.: Dimensions and C* -algebras, Vol. 46 of CBMS Regional Conf. Ser. Math., Amer. Math. Soc, 1981.

    MATH  Google Scholar 

  253. Effros, E., Handelman, D., and Shen, C.-L.: ‘Dimension groups and their affine representations’, Amer. J. Math. 102 (1980), 385–407.

    Article  MathSciNet  MATH  Google Scholar 

  254. Elliott, G.A.: ‘On the classification of inductive limits of sequences of semisimple finite-dimensional algebras’, J. Algebra 38 (1976), 29–44.

    Article  MathSciNet  MATH  Google Scholar 

  255. Elliott, G.A.: ‘The classification problem for amenable C*-algebras’: Proc. Internat. Congress Mathem. (Zürich, 1994), Birkhäuser, 1995, pp. 922–932.

    Google Scholar 

  256. Glimm, J.: ‘On a certain class of operator algebras’, Trans. Amer. Math. Soc. 95 (1960), 318–340.

    Article  MathSciNet  MATH  Google Scholar 

  257. Pimsner, M., and Voiculescu, D.: ‘Imbedding the irrational rotation algebras into AF-algebras’, J. Operator Th. 4 (1980), 201–210.

    MathSciNet  MATH  Google Scholar 

  258. Berstel, J.: Transductions and context-free languages, Teubner, 1979.

    MATH  Google Scholar 

  259. Ginsburg, S.: Algebraic and automata-theoretic properties of formal languages, North-Holland, 1975.

    MATH  Google Scholar 

  260. Ginsburg, S., and Greibach, S.A.: ‘Abstract families of languages’, in S. Ginsburg, S.A. Greibach, and J.E. Hopcroft (eds.): Studies in Abstract Families of Languages, Vol. 87 of Memoirs, Amer. Math. Soc, 1969.

    Google Scholar 

  261. Hopcroft, J.E., and Ullman, J.D.: Introduction to automata theory, languages, and computation, Addison-Wesley, 1979.

    MATH  Google Scholar 

  262. Rozenberg, G., and Salomaa, A. (eds.): Handbook of Formal Languages, Springer, 1997.

    MATH  Google Scholar 

  263. Salomaa, A.: Formal languages, Acad. Press, 1973.

    MATH  Google Scholar 

  264. Ahlswede, R., and Daykin, D.E.: ‘An inequality for the weights of two families, their unions and intersections’, Z. Wahrsch. verw. Gebiete 43 (1978), 183–185.

    Article  MathSciNet  MATH  Google Scholar 

  265. Bollobás, B.: Combinatorics, Cambridge Univ. Press, 1986.

    MATH  Google Scholar 

  266. Fishburn, P.C.: ‘A correlational inequality for linear extensions of a poset’, Order 1 (1984), 127–137.

    Article  MathSciNet  MATH  Google Scholar 

  267. Fishburn, P.C.: ‘Correlation in partially ordered sets’, Discrete Appl. Math. 39 (1992), 173–191.

    Article  MathSciNet  MATH  Google Scholar 

  268. Fishburn, P.C., Doyle, P.G., and Shepp, L.A.: ‘The match set of a random permutation has the FKG property’, Ann. of Probab. 16 (1988), 1194–1214.

    Article  MathSciNet  MATH  Google Scholar 

  269. Fortuin, C.M., Kasteleyn, P.N., and Ginibre, J.: ‘Correlation inequalities for some partially ordered sets’, Comm. Math. Phys. 22 (1971), 89–103.

    Article  MathSciNet  MATH  Google Scholar 

  270. Graham, R.L.: ‘Applications of the FKG inequality and its relatives’: Proc. 12th Internat. Symp. Math. Programming, Springer, 1983, pp. 115–131.

    Google Scholar 

  271. Shepp, L.A.: ‘The XYZ conjecture and the FKG inequality’, Ann. of Probab. 10 (1982), 824–827.

    Article  MathSciNet  MATH  Google Scholar 

  272. Goldberg, V.V.: Theory of multicodimensional (n+l)-webs, Kluwer Acad. Publ., 1988.

    Book  Google Scholar 

  273. Goldberg, V.V.: ‘Local differentiable quasigroups and webs’, in O. Chein, H.O. Pflugfelder, and J.D.H. Smith (eds.): Quasigroups and Loops — Theory and Applications, Heldermann, 1990, pp. 263–311.

    Google Scholar 

  274. Hofmann, K.H., and Strambach, K.: ‘The Akivis algebra of a homogeneous loop’, Mathematika 33 (1986), 87–95.

    Article  MathSciNet  MATH  Google Scholar 

  275. Hofmann, K.H., and Strambach, K.: ‘Topological and analytic loops’, in O. Chein, H.O. Pflugfelder, and J.D.H. Smith (eds.): Quasigroups and Loops — Theory and Applications, Heldermann, 1990, pp. 205–262.

    Google Scholar 

  276. Miheev, P.O., and Sabinin, L.V.: ‘Quasigroups and differential geometry’, in O. Chein, H.O. Pflugfelder, and J.D.H. Smith (eds.): Quasigroups and Loops — Theory and Applications, Heldermann, 1990, pp. 357–430.

    Google Scholar 

  277. Alfvén, H.O.G.: ‘On the existence of electromagnetic-hydrodynamic waves’, Ark. Mat. Astron. Fys. A29 (1942), 1–7.

    Google Scholar 

  278. Alfvén, H.O.G.: ‘Granulation, magnetohydrodynamic waves and the heating of the solar corona’, Monthly Notices Roy. Astron. Soc. 107 (1947), 201–211.

    Google Scholar 

  279. Alfvén, H.O.G.: Cosmical electrodynamics, Oxford Univ. Press, 1948.

    Google Scholar 

  280. Alfvén, H.O.G., and Falthammar, C.G.: Cosmical electrodynamics, Oxford Univ. Press, 1962.

    Google Scholar 

  281. Cabannes, H.: Magneto-fluid dynamics, Acad. Press, 1970.

    Google Scholar 

  282. Campos, L.M.B.C.: ‘On the generation and radiation of magneto-acoustic waves’, J. Fluid Mech. 81 (1977), 529–534.

    Article  MathSciNet  MATH  Google Scholar 

  283. Campos, L.M.B.C.: ‘On magneto-acoustic-gravity waves propagating or standing vertically in an atmosphere’, J. Phys. A 16 (1983), 217–237.

    Article  MathSciNet  Google Scholar 

  284. Campos, L.M.B.C.: ‘On viscous and resistive dissipation of hydrodynamic and hydromagnetic waves in atmospheres’, J. Mech. Theor. Appl. 2 (1983), 861–891.

    MATH  Google Scholar 

  285. Campos, L.M.B.C.: ‘On waves in gases. Part II: Interaction of sound with magnetic and internal modes’, Rev. Mod. Phys. 59 (1987), 363–462.

    Article  MathSciNet  Google Scholar 

  286. Campos, L.M.B.C.: ‘On oblique Alfvén waves in a viscous and resistive atmosphere’, J. Phys. A 21 (1988), 2911–2930.

    Article  MathSciNet  MATH  Google Scholar 

  287. Campos, L.M.B.C.: ‘On oscillations in sunspot umbras and wave radiation in stars.’, Monthly Notices Roy. Astron. Soc. 241 (1989), 215–229.

    Google Scholar 

  288. Campos, L.M.B.C.: ‘On the dissipation of Alfvén waves in uniform and non-uniform magnetic fields’, Geophys. Astro- phys. Fluid Dyn. 48 (1990), 193–215.

    Article  Google Scholar 

  289. Campos, L.M.B.C.: ‘On the Hall effect on vertical Alfvén waves in an isothermal atmosphere’, Phys. Fluids B4 (1992), 2975–2982.

    Google Scholar 

  290. Campos, L.M.B.C.: ‘Comparison of exact solutions and phase mining approximation, for dissipative Alfvén waves’, Europ. J. Mech. B12 (1993), 187–216.

    Google Scholar 

  291. Campos, L.M.B.C.: ‘Exact and approximate methods for hydromagnetic waves in dissipative atmospheres’, Wave Motion 17 (1993), 101–112.

    Article  MathSciNet  MATH  Google Scholar 

  292. Campos, L.M.B.C.: ‘An exact solution for spherical Alfvén waves’, Europ. J. Mech. B13 (1994), 613–28.

    MathSciNet  Google Scholar 

  293. Campos, L.M.S., and Gil, P.J.S.: ‘On spiral coordinates with application to wave propagation’, J. Fluid Mech. 301 (1995), 153–173.

    Article  MathSciNet  MATH  Google Scholar 

  294. Campos, L.M.B.C., and Isaeva, N.L.: ‘On vertical spinning Alfvén waves in a magnetic flux tube’, J. Plasma Phys. 48 (1992), 415–434.

    Article  Google Scholar 

  295. Campos, L.M.B.C., and Mendes, P.M.V.M.: ‘On the compatibility of Alfvén wave heating of the chromosphere, transition region and corona’, Monthly Notices Roy. Astron. Soc. 276 (1995), 1041–1051.

    Google Scholar 

  296. Cowling, T.G.: Magnetohydrodynamics, Acad. Press, 1980.

    Google Scholar 

  297. Cross, R.: An introduction to Alfvén waves, Adam Hilger, IOP Publishing, 1988.

    Google Scholar 

  298. Ferraro, V.C.A., and Plumpton, C.: ‘Hydromagnetic waves in an horizontally stratified atmosphere’, Astrophys. J. 129 (1958), 459–476.

    Article  MathSciNet  Google Scholar 

  299. Ferraro, V.C.A., and Plumpton, C.: Magneto-fluid dynamics, Oxford Univ. Press, 1963.

    Google Scholar 

  300. Herlofson, N.: ‘Waves in a compressible fluid conductor’, Nature 165 (1950), 1020–1021.

    Article  MathSciNet  MATH  Google Scholar 

  301. Heyvaerts, J., and Priest, E.R.: ‘Coronal heating by phase-mined shear Alfvén waves’, Astron. Astrophys. 117 (1983), 220–234.

    MATH  Google Scholar 

  302. Hollweg, J.V.: ‘Alfvén waves in a two-fluid model of the solar wind’, Astrophys. J. 181 (1973), 547–566.

    Article  Google Scholar 

  303. Kulsrud, R.M.: ‘Effect of magnetic fields in the generation of noise by turbulence’, Astrophys. J. 121 (1955), 461–468.

    Article  MathSciNet  Google Scholar 

  304. Landau, L.D., and Lifshitz, E.F.: Electrodynamics of continuous media, Pergamon, 1956.

    Google Scholar 

  305. Leroy, B.: ‘Propagation of Alfvén waves in an isothermal atmosphere when the Displacement current is not neglected’, Astron. Astrophys. 125 (1983), 371–383.

    MATH  Google Scholar 

  306. Lighthill, M.J.: ‘Studies on magnetohydrodynamic waves and other anisotropic wave motions’, Phil. Trans. Roy. Soc. A 252 (1959), 397–430.

    Article  MathSciNet  Google Scholar 

  307. Lighthill, M.J.: Waves in fluids, Cambridge Univ. Press, 1978.

    MATH  Google Scholar 

  308. Lundquist, S.: ‘Experimental investigation of magnetohydrodynamic waves’, Phys. Rev. 79 (1949), 1805–1809.

    Article  Google Scholar 

  309. McKenzie, J.F.: ‘On a critical level for ion-cyclotron waves’, J. Plasma Phys. 22 (1979), 361–372.

    Article  Google Scholar 

  310. McLellan, A., and Winterberg, F.: ‘Magneto-gravity waves and the heating of the solar corona’, Solar Phys. 4 (1968), 401–408.

    Article  Google Scholar 

  311. Parker, E.N.: Cosmical magnetic fields, Oxford Univ. Press, 1979.

    Google Scholar 

  312. Parker, E.N.: ‘Alfvén waves in a thermally stratified fluid’, Geophys. Astrophys. Fluid Dyn. 29 (1984), 1–12.

    Article  MATH  Google Scholar 

  313. Thomas, J.H.: ‘Magneto-atmospheric waves’, Ann. Rev. Fluid Mech. 15 (1984), 321–343.

    Article  Google Scholar 

  314. Yu, O.P.: ‘Magneto-atmospheric waves in an horizontally-stratified conducting medium’, Phys. Fluids 8 (1965), 650–658.

    Article  MATH  Google Scholar 

  315. Zugzda, Y.D.: ‘Low-frequency oscillatory convection in a strong magnetic field’, Cosmic Electrodyn. 2 (1971), 267–279.

    Google Scholar 

  316. Fraser, C.G.: ‘The calculus as algebraic analysis: some observations on mathematical analysis in the 18th century’, Arch. Hist. Exact Sci. 39 (1989), 317–335.

    MathSciNet  MATH  Google Scholar 

  317. Jahnke, H.N.: ‘Algebraic analysis in Germany, 1780–1840: some mathematical and philosophical issues’, Historia Math. 20, no. 3 (1993), 265–284.

    Article  MathSciNet  MATH  Google Scholar 

  318. Lagrange, J.P.: Théorie des fonctions analytiques contenant les principes du calcul différentiel, dégagés de toute considération d’infiniment petits, d’évanouissans de limites et de fluxions, et réduit à l’analyse algébriques de quantités finies, second, revised and enlarged ed., Imprimeur-Librairie pour les Mathématiques, Paris, 1813, First edition published in 1797.

    Google Scholar 

  319. Przeworska-Rolewicz, D.: Algebraic analysis, PWN and D. Reidel, 1988.

    MATH  Google Scholar 

  320. Przeworska-Rolewicz, D.: ‘Short story of the term “Algebraic Analysis’“: Proc. Intern. Conf. Different Aspects of Differentiability II, Warszawa, September 1995, Vol. 4 of Integral Transforms and Special Functions, 1996, Preprint Inst. Mat. Polish Acad. Sci. No. 565, Jan. 1997 (second ed., revised and complemented).

    Google Scholar 

  321. Cantor, D., and Roquette, P.: ‘On diophantine equations over the ring of all algebraic integers’, J. Number Theory 18 (1984), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  322. Green, B., Pop, F., and Roquette, P.: ‘On Rumely’s local global principle’, Jahresber. Deutsch. Math.-Verein. 97 (1995), 43–74.

    MathSciNet  MATH  Google Scholar 

  323. Matiyasevich, Yu.V.: ‘Diophantine sets’, Russ. Math. Surveys 27, no. 5 (1972), 124–164.

    Article  MATH  Google Scholar 

  324. Matiyasevich, Yu.V.: ‘Diophantine sets’, Uspekhi Mat. Nauk 27, no. 5 (1972), 185–222.

    Google Scholar 

  325. Moret-Bailly, L.: ‘Groupes de Picard et problèmes de Skolem I, II’, Ann. Sci. Ecole Normale Sup. 22 (1989), 161–179;

    MathSciNet  MATH  Google Scholar 

  326. Moret-Bailly, L.: ‘Groupes de Picard et problèmes de Skolem I, II’, Ann. Sci. Ecole Normale Sup. 22 (1989), 181–194.

    MathSciNet  MATH  Google Scholar 

  327. Prestel, A., and Schmidt, J.: ‘Existentially closed domains with radical relations: An axiomatisation of the ring of algebraic integers’, J. Reine Angew. Math. 407 (1990), 178–201.

    MathSciNet  MATH  Google Scholar 

  328. Robinson, J.: ‘Existential definability’, Trans. Amer. Math. Soc. 72, no. 3 (1952), 437–449.

    Article  MathSciNet  MATH  Google Scholar 

  329. Rumely, R.: ‘Arithmetic over the ring of all algebraic integers’, J. Reine Angew. Math. 368 (1986), 127–133.

    MathSciNet  MATH  Google Scholar 

  330. Rumely, R.: Capacity theory on algebraic curves, Vol. 1378 of Lecture Notes in Mathematics, Springer, 1989.

    Google Scholar 

  331. Skolem, Th.: ‘Lösung gewisser Gleichungen in ganzen algebraischen Zahlen, insbesondere in Einheiten’, Skrifter Norske Videnskap. Akad. Oslo I. Mat. Kl. 10 (1934).

    Google Scholar 

  332. Dries, L. van den: ‘Elimination theory for the ring of algebraic integers’, J. Reine Angew. Math. 388 (1988), 189–205.

    MathSciNet  MATH  Google Scholar 

  333. Dries, L. van den, and Macintyre, A.: ‘The logic of Rumely’s local-global principle’, J. Reine Angew. Math. 407 (1990), 33–56.

    MathSciNet  MATH  Google Scholar 

  334. Riele, H.J.J. Te: A theoretical and computational study of generalized aliquot sequences, Math. Centre, Amsterdam, 1976.

    MATH  Google Scholar 

  335. Alperin, J.L.: ‘Weights for finite groups’: Proc. Symp. Pure Math., Vol. 47, Amer. Math. Soc, 1987, pp. 369–379.

    MathSciNet  Google Scholar 

  336. Dade, E.C.: ‘Counting characters in blocks I’, Invent. Math. 109 (1992), 187–210.

    Article  MathSciNet  MATH  Google Scholar 

  337. Dade, E.C.: ‘Counting characters in blocks IF, J. Reine Angew. Math. 448 (1994), 97–190.

    MathSciNet  MATH  Google Scholar 

  338. Knörr, R., and Robinson, G.R.: ‘Some remarks on a conjecture of Alperin’, J. London Math. Soc. (2) 39 (1989), 48–60.

    Article  MathSciNet  MATH  Google Scholar 

  339. Thévenaz, J.: ‘Equivariant K-theory and Alperin’s conjecture’, J. Pure Appl. Algebra 85 (1993), 185–202.

    Article  MathSciNet  MATH  Google Scholar 

  340. Douglas, J.: ‘On the numerical integration of u xx +u yy = u t by implicit methods’, SIAMJ. 3 (1962), 42–65.

    Article  Google Scholar 

  341. Lennart Johnsson, S., Saad, Y., and Schultz, M.H.: ‘Alternating direction methods on multiprocessors’, SIAMJ. Sci. Statist. Comput. 8 (1987), 686–700.

    Article  MATH  Google Scholar 

  342. Peaceman, D.W., and Rachford, H.H.: ‘The numerical solution of parabolic and elliptic differential equations’, SIAMJ. 3 (1955), 28–41.

    Article  MathSciNet  MATH  Google Scholar 

  343. Varga, R.S.: Matrix iterative analysis, Prentice-Hall, 1962.

    Google Scholar 

  344. various: ‘Papers of different authors published 1979–1990’, Comm. Math. Univ. Carolinae (1979/90).

    Google Scholar 

  345. Vopenka, P.: Mathematics in the alternative set theory, Teubner, 1979.

    MATH  Google Scholar 

  346. Vopenka, P.: Introduction to mathematics in the alternative set theory, Alfa, Bratislava, 1989. (In Slovak.)

    MATH  Google Scholar 

  347. Amitsur, S.A., and Levitzki, J.: ‘Minimal identities for algebras’, Proc. Amer. Math. Soc. 1 (1950), 449–463.

    Article  MathSciNet  MATH  Google Scholar 

  348. Kostant, B.: ‘A theorem of Frobenius, a theorem of Amitsur-Levitzki, and cohomology theory’, J. Math. Mech. 7 (1958), 237–264.

    MathSciNet  MATH  Google Scholar 

  349. Passman, D.S.: The algebraic structure of group rings, Wiley, 1977.

    MATH  Google Scholar 

  350. Procesi, C: ‘The invariant theory of n x n matrices’, Adv. in Math. 19 (1976), 306–381.

    Article  MathSciNet  MATH  Google Scholar 

  351. Razmyslov, Yu.P.: ‘Trace identities of full matrix algebras over a field of characteristic zero’, Math. USSR Izv. 8 (1974), 727–760.

    Article  MATH  Google Scholar 

  352. Razmyslov, Yu.P.: ‘Trace identities of full matrix algebras over a field of characteristic zero’, Izv. Akad. Nauk SSSR 38 (1974), 723–756.

    MathSciNet  Google Scholar 

  353. Rosset, S.: ‘A new proof of the Amitsur-Levitzki identity’, Israel J. Math. 23 (1976), 187–188.

    Article  MathSciNet  MATH  Google Scholar 

  354. Swan, R.G.: ‘An application of graph theory to algebra’, Proc. Amer. Math. Soc. 14 (1963), 367–380.

    Article  MathSciNet  MATH  Google Scholar 

  355. Szigeti, J., Tuza, Z., and Revesz, G.: ‘Eulerian polynomial identities on matrix rings’, J. Algebra 161 (1993), 90–101.

    Article  MathSciNet  MATH  Google Scholar 

  356. Cousot, P.: ‘Semantic foundations of program analysis’, in S.S. Muchnick and N.D. Jones (eds.): Program Flow Analysis: Theory and Applications, Prentice-Hall, 1981, pp. 303–342.

    Google Scholar 

  357. Jagannathan, S., and Weeks, S.: ‘A unified treatment of flow analysis in higher-order languages’: Proc. POPL ‘95, ACM Press, 1995, pp. 393–407.

    Google Scholar 

  358. Jones, N.D., and Nielson, F.: ‘Abstract interpretation: a semantics-based tool for program analysis’, in S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum (eds.): Handbook of Logic in Computer Science, Vol. 4, Oxford Univ. Press, 1995, pp. 527–636.

    Google Scholar 

  359. Talpin, J.P., and Jouvelot, P.: ‘The type and effect discipline’: Information and Computation, Vol. 111, 1994.

    Google Scholar 

  360. Bingham, N.H., Goldie, C.M., and Teugels, J.L.: Regular variation, second ed., Vol. 27 of Encycl. Math. Appl., Cambridge Univ. Press, 1989.

    Google Scholar 

  361. Bruijn, N.G. De: ‘Some algorithms for ordering a sequence of objects, with application to E. Sparre Andersen’s principle of equivalence in mathematical statistics’, Indagationes Mathematicae 34, no. 1 (1972), 1–10.

    Google Scholar 

  362. Feller, W.: An introduction to probability theory and its applications, second ed., Vol. 2, Springer, 1976.

    Google Scholar 

  363. Joseph, A.W.: ‘An elementary proof of the principle of equivalence’, J. London Math. Soc. (2) 3 (1971), 101–102.

    Article  MathSciNet  MATH  Google Scholar 

  364. Sparre Andersen, E.: ‘On the number of positive sums of random variables’, Skand. Aktuarietikskr. 32 (1949), 27–36.

    Google Scholar 

  365. Sparre Andersen, E.: ‘On sums of symmetrically dependent random variables’, Skand. Aktuarietikskr. 36 (1953), 123–138.

    Google Scholar 

  366. Sparre Andersen, E.: ‘On the fluctuations of sums of random variables’, Math. Scand. 1 (1953), 263–285,

    MathSciNet  MATH  Google Scholar 

  367. Sparre Andersen, E.: ‘On the fluctuations of sums of random variables’, Math. Scand. 2 (1954), 195–223.

    MathSciNet  MATH  Google Scholar 

  368. Spitzer, F.: Principles of random walk, second ed., Springer, 1976.

    MATH  Google Scholar 

  369. Anderson, T.W., and Darling, D.A.: ‘Asymptotic theory of certain ‘goodness-of-fit’ criteria based on stochastic processes’, Ann. Math. Stat. 23 (1952), 193–212.

    Article  MathSciNet  MATH  Google Scholar 

  370. Anderson, T.W., and Darling, D.A.: ‘A test of goodness-of-fit’, J. Amer. Statist. Assoc. 49 (1954), 765–769.

    MathSciNet  MATH  Google Scholar 

  371. Baringhaus, L., Danschke, R., and Henze, N.: ‘Recent and classical tests for normality: a comparative study’, Comm. Statist. Simulation Comput. 18 (1989), 363–379.

    Article  MathSciNet  MATH  Google Scholar 

  372. Baringhaus, L., and Henze, N.: ‘An adaptive omnibus test for exponentiality’, Comm. Statist. Th. Methods 21 (1992), 969–978.

    Article  MathSciNet  MATH  Google Scholar 

  373. Drost, F.C., Kallenberg, W.C.M., and Oosterhoff, J.: ‘The power of EDF tests to fit under non-robust estimation of nuisance parameters’, Statist. Decisions 8 (1990), 167–182.

    MathSciNet  MATH  Google Scholar 

  374. Gan, F.F., and Koehler, K.J.: ‘Goodness-of-fit tests based on P — P probability plots’, Technometrics 32 (1990), 289–303.

    Google Scholar 

  375. Nikitin, Ya.Yu.: Asymptotic efficiency of nonparametric tests, Cambridge Univ. Press, 1995.

    Book  MATH  Google Scholar 

  376. Adler, S.: ‘Axial-vector vertex in spinor electrodynamics’, Phys. Rev. 177 (1969), 2426–2438.

    Article  Google Scholar 

  377. Atiyah, M.F., and Singer, I.M.: ‘Dirac operators coupled to vector potentials’, Proc. Nat. Acad. Sci. USA 81 (1984), 2597–2600.

    Article  MathSciNet  MATH  Google Scholar 

  378. Bell, J., and Jackiw, R.: ‘A PCAC puzzle π° → 2γ in the σ-model’, Nuovo Cimento 60A (1969), 47–61.

    Google Scholar 

  379. Bonora, L., and Cotta-Ramusino, P.: ‘Some Remarks on BRS transformations, anomalies and the cohomology of the Lie algebra of the group of gauge transformations’, Comm. Math. Phys. 87 (1983), 589–603.

    Article  MathSciNet  MATH  Google Scholar 

  380. Fujikawa, K.: ‘Path integral measure for gauge invariant Fermion theories’, Phys. Rev. Lett. 42 (1979), 1195–1197.

    Article  Google Scholar 

  381. Green, M.B., and Schwarz, J.H.: ‘Anomaly cancellations in supersymmetric D = 10 gauge theory and superstring theory’, Phys. Lett. 149B (1984), 117–122.

    MathSciNet  Google Scholar 

  382. Hitchin, N.J.: ‘Flat connections and geometric quantisation’, Comm. Math. Phys. 131 (1990), 347–380.

    Article  MathSciNet  MATH  Google Scholar 

  383. Nash, C.: Differential topology and quantum field theory, Acad. Press, 1991.

    MATH  Google Scholar 

  384. Witten, E.: ‘Global gravitational anomalies’, Comm. Math. Phys. 100 (1985), 197–229.

    Article  MathSciNet  MATH  Google Scholar 

  385. Cheng, Q.M.: ‘Complete maximal space-like hypersurfaces of H 4 1 (c) ’, Manuscripta Math. 82 (1994), 149–160.

    Article  MathSciNet  MATH  Google Scholar 

  386. Ishikawa, T.: ‘Maximal space-like submanifolds of a pseudo-Riemannian space of constant curvature’, Michigan Math. J. 35 (1988), 345–352.

    Article  MathSciNet  Google Scholar 

  387. Ki, U-H., Kim, H.S., and Nakagawa, H.: ‘Complete maximal space-like hypersurfaces of an anti-de Sitter space’, Kyungpook Math. J. 31 (1991), 131–141.

    MathSciNet  MATH  Google Scholar 

  388. Gustafson, K.: ‘Antieigenvalues’, Linear Alg. & Its Appl. 208/209 (1994), 437–454.

    Article  MathSciNet  Google Scholar 

  389. Gustafson, K.: ‘Operator trigonometry’, Linear and Multilinear Alg. 37 (1994), 139–159.

    Article  MathSciNet  MATH  Google Scholar 

  390. Gustafson, K.: ‘Matrix trigonometry’, Linear Alg. & Its Appl. 217 (1995), 117–140.

    Article  MathSciNet  MATH  Google Scholar 

  391. Gustafson, K.: Lectures on computational fluid dynamics, mathematical physics, and linear algebra, Kaigai & World Sci., 1996/7.

    Google Scholar 

  392. Gustafson, K.: ‘Operator trigonometry of iterative methods’, Numerical Linear Alg. Applic. to appear (1997).

    Google Scholar 

  393. Gustafson, K., and Rao, D.: Numerical range, Springer, 1997.

    Book  Google Scholar 

  394. Hoffnagle, G.F. (ed.): ‘13 papers on the occasion of the 25th anniversary of APL’, IBM Systems J. 30, no. 4 (1991).

    Google Scholar 

  395. Iverson, K.E.: A programming language, Wiley, 1962.

    MATH  Google Scholar 

  396. Iverson, K.E.: ‘Notation as a tool of thought, 1979 Turing Award Lecture’, Comm. ACM 23 (1980), 444–465.

    Article  MathSciNet  Google Scholar 

  397. Wegner, P.: ‘Programming languages — the first 25 years’, IEEE Trans. Comp. C-25 (1976), 1207–1225.

    Article  MATH  Google Scholar 

  398. Wolfram, S.: Mathematical A system for doing mathematics by computer, Addison-Wesley, 1988.

    Google Scholar 

  399. Arens, R.: ‘The adjoint of a bilinear operation’, Proc. Amer. Math. Soc. 2 (1951), 839–848.

    Article  MathSciNet  MATH  Google Scholar 

  400. Arens, R.: ‘Operations induced in function classes’, Monatsh. Math. 55 (1951), 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  401. Palmer, T.W.: Banach algebras and the general theory of *-algebras I, Vol. 49 of Encycl. Math. Appl., Cambridge Univ. Press, 1994.

    Google Scholar 

  402. Arens, R.: ‘The adjoint of a bilinear operation’, Proc. Amer. Math. Soc. 2 (1951), 839–848.

    Article  MathSciNet  MATH  Google Scholar 

  403. Arens, R.: ‘Operations induced in function classes’, Monatsh. Math. 55 (1951), 1 19.

    Article  MathSciNet  Google Scholar 

  404. Civin, P., and Yood, B.: ‘The second conjugate space of a Banach algebra as an algebra’, Pacific J. Math. 11 (1961), 847–870.

    MathSciNet  MATH  Google Scholar 

  405. Grosser, M.: ‘Arens semiregular Banach algebras’, Monatsh. Math. 98, no. 1 (1984), 41–52.

    Article  MathSciNet  MATH  Google Scholar 

  406. Hennefeld, J.O.: ‘A note on the Arens products’, Pacific J. Math. 26 (1968), 115 119.

    MathSciNet  Google Scholar 

  407. Kauser, S.: ‘On Banach modules I’, Math. Proc. Cambridge Philos. Soc. 90, no. 3 (1981), 423–444.

    Article  MathSciNet  Google Scholar 

  408. Palmer, T.W.: Banach algebras and the general theory of *-algebras I, Vol. 49 of Encycl. Math. Appl., Cambridge Univ. Press, 1994.

    Google Scholar 

  409. Pym, J.S.: ‘The convolution of functionals on spaces of bounded functions’, Proc. London Math. Soc. (3) 15 (1965), 84–104.

    Article  MathSciNet  MATH  Google Scholar 

  410. Rodrĭguez-Palacios, Á.: ‘A note on Arens regularity’, Quart. J. Math. Oxford Ser. (2) 38, no. 149 (1987), 1991–1993.

    Google Scholar 

  411. Sherman, S.: ‘The second adjoint of a C*-algebra’: Proc. Internat. Congress Math. Cambridge, I, 1950, p. 470.

    Google Scholar 

  412. Young, N.J.: ‘The irregularity of multiplication in group algebras’, Quart. J. Math. Oxford Ser. (2) 24 (1973), 59–62.

    Article  MathSciNet  Google Scholar 

  413. Young, N.J.: ‘Semigroup algebras having regular multiplication’, Studia Math. 47 (1973), 191–196.

    MathSciNet  MATH  Google Scholar 

  414. Young, N.J.: ‘Periodicity of functionals and representations of normed algebras on reflexive spaces’, Proc. Edinburgh Math. Soc. (2) 20, no. 2 (1976–77), 99–120.

    Article  MathSciNet  MATH  Google Scholar 

  415. Brehm, U., Greferath, M., and Schmidt, S.E.: ‘Projective geometry on modular lattices’, in F. Buekenhout (ed.): Handbook of Incidence Geometry, Elsevier, 1995, pp. 1115–1142.

    Chapter  Google Scholar 

  416. Butler, L.M.: Subgroup lattices and symmetric functions, Vol. 539 of Memoirs, Amer. Math. Soc, 1994.

    Google Scholar 

  417. Crawley, P., and Dilworth, R.P.: Algebraic theory of lattices, Prentice-Hall, 1973.

    MATH  Google Scholar 

  418. Cylke, A.A.: ‘Perfect and linearly equivalent elements in modular lattices’, in V. Dlab ET AL. (eds.): Representations of Algebras VI (Proc. Int. Conf. Ottawa 1992), Vol. 14 of CMS Conf. Proc, AMS, 1993, pp. 125–148.

    Google Scholar 

  419. Day, A.: ‘Geometrical applications in modular lattices’, in R. Freese and O. Garcia (eds.): Universal Algebra and Lattice Theory, Vol. 1004 of Lecture Notes in Mathematics, Springer, 1983, pp. 111–141.

    Chapter  Google Scholar 

  420. Day, A.: ‘Applications of coordinatization in modular lattice theory: the legacy of J. von Neumann’, Order 1 (1985), 295–300.

    Article  MathSciNet  MATH  Google Scholar 

  421. Day, A., and Freese, R.: ‘The role of gluing in modular lattice theory’, in K. Bogart, R. Freese, and J. Kung (eds.): The Dilworth Theorems, Selected Papers of Robert P. Dilworth, Birkhäuser, 1990, pp. 251–260.

    Google Scholar 

  422. Day, A., and Pickering, D.: ‘The coordinatization of Arguesian lattices’, Trans. Amer. Math. Soc. 278 (1983), 507–522.

    Article  MathSciNet  MATH  Google Scholar 

  423. Draškovičová, H. (eds.), et al.: ‘Ordered sets and lattices, I-II’, Amer. Math. Soc. Transl. Ser. 2 142, 152 (1989/1992).

    Google Scholar 

  424. Finberg, D., Mainetti, M., and Rota, G.-C.: ‘The logic of computing with equivalence relations’, in A. Ursini and P. Agliano (eds.): Logic and Algebra, Vol. 180 of Lecture Notes Pure Applied Math., M. Dekker, 1996.

    Google Scholar 

  425. Freese, R.: ‘Free modular lattices’, Trans. Amer. Math. Soc. 261 (1980), 81–91.

    Article  MathSciNet  MATH  Google Scholar 

  426. Freese, R., and McKenzie, R.: Commutator theory for congruence modular varieties, Vol. 125 of Lecture Notes, London Math. Soc., 1987.

    Google Scholar 

  427. Gel’fand, I.M. (ed.): Representation theory. Selected papers, Vol. 69 of Lecture Notes, London Math. Soc., 1982.

    Google Scholar 

  428. Gross, H.: Quadratic forms in infinite dimensional vector spaces, Vol. 1 of Progress in Math., Birkhäuser, 1979.

    Google Scholar 

  429. Herrmann, C: ‘On elementary Arguesian lattices with four generators’, Algebra Universalis 18 (1984), 225–259.

    Article  MathSciNet  MATH  Google Scholar 

  430. Herrmann, C: ‘Alan Day’s work on modular and Arguesian lattices’, Algebra Universalis 34 (1995), 35–60.

    Article  MathSciNet  MATH  Google Scholar 

  431. Herrmann, C., Pickering, D., and Roddy, M.: ‘Geometric description of modular lattices’, Algebra Universalis 31 (1994), 365–396.

    Article  MathSciNet  MATH  Google Scholar 

  432. Hutchinson, G.: ‘Modular lattices and abelian categories’, J. Algebra 19 (1971), 156–184.

    Article  MathSciNet  MATH  Google Scholar 

  433. Hutchinson, G.: ‘On the representation of lattices by modules’, Trans. Amer. Math. Soc. 209 (1975), 47–84.

    Article  MathSciNet  Google Scholar 

  434. Hutchinson, G.: ‘Embedding and unsolvability theorems for modular lattices’, Algebra Universalis 7 (1977), 47–84.

    Article  MathSciNet  MATH  Google Scholar 

  435. Hutchinson, G., and Czédli, G.: ‘A test for identities satisfied in lattices of submodules’, Algebra Universalis 8 (1978), 269–309.

    Article  MathSciNet  MATH  Google Scholar 

  436. Jipsen, P., and Rose, H.: Varieties of lattices, Vol. 1533 of Lecture Notes in Mathematics, Springer, 1992.

    Google Scholar 

  437. Jónsson, B.: ‘On the representation of lattices’, Math. Scand. 1 (1953), 193–206.

    MathSciNet  MATH  Google Scholar 

  438. Jónsson, B.: ‘Modular lattices and Desargues’ theorem’, Math. Scand. 2 (1954), 295–314.

    MathSciNet  MATH  Google Scholar 

  439. Jónsson, B.: ‘Representations of complemented modular lattices’, Trans. Amer. Math. Soc. 60 (1960), 64–94.

    Article  Google Scholar 

  440. Jónsson, B.: ‘Varieties of algebras and their congruence varieties’: Proc. Int. Congress Math., Vancouver, 1974, pp. 315–320.

    Google Scholar 

  441. Jónsson, B.: ‘Congruence varieties’: G. Grätzer: Universal Algebra, Springer, 1978, pp. 348–377, Appendix 3.

    Google Scholar 

  442. Jónsson, B., and Monk, G.: ‘Representation of primary Arguesian lattices’, Pacific J. Math. 30 (1969), 95–130.

    MathSciNet  MATH  Google Scholar 

  443. Keller, H.A., Kuenzi, U.-M., Storrer, H., and Wild, M. (eds.): Orthogonal geometry in infinite dimensional vector spaces, Lecture Notes in Mathematics. Springer, to appear.

    Google Scholar 

  444. McKenzie, R., McNulty, G., and Taylor, W.: Algebras, lattices, varieties, Vol. I, Wadsworth, 1987.

    MATH  Google Scholar 

  445. Nästäsecu, C., and Ostayen, F. Van: Dimensions of ring theory, Reidel, 1987.

    Book  Google Scholar 

  446. Pálfy, P.P., and Szabó, C.: ‘Congruence varieties of groups and Abelian groups’, in K. Baker and R. Wille (eds.): Lattice Theory and Its Applications, Heldermann, 1995.

    Google Scholar 

  447. Prest, M.: Model theory and modules, Vol. 130 of Lecture Notes, London Math. Soc., 1988.

    Book  MATH  Google Scholar 

  448. Baumgartner, J.: ‘Iterated forcing’, in A.R.D. Mathias (ed.): Surveys in Set Theory, Cambridge Univ. Press, 1979.

    Google Scholar 

  449. Baumgartner, J., Malitz, J., and Reinhardt, W.: ‘Embedding trees in the rationals’, Proc. Nat. Acad. Sc. USA 67 (1970), 1748–1753.

    Article  MathSciNet  MATH  Google Scholar 

  450. Jech, T.: Set theory, Acad. Press, 1978.

    Google Scholar 

  451. Kunen, K.: Set theory: an introduction to independence proofs, North-Holland, 1980.

    MATH  Google Scholar 

  452. Mitchell, W.: ‘Aronszajn trees and the independence of the transfer property’, Ann. Math. Logic 5 (1972), 21–46.

    Article  MathSciNet  MATH  Google Scholar 

  453. Shelah, S.: Proper forcing, Springer, 1982.

    Book  MATH  Google Scholar 

  454. Todorcevic, S.: ‘Trees and linearly ordered sets’, in K. Kunen and J.E. Vaughan (eds.): Handbook of Set Theoretic Topology, North-Holland, 1984.

    Google Scholar 

  455. Aomoto, K., and Kita, M.: Hypergeometric functions, Springer, 1994. (Translated from the Japanese.)

    Google Scholar 

  456. Barthel, G., Hirzebruch, F., and Höfer, T.: Geradenkonfigurationen und Algebraische Flächen, Vieweg, 1987.

    MATH  Google Scholar 

  457. Björner, A., Vergnas, M. Las, Sturmfels, B., White, N., and Ziegler, G.M.: Oriented matroids, Cambridge Univ. Press, 1993.

    MATH  Google Scholar 

  458. Goresky, M., and MacPherson, R.: Stratified Morse theory, Springer, 1988.

    MATH  Google Scholar 

  459. Orlik, P., and Terao, H.: Arrangements of hyperplanes, Springer, 1992.

    MATH  Google Scholar 

  460. Varchenko, A.: Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups, World Sci., 1995.

    MATH  Google Scholar 

  461. Zaslavsky, T.: Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Vol. 154 of Memoirs, Amer. Math. Soc., 1975.

    Google Scholar 

  462. Arrow, K.: Social choice and individual values, second ed., Wiley, 1963.

    Google Scholar 

  463. Chichilnisky, G.: ‘The topological equivalence of the Pareto condition and the existence of a dictator’, J. Econ. Theory 9 (1982), 223–234.

    MathSciNet  MATH  Google Scholar 

  464. Kelly, J.: ‘Social choice bibliography’, Soc. Choice Welfare 8 (1991), 97–169.

    Google Scholar 

  465. Saari, D.G.: Basic geometry of voting, Springer, 1995.

    Book  MATH  Google Scholar 

  466. Saari, D.G.: ‘Arrow’s and Sen’s theorems revisited and resolved’, Social Choice and Welfare to appear (1997).

    Google Scholar 

  467. Bjorling-Sachs, I., and Souvaine, D.: ‘An efficient algorithm for guard placement in polygons with holes’, Discrete Comput. Geom. 13 (1995), 77–109.

    Article  MathSciNet  MATH  Google Scholar 

  468. Füredi, Z., and Kleitman, D.: ‘The prison yard problem’, Combinatorica 14 (1994), 287–300.

    Article  MathSciNet  MATH  Google Scholar 

  469. Hoffmann, F.: ‘On the rectilinear art gallery problem’: Proc. Internat. Colloq. on Automata, Languages, and Programming 90, Vol. 443 of Lecture Notes in Computer Science, Springer, 1990, pp. 717–728.

    Google Scholar 

  470. Hoffmann, F., Kaufmann, M., and Kriegel, K.: ‘The art gallery theorem for polygons with holes’: Proc. 32nd Found. Computer Sci., 1991, pp. 39–48.

    Google Scholar 

  471. Kahn, J., Klawe, M., and Kleitman, D.: ‘Traditional galleries require fewer watchmen’, SIAM J. Algebraic Discrete Methods 4 (1983), 194–206.

    Article  MathSciNet  MATH  Google Scholar 

  472. O’Rourke, J.: Art gallery theorems and algorithms, Oxford Univ. Press, 1987.

    MATH  Google Scholar 

  473. Shermer, T.: ‘Recent results in art galleries’, Proc. IEEE 80, no. 9 (1992), 1384–1399.

    Article  Google Scholar 

  474. Garcia, A., and Stichtenoth, H.: ‘A tower of Artin Schreier extensions of function fields attaining the Drinfeld-Vladut bound’, Invent Math. 121 (1995), 211–222.

    Article  MathSciNet  MATH  Google Scholar 

  475. Stichtenoth, H.: Algebraic function fields and codes, Springer, 1993.

    MATH  Google Scholar 

  476. Tsfasman, M.A., and Vladut, S.G.: Algebraic geometric codes, Kluwer Acad. Publ., 1991.

    MATH  Google Scholar 

  477. Geer, G. Van Der, and Vlugt, M. Van Der: ‘Curves over finite fields of characteristic two with many rational points’, C.R. Acad. Sci. Paris 317 (1993), 693–697.

    Google Scholar 

  478. Lint, J.H. Van: Introduction to coding theory, Springer, 1992.

    MATH  Google Scholar 

  479. Lang, S.: Algebra, Addison-Wesley, 1974.

    MATH  Google Scholar 

  480. Jacobson, N.: Lectures in abstract algebra, Vol. III: theory of fields and Galois theory, v. Nostrand, 1964, p. Ch. VI.

    Book  MATH  Google Scholar 

  481. Ribenboim, P.: L’arithmétique des corps, Hermann, 1972, p. Ch. IX.

    MATH  Google Scholar 

  482. Frisch, R.: ‘La résolution des problèmes de programme linéaire par la méthode du potentiel logarithmique’, Cahier Sém. Econom. 4 (1956), 20–23.

    Google Scholar 

  483. Grötschel, M., Lovász, L., and Schrijver, A.: Geometric algorithms and combinatorial optimization, Springer, 1987.

    Google Scholar 

  484. Murtz, K.: Linear and combinatorial programming, Wiley, 1976.

    Google Scholar 

  485. Papadimitriou, C.H., and Steiglitz, K.: Combinatorial optimization, Prentice-Hall, 1982.

    MATH  Google Scholar 

  486. Yudin, D.B., and Gol’shtein, E.G.: Linear programming, Israel Program. Sci. Transi., 1965. (Translated from the Russian.)

    Google Scholar 

  487. Godambe, V.P., and Heyde, C.C.: ‘Quasi-likelihood and optimal estimation’, Internat Statist. Rev. 55 (1987), 231–244.

    Article  MathSciNet  MATH  Google Scholar 

  488. Heyde, C.C.: Quasi-likelihood and its application. A general approach to optimal parameter estimation, Springer, 1997.

    MATH  Google Scholar 

  489. McLeish, D.L., and Small, CG.: The theory and applications of statistical inference functions, Lecture Notes in Statistics. Springer, 1988.

    Book  MATH  Google Scholar 

Download references

Authors

Editor information

M. Hazewinkel

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hazewinkel, M. (1997). A. In: Hazewinkel, M. (eds) Encyclopaedia of Mathematics. Encyclopaedia of Mathematics. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1288-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1288-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4896-7

  • Online ISBN: 978-94-015-1288-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation