Abstract

When a grating-waveguide structure is illuminated with an incident light beam at a specific wavelength and angular orientation, a resonant phenomenon occurs. The resonance spectral bandwidth can be very narrow, so the structure can serve either as a spectral filter or an optical modulator. The basic principles, analytic and numerical models, design and fabrication procedures, and calculated and experimental results are presented. The results reveal that passive resonant structures can have spectral bandwidths as low as 0.085 nm, and active structures can be modulated at 10 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wood, R. W. (1902) On a remarkable case of uneven distribution of light in a diffraction grating spectrum, Philosophical Magazine, 4, 396–402.

    Article  Google Scholar 

  2. Hessel, A. and Oliner, A. A. (1965) A new theory of Wood’s anomalies, Applied Optics, 4, 1275–1297.

    Article  ADS  Google Scholar 

  3. Neviere, M. (1980) Electromagnetic Theory of Gratings in Petit, R. (eds.) Springer-Verlag, Berlin, Chapt. 5.

    Google Scholar 

  4. Popov, E., Mashev, L. and Maystre, D. (1986) Theoretical study of anomalies of coated dielectric gratings, Optica Acta, 32, 607–629.

    Article  ADS  Google Scholar 

  5. Rosenblatt, D., Sharon A. and Friesem, A.A. (1997) Resonant grating waveguide structures, IEEE Journal of Quantum Electronics, 33, No. 11, 2038–2059.

    Article  ADS  Google Scholar 

  6. Sharon, A. Friesem, A.A., and D. Rosenblatt (1997) Narrow spectral bandwidths with grating-waveguide structures, Applied Physics Letters, 69, 4154–4156.

    Article  ADS  Google Scholar 

  7. Sharon, A., Rosenblatt, D. and Friesem, A.A. (1997) Resonant grating-waveguide structures for visible and near-infrared radiation, Journal of the Optical Society of America A, 14, No. 11, 2985–2993.

    Article  ADS  Google Scholar 

  8. Sharon, A., Rosenblatt, D., Friesem, A.A., Weber, H. G., Engel, H. and Steingrueber, R. (1996) Light modulation with resonant grating-waveguide structures, Optics Letters, 21, 1564–1566.

    Article  ADS  Google Scholar 

  9. Kazarinov, R. and Henry, C. (1985) Observation of destructive interference in the radiation loss of second-order distributed feedback lasers, IEEE Journal of Quantum Electronics, Vol. QE-21, 151–153.

    ADS  Google Scholar 

  10. Sheng, P., Stepleman, R.S. and Sanda, P.N. (1982) Exact eigenfunctions for square wave gratings: Applications to diffraction and surface-plasmon calculations, Physics Review B, 26, 2907–2916.

    Article  ADS  Google Scholar 

  11. Mpharam, M.G. and Gaylord, T.K. (1981) Rigorous coupled-wave analysis of planar grating diffraction, Journal of the Optical Society of America, 71, 811.

    Article  ADS  Google Scholar 

  12. Peng, S. and Morris, G.M. (1996) Resonant scattering from two dimensional gratings, Journal of the Optical Society of America A, 13, No. 5, 993–1005.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Friesem, A.A. et al. (2000). Resonant Structures for Optical Processing and Communication. In: Marom, E., Vainos, N.A., Friesem, A.A., Goodman, J.W., Rosenfeld, E. (eds) Unconventional Optical Elements for Information Storage, Processing and Communications. NATO Science Series, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4096-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4096-6_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6191-6

  • Online ISBN: 978-94-011-4096-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation