Environmental Applications of Natural Zeolitic Materials Based on Their Ion Exchange Properties

  • Chapter
Natural Microporous Materials in Environmental Technology

Part of the book series: NATO Science Series ((NSSE,volume 362))

Abstract

Present and potential use of natural zeolites as cation exchangers in environmental protection is reviewed. Siliceous zeolites, such as chabazite, clinoptilolite, mordenite and phillipsite, exhibit good selectivities for cations with low charge density, e.g., Cs+ and NH4 +, and for cations with low hydration energy, such as Pb2+. Zeolitised tuffs, containing the mentioned zeolites, may therefore be utilised for removing the above and other cations from wastewaters before discharge.

Continuous processes with fixed beds are usually employed for water purification, such as those in service in the USA and in other countries around the world for ammonium removal from municipal sewage. Direct addition of the ion exchanger is needed when the pollutant, e.g., radionuclide, must be removed from soil and trapped in the zeolite framework, such as in the case of the Chernobyl nuclear accident.

Removal of heavy metals from wastewaters is made difficult by the complexity of the effluents to be treated, e.g., by the presence of several cationic pollutants for which zeolite does not exhibit comparably high selectivities.

Discontinuous processes (addition of zeolite to the waste solution) are also possible, and recommended in the case of low process efficiency, provided that the zeolitic sludge, resulting from removal of polluting cations, is stabilised-solidified in a cement matrix before disposal or re-use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Patterson J.W., Industrial Wastewater Treatment Technology, Butterworth Publishers, Stoneham, MA, 467 pp. (1985).

    Google Scholar 

  2. Gottardi G. and Obradovic J., Sedimentary zeolites in Europe, Fortschr. Miner. 56, 316–366 (1978).

    CAS  Google Scholar 

  3. Hawkins D.B., “Occurrence and availability of natural zeolites”, in W.G. Pond and F.A. Mumpton (Eds.), Zeoagriculture. Use of Natural Zeolites in Agriculture and Aquaculture, Westview Press, Boulder, Colorado, pp. 69–78 (1984).

    Google Scholar 

  4. Hall A. (Ed.), Thematic issue on zeolite deposits, Mineral. Deposita 31, 451–547 (1996).

    Google Scholar 

  5. Gottardi G. and Galli E., Natural Zeolites, Springer-Verlag, Berlin, 409 pp. (1985).

    Book  Google Scholar 

  6. Coombs D.S., Alberti A., Armbruster T., Artioli G., Colella C., Galli E., Grice J.D., Liebau F., Minato H., Nickel E.H., Passaglia E., Peacor D.R., Quartieri S., Rinaldi R., Ross M., Sheppard R.A., Tillmanns E. and Vezzalini G., Recommended nomenclature for zeolite minerals: Report of the Subcommittee on Zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names, The Canadian Mineralogist 35, 1571–1606 (1997).

    CAS  Google Scholar 

  7. de’ Gennaro M., Adabbo M. and Langella A., Hypothesis on the genesis of zeolites in some European volcaniclastic deposits”, Natural Zeolite’ 93. Occurrence, Properties, Use, D.W. Ming and F.A. Mumpton Eds., ICNZ (International Committee on Natural Zeolites), Brockport, New York, pp. 51–67 (1995).

    Google Scholar 

  8. Sheppard R.A. and Gude A.J. III, Calcic siliceous chabazite from the John Day formation, Grant County, Oregon, US Geol. Survey Prof. Pap. 700-D, D176–D180 (1970).

    Google Scholar 

  9. Stonecipher S.A., “Chemistry of deep-sea phillipsite, clinoptilolite, and host sediments”, Natural Zeolites. Occurrence, Properties, Use, L.B. Sand and F.A. Mumpton Eds., Pergamon Press, Elmsford, New York, pp. 221–234 (1978).

    Google Scholar 

  10. Surdam R.C. and Sheppard R.A., “Zeolites in saline, alkaline-lake deposits”, in L.B. Sand and F.A. Mumpton (Eds.), Natural Zeolites. Occurrence, Properties, Use, Pergamon Press, Elmsford, New York, pp. 145–174 (1978).

    Google Scholar 

  11. Barrer R.M., “Cation-exchange in zeolites and feldspathoids”, in L.B. Sand and F.A. Mumpton (Eds.), Natural Zeolites. Occurrence, Properties, Use, Pergamon Press,, Elmsford, New York, pp. 385–395 (1978).

    Google Scholar 

  12. Langella A., Pansini M., Cappelletti P., de Gennaro B., de’ Gennaro M. and Colella C., Cation exchange equilibria in a sedimentary clinoptilolite, north Sardinia, submitted (1998).

    Google Scholar 

  13. Colella C., Ion exchange equilibria in zeolite minerals, Mineral. Deposita 31, 554–562 (1996).

    Article  CAS  Google Scholar 

  14. Pansini M., Colella C., Caputo D., de’ Gennaro M. and Langella A., Evaluation of phillipsite as cation exchanger in lead removal from water, Microporous Materials 5, 357–364 (1996).

    Article  CAS  Google Scholar 

  15. Caputo D., Dattilo R. and Pansini M., “Computation of thermodynamic quantities of ion exchange reactions involving zeolites”, in R. Aiello (Ed.), Proceedings III Convegno Naz. Scienza e Tecnologia delie Zeoliti, De Rose, Montalto (CS), Italy, pp. 143–151 (1995).

    Google Scholar 

  16. Eisenman G., Cations selective glass electrodes and their mode of operation, Biophys. J. 2, 259–323 (1962).

    Article  CAS  Google Scholar 

  17. Sherry H.S., “The ion-exchange properties of the zeolites”, in J.A. Marinsky (Ed.), Ion Exchange. A Series of Advances, Marcel Dekker, New York, vol. 2, pp. 89–133 (1969).

    Google Scholar 

  18. Perona J.J., Model for Sr-Cs-Ca-Mg-Na ion-exchange equilibria on chabazite, AIChE J. 39, 1716–1720 (1993).

    Article  CAS  Google Scholar 

  19. Torracca E., Galli P., Pansini M. and Colella C., Cation exchange reactions of a sedimentary chabazite, Microporous and Mesoporous Materials 20, 119–127 (1998).

    Article  CAS  Google Scholar 

  20. Howery D.G. and Thomas H.C., Ion exchange on the mineral clinoptilolite, J. Phys. Chem. 69, 531–537 (1965).

    Article  CAS  Google Scholar 

  21. Pabalan R.T. and Bertetti F.P., “Thermodynamics of ion-exchange between Na+/Sr++ solutions and the zeolite mineral clinoptilolite”, in A. Barkatt and R.A. van Konynenburg (Eds.), Scientific Basis for Nuclear Waste Management XVII, Mat. Res. Soc. Symp. Proc. No. 333, Pittsburgh, Pennsylvania, pp. 731–738 (1993).

    Google Scholar 

  22. Townsend R.P. and Loizidou M., Ion exchange properties of natural clinoptilolite, ferrierite and mordenite: I. Sodium-ammonium equilibria, Zeolites 4, 191–195 (19??).

    Google Scholar 

  23. Barrer R.M. and Klinowski J., Ion exchange in mordenite, J. Chem. Soc., Faraday Trans. I 70, 2062–2367 (1974).

    Google Scholar 

  24. Adabbo M., Caputo D., de Gennaro B., Pansini M. and Colella C., Ion exchange selectivity of phillipsite for Cs and Sr as a function of framework composition, Microporous and Mesoporous Materials, in press (1999).

    Google Scholar 

  25. Caputo D., “La phillipsite come scambiatore cationico in processi di possibile interesse per la salvaguardia ambientale”, Ph. D. Thesis, Department of Materials and Production Engineering, University of Naples Federico II, Italy, 135 pp. (1997).

    Google Scholar 

  26. Colella C., de’ Gennaro M., Langella A. and Pansini M, “Cadmium removal from wastewaters using chabazite and phillipsite”, in D.W. Ming and F.A. Mumpton (Eds.), Natural Zeolite’ 93. Occurrence, Properties, Use (International Committee on Natural Zeolites), Brockport, New York, pp. 363–375 (1995).

    Google Scholar 

  27. Colella C., de’ Gennaro M., Langella, A. and Pansini, M., Evaluation of natural phillipsite and chabazite as cation exchangers for copper and zinc, Separation Science and Tecnology 33, 467–481 (1998).

    Article  CAS  Google Scholar 

  28. Loizidou M. and Townsend R.P., Ion-exchange properties of natural clinoptilolite, mordenite and ferrierite: Part 2. Lead-sodium and lead-ammonium equilibria, Zeolites 7, 153–159 (1987).

    Article  CAS  Google Scholar 

  29. Loizidou M. and Townsend R.P., Exchange of cadmium into the sodium and ammonium forms of natural zeolites clinoptilolite, mordenite and ferrierite, J. Chem. Soc. Dalton Trans. 1911–1916 (1987).

    Google Scholar 

  30. Albino V. and Colella C., “Materiali lapidei artificiali a matrice zeolitica”, in P. Giordano Orsini (Ed.), Atti 2° Convegno Naz. AIMAT (Associazione Italiana dilngegneria dei Materiali), Univ. Trento (Italy), vol. I, pp. 497–504 (1994).

    Google Scholar 

  31. Blanchard G., Maunaye M. and Martin G., Removal of heavy metals from waters by means of natural zeolites, Water Res. 18, 1501–1507 (1984).

    Article  CAS  Google Scholar 

  32. de’ Gennaro M. and Colella C., Use of thermal analysis for the evaluation of zeolite content in mixtures of hydrated phases, Thermochimica Acta 154, 345–353 (1989).

    Article  Google Scholar 

  33. Hlavay J., Vassanyi I. and Inczédy J., Quantitative determination of the mordenite content of natural zeolite rocks by infrared spectroscopy, Spectr. Acta 41A, 1457–1458 (1988).

    Google Scholar 

  34. Artioli G., Alberti A., Cagossi G. and Bellotto M., “Quantitative determination of crystalline and amorphous components in clinoptilolite-rich rocks by Rietveld analysis of X-ray powder diffraction profiles”, in C. Colella (Ed.), Atti I Convegno Naz. Scienza e Tecnologia delle Zeoliti, De Frede, Napoli, Italy, pp. 261–270 (1991).

    Google Scholar 

  35. Bottale M.G., Caputo D. and Colella C., “Measurement of the cation exchange capacity of a natural zeolite: a preliminary approach”, in E. Fois and A. Gamba (Eds.), Proc. 4° Convegno Naz. Scienza Teen. Zeoliti, Università dell’Insubria “A. Volta”, Como, Italy, pp. 31–36 (1998).

    Google Scholar 

  36. Tsitsishvili G.V., “Perspectives of natural zeolite applications”, in D. Kalló and H.S. Sherry (Eds.), Occurrences, Properties and Utilization of Natural Zeolites, Akadémiai Kiadó, Budapest, Hungary, pp. 367–393 (1988).

    Google Scholar 

  37. Pansini M., Natural zeolites as cation exchangers for environmental protection, Mineral. Deposita 31, 563–575 (1996).

    Article  CAS  Google Scholar 

  38. Koon J.H. and Kaufman W.J., Ammonia removal from municipal wastewater by ion exchange, J. Wat. Pollut. Control Fed. 47, 448–464 (1975).

    CAS  Google Scholar 

  39. Liberti L., Lopez A., Amicarelli V. and Boghetich G., “Ammonium and phosphorus removal from wastewater using clinoptilolite: a review of the RIM-NUT process”, in D.W. Ming and F.A. Mumpton (Eds.), Natural Zeolites’ 93. Occurrence, Properties, Use (International Committee on Natural Zeolites), Brockport, New York, pp. 351–362 (1995).

    Google Scholar 

  40. Mumpton F.A., “The natural zeolite story”, in C. Colella (Ed.), Atti 3° Congresso Nazionale AIMAT (Associazione Italiana d’ Ingegneria dei Materiali), De Frede, Napoli (Italy), Vol. 1, pp. XXXI–LXIV (1996).

    Google Scholar 

  41. Torii K., “Utilization of natural zeolites in Japan”, in L.B. Sand and F.A. Mumpton (Eds.), Natural Zeolites. Occurrence, Properties, Use, Pergamon Press, Elmsford, New York, pp. 441–450 (1978).

    Google Scholar 

  42. Dyer A., An Introduction To Zeolite Molecular Sieves, John Wiley & Sons, Chichester, UK, p. 83 (1988).

    Google Scholar 

  43. Amicarelli V. and Liberti L., “Zeolite ammonia removal at Manfredonia municipal plant”, in C. Colella (Ed.), Atti I Convegno Naz. Scienza e Tecnologia delle Zeoliti, De Frede, Napoli, Italy, pp. 147–155 (1991).

    Google Scholar 

  44. Hlavay J., Vigh G., Olaszi V. and Inczédy, J., Ammonia and iron removal from drinking water with clinoptilolite tuff, Zeolites 3, 188–190 (1983).

    Article  CAS  Google Scholar 

  45. Chmielewská-Horváthová E., Konecny J. and Bosan Z., Ammonia removal from tannery wastewaters by selective ion exchange on Slovak clinoptilolite, Acta hydrochim. hydrobiol. 20, 269–272 (1992).

    Google Scholar 

  46. Chmielewská-Horváthová E., “A possibility of application of clinoptilolite for water pollution control”, in L. Pawlowski, W. Lacy, C.G. Uchrin and M.R. Dudzinska (Eds.), Chemistry for the Protection of the Environment 3, Plenum Press, New York, pp. 35–42 (1998).

    Google Scholar 

  47. Kalló, D., “Wastewater purification in Hungary using natural zeolites”, in D.W. Ming and F.A. Mumpton (Eds.), Natural Zeolites’ 93. Occurrence, Properties, Use (International Committee on Natural Zeolites), Brockport, New York, pp. 341–350 (1995).

    Google Scholar 

  48. Hagiwara Z. and Uchida M., “Ion-exchange reactions of processed zeolite and its application to the removal of ammonia-nitrogen in wastes”, in L.B. Sand and F.A. Mumpton (Eds.), Natural Zeolites. Occurrence, Properties, Use, Pergamon Press, Elmsford, New York, pp. 463–470 (1978).

    Google Scholar 

  49. Colella C. and Aiello R., “Ammonium removal from tannery sewages by selective ion exchange using natural phillipsite”, in D. Kalló and H.S. Sherry (Eds.), Occurrences, Properties and Utilization of Natural Zeolites, Akademiai Kiadó, Budapest, Hungary, pp. 491–500 (1988).

    Google Scholar 

  50. Amicarelli V., Baldassarre G., Boghetich G., Liberti L. and Limoni N., “Use of Italian zeolites for deammoniation of municipal wastewater”, in Proc. 2nd Int. Conf. on Environmental Protection, CUEN, Napoli (Italy), 2.A-75-82 (1988).

    Google Scholar 

  51. Dyer A., Use of zeolites in the treatment of nuclear waste, Analytical Proc. 30(4), 190–191 (1993).

    Article  CAS  Google Scholar 

  52. Mimura H., Akiba K. and Kavamura K., Separation of heat generating nuclides from high-level liquid wastes through zeolite columns, J. Nucl. Sci. Technol. 31, 463–469 (1994).

    Article  CAS  Google Scholar 

  53. Mercer B.W. and Ames L.L., “Zeolite ion exchange in radioactive and municipal wastewater treatment”, in L.B. Sand and F.A. Mumpton (Eds.), Natural Zeolites. Occurrence, Properties, Use, Pergamon Press, Elmsford, New York, pp. 451–462 (1978).

    Google Scholar 

  54. Collins E.D., Campbell D.O., King L.J. and Knauer J.B., Water decontamination process improvement tests and considerations, AIChE Symp. Ser. 78(213), 9–15 (1982).

    CAS  Google Scholar 

  55. Chelishchev N.F., “Use of natural zeolites at Chernobyl”, in D.W. Ming and F.A. Mumpton (Eds.), Natural Zeolites’ 93. Occurrence, Properties, Use (International Committee on Natural Zeolites), Brockport, New York, pp. 525–532 (1995).

    Google Scholar 

  56. Robinson S.M., Kent T.E. and Arnold W.D., “Treatment of contaminated wastewater at Oak Ridge National Laboratory by zeolites and other ion exchangers”, in D.W. Ming and F.A. Mumpton (Eds.), Natural Zeolites’ 93. Occurrence, Properties, Use (International Committee on Natural Zeolites), Brockport, New York, pp. 579–586 (1995).

    Google Scholar 

  57. Tsitsishvili G.V., Andronikashvili T.G., Kirov G.N. and Filizova L.D., Natural Zeolites, Ellis Horwood, Chichester, UK, pp. 235–262 (1992).

    Google Scholar 

  58. Vaniman D.T. and Bish D.L., “The importance of zeolites in the potential high-level radioactive waste repositiry at Yucca Mountain, Nevada”, in D.W. Ming and F.A. Mumpton (Eds.), Natural Zeolites’ 93. Occurrence, Properties, Use (International Committee on Natural Zeolites), Brockport, New York, pp. 533–546 (1995).

    Google Scholar 

  59. Dyer A. and Kadhim F.H., Inorganic ion-exchangers for the removal of zirconium, hafnium and niobium radioisotopes from aqueous solutions, J. Radioanal. Nucl. Chem., Articles 131(1), 161–169 (1989).

    Article  CAS  Google Scholar 

  60. Dyer A. and Jozefowicz L.C., The removal of thorium from aqueous solutions using zeolites, J. Radioanal. Nucl. Chem., Articles 159(1), 47–62 (1992).

    Article  CAS  Google Scholar 

  61. Guangsheng Z., **ngzheng L., Guangju L. and Quanchang Z., “Removal of copper from electroplating effluents (potch water) using clinoptilolite”, in D. Kalló and H.S. Sherry (Eds.), Occurrences, Properties and Utilization of Natural Zeolites, Akademiai Kiadó, Budapest, Hungary, pp. 529–539 (1988).

    Google Scholar 

  62. Zamzow M.J. and Schultze L.E., “Treatment of acid mine drainage using natural zeolites”, in D.W. Ming and F.A. Mumpton (Eds.), Natural Zeolites’ 93. Occurrence, Properties, Use (International Committee on Natural Zeolites), Brockport, New York, pp. 405–413 (1995).

    Google Scholar 

  63. Colella C., “Use of Italian chabazite and phillipsite for the removal of heavy metals from wastewaters: a review”, in D.W. Ming and F.A. Mumpton (Eds.), Natural Zeolites’ 93. Occurrence, Properties, Use (International Committee on Natural Zeolites), Brockport, New York, pp. 363–375 (1995).

    Google Scholar 

  64. Colella C., de’ Gennaro M., Langella A. and Pansini M., “Cadmium removal from wastewaters using chabazite and phillipsite”, in D.W. Ming and F.A. Mumpton (Eds.), Natural Zeolites’ 93. Occurrence, Properties, Use (International Committee on Natural Zeolites), Brockport, New York, pp. 377–384 (1995).

    Google Scholar 

  65. Colella C. and Pansini M., “Lead removal from wastewaters using chabazite tuff”, in W.H. Flank and T.E. Whyte, Jr. (Eds.), Perspectives in Molecular Sieve Science, ACS Symp. Series 368, American Chemical Society, Washington, DC, pp. 500–510 (1988).

    Chapter  Google Scholar 

  66. Sersale R. and Frigione G., Utilization of the quarry dust of the Neapolitan yellow tuff for the manufacture of blended cements, Chim. Ind. (Milan) 65, 479–481 (1983).

    CAS  Google Scholar 

  67. Pansini M., Colella C., de’ Gennaro M. and Langella A., “Natural zeolites in environmental preservation: an innovative strategy for chromium removal”, in R. von Ballmoos, J.B. Higgins and M.M.J. Treacy (Eds.), Proceedings 9th Int. Zeolite Conf., Butterworths-Heinemann, Boston, MA, pp. 215–222 (1992).

    Google Scholar 

  68. Albino V., Cioffi R., Pansini M. and Colella C., Disposal of lead-containing zeolite sludges in cement matrix, Environmental Technology 16, 147–156 (1995).

    Article  CAS  Google Scholar 

  69. Cioffi R., Pansini M., Caputo D. and Colella C, Evaluation of mechanical and leaching properties of cement-based solidified materials encapsulating Cd-exchanged natural zeolites, Environmental Technology 17, 1215–1224 (1995).

    Article  Google Scholar 

  70. Stagemann J.A. and Coté, P.L., “A proposed protocol for evaluation of solidified wastes”, in R.W. Piggott (Ed.), Proceedings Cement Industry Solution to Waste Management, CPCA, Toronto, Canada, pp. 1–12 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Colella, C. (1999). Environmental Applications of Natural Zeolitic Materials Based on Their Ion Exchange Properties. In: Misaelides, P., Macášek, F., Pinnavaia, T.J., Colella, C. (eds) Natural Microporous Materials in Environmental Technology. NATO Science Series, vol 362. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4499-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4499-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5889-3

  • Online ISBN: 978-94-011-4499-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation