• 321 Accesses

Abstract

The boundary element method (BEM) is now a versatile and powerful tool of computational mechanics which has become a popular alternative to the well-established finite element method (FEM). Recently, some authors indicated that the presence of any domain integrals undermines most advantages of the BEM. We believe that this is not true if the domain integral contains known quantities (such as body sources or initial values). The actual sources of advantages of the BEM formulation are not determined by the question of if it is necessary to discretize the domain or not. The BEM formulation for the solution of a boundary value problem exhibits pure boundary character if the solution at any internal point can be expressed in terms of the boundary integrals of relevant quantities and the domain integrals of known body sources and initial values, if any. In other words, the solution can be expressed at an internal point without the need to know the solution at any other internal point. If the boundary values of the relevant quantities were known exactly and the integrations were performed with absolute accuracy, the integral representation would present the exact solution of the boundary value problem. That is why in the BEM solution, extreme emphasis is put on the accuracy of the approximations of boundary values and computation of boundary integrals. Since in the domain discretization techniques (such as FEM, finite difference method, collocation methods) the unknowns at all nodal points are computed simultaneously, the computational error is accumulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nowacki, W. Dynamic Problems of Thermoelasticity, PWN, Warsaw, 1975.

    Google Scholar 

  2. Balas, J., Sladek, J. and Sladek, V. Stress Analysis by Boundary Element Methods, Elsevier-Veda, Bratislava, 1989.

    MATH  Google Scholar 

  3. Sladek, V., Sladek, J. and Balas, J. Boundary Integral Formulation of Crack Problems, ZAMM, Vol. 66, pp. 83–94, 1985.

    ADS  Google Scholar 

  4. Sladek, V. and Sladek, J. Boundary Integral Equation Method in Thermoelasticity Part I: General Analysis, Appl. Math. Modelling, Vol.7, pp. 241–253, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  5. Sladek, J. and Sladek, V. Boundary Integral Equation Method in Thermoelasticity Part II: Crack Analysis, Appl. Math. Modelling, Vol.8, pp. 27–36, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  6. Sladek, V. and Sladek, J. Boundary Integral Equation Method in Thermoelasticity Part III: Uncoupled Thermoelasticity, Appl. Math. Modelling, Vol.8, pp. 413–418, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  7. Sladek, V. and Sladek, J. Boundary Integral Equation Method in Two Dimensional Thermoelasticity, Engn. Analysis, Vol.1, pp.135–148, 1984.

    Article  ADS  Google Scholar 

  8. Sladek, V. and Sladek, J. Three Dimensional Crack Analysis for Anisotropic Body, Appl. Math. Modelling, Vol.6, pp. 374–380, 1982.

    Article  MATH  Google Scholar 

  9. Brebbia, C.A., Telles, J.C.F. and Wrobel, L.C. Boundary Element Techniques. Theory and Applications in Engineering, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  10. Narayanan, G.V. and Beskos, D.E. Numerical Operational Methods for Time-Dependent Linear Problems, Int. J. Num. Meth. Engn., Vol.18, pp. 1829–1854, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  11. Durbin, F. Numerical Inversion of Laplace Transforms: An Efficient Improvement to Dubner and Abate’s Method, Comput. J., Vol.17, pp. 371–376, 1974.

    MathSciNet  MATH  Google Scholar 

  12. Boley, B.A. and Weiner, J.J. Theory of Thermal Stresses, Wiley and Sons, New York, 1960.

    MATH  Google Scholar 

  13. Sih, G.C. and Liebowitz, H. Mathematical Theories of Brittle Fracture. Chapter 2, Fracture, An Advanced Treatise, (Ed. Liebowitz, H.), Vol.2, pp. 67–190, Academic Press, New York, 1968.

    Google Scholar 

  14. Sladek, V. and Sladek, J. Computation of the Stress Intensity Factor in 2-d Stationary Thermoelasticity, Acta Technica CSAV, Vol.32, pp. 217–229, 1987.

    Google Scholar 

  15. Sladek, J. and Sladek, V. Improved Computation of Thermal Stresses in Stationary Thermoelasticity Using Boundary Elaments, ZAMM, Vol.70, pp. 141–147, 1989.

    ADS  Google Scholar 

  16. Sladek, J. and Sladek, V. Transient Thermoelastic Crack Problems in Three Dimensions, Staveb. Cas., Vol.35, pp. 337–348, 1987.

    Google Scholar 

  17. Gradshteyn, I.S. and Ryzhik, I.M. Table of Integrals, Series and Products, Academic Press, New York, 1965.

    Google Scholar 

  18. Sladek, V. and Sladek, J. Nonsingular BIE for Transient Heat Conduction, Engn. Analysis (to appear)

    Google Scholar 

  19. Sladek, V. and Sladek, J. Computation of Thermal Stresses in Quasi-Static NonStationary Thermoelasticity Using Boundary Elements, Int. J. Num. Meth. Engn., Vol.28, pp. 1131–1144, 1989.

    Article  MATH  Google Scholar 

  20. Sladek, V. and Sladek, J. Improved Computation of Stresses Using the Boundary Element Method, Appl. Math. Modelling, Vol.10, pp. 249–255, 1986.

    Article  MATH  Google Scholar 

  21. Sladek, J. and Sladek, V. Computation of Stresses by BEM in 2 — d Elastostatics, Acta Technica CSAV, Vol.31, pp. 523–531, 1986.

    Google Scholar 

  22. Markeehova, I., Sladek, J. and Sladek, V. Computation of Stresses in Nonhomogeneous Bodies Using BEM, Acta Technica CSAV, Vol.34, pp. 487–511, 1989.

    Google Scholar 

  23. Ghosh, S. and Mukherjee, S. Boundary Element Method Analysis of Thermoelastic Deformation in Nonhomogeneous Media, Int. J. Solids Structures, Vol.20, pp. 829–843, 1984.

    Article  MATH  Google Scholar 

  24. Tanaka, K. and Tanaka, M. A Boundary Element Formulation for Coupled Thermoelastic Problems I. Governing Integral Equations, Rev. Roum. Sci. Techn.Mec. Appl., Vol.26, pp. 83–94, 1981.

    MATH  Google Scholar 

  25. Tanaka, M. and Tanaka, K. A Boundary Element Formulation for Coupled Thermoelastic Problems II. Boundary Element Discretisation, Rev. Roum. Sci. Techn.-Mec. Appl., Vol.26, pp. 257–263, 1981.

    MATH  Google Scholar 

  26. Tanaka, M., Togoh, H. and Kikuta, M. Boundary Element Method Applied to 2 — D Thermoelastic Problems in Steady and Non-Steady States, Engn. Analysis, Vol.1, pp. 13–19, 1984.

    Article  Google Scholar 

  27. Rizzo, F.J. and Shippy, D.J. An Advanced Boundary Integral Equation Method for Three-Dimensional Thermoelasticity, Int. J. Num. Meth. Engn., Vol.11, pp. 1753–1768, 1977.

    Article  MATH  Google Scholar 

  28. Masinda, J. Application of the Boundary Element Method to 3 — D Problems of Non-Stationary Thermoelasticity, Engn. Analysis, Vol.1, pp. 66–69, 1984.

    Article  Google Scholar 

  29. Sharp, S. and Crouch, S.L. Boundary Integral Methods for Thermoelasticity Problems,J. Appl. Mech., Vol.53, pp.298–302, 1986. 30. Sharp,S. and Crouch,S.L. Heat Conduetion, Thermoelasticity and Consolidation. Chapter 10, Boundary Element Methods in Mechanies, (Ed. Beskos, D.E.), Vol.3, Elsevier Science Publ., Amsterdam, 1987.

    Google Scholar 

  30. Koizumi, T. et al. Boundary Integral Equation Analysis for Steady Thermoelastic Problems Using Thermoelastic Potential, Jour. Thermal Stresses, Vol.11, pp. 341–352, 1988.

    Article  Google Scholar 

  31. Ochiai, Y. and Sekiya, T. Unsteady Thermal Stress Analysis in Compound Region by Means of Thermoelastic Displacement Potential and Boundary Element Method, Jour. Thermal Stresses, Vol.12, pp. 57–65, 1989.

    Article  Google Scholar 

  32. Henry, D.P. and Banerjee, P.K. A New Boundary Element Formulation for Two-and Three-Dimensional Thermoelasticity Using Particular Integrals, Int. J. Num. Meth. Engn., Vol.26, pp. 2061–2077, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  33. Chaudouet, A. Three-Dimensional Transient Thermoelastic Analysis by the BIE Method, Int. J. Num. Meth. Engn., Vol.24, pp. 25–45, 1987.

    Article  MATH  Google Scholar 

  34. Smith, D.W. and Booker, J.R. Boundary Integral Analysis of Transient Thermoelasticity, Int. J. Num. Anal. Meth. Geomech., Vol.13, pp. 283–302, 1989.

    Article  MATH  Google Scholar 

  35. Rizzo, F.J. and Shippy, D.J. A Method of Solution for Certain Problems of Transient Heat Conduction, AIAA, Vol.8, pp. 2004–2009, 1970.

    Article  MATH  Google Scholar 

  36. Tanaka, M., Togoh, H. and Kikuta, M. A Boundary Element Investigation of 3 — d Thermoelastic Problems in Transient Heat Conduction States, in Boundary Elements VII (Ed. Brebbia, C.A. and Maier, G.), pp. 3.3–3.18, Proceedings of the 7th Int. Conf. on BEM, Lake Corno, Italy, 1985. Springer-Verlag, Berlin, 1985.

    Google Scholar 

  37. Dargush, G.F. and Banerjee, P.K. Development of a Boundary Element Method for Time-Dependent Planar Thermoelasticity, Int. J. Solids Structures, Vol.25, pp. 999–1021, 1989.

    Article  MATH  Google Scholar 

  38. Sladek, V. and Sladek, J. A New Approach to Transient Dynamic Analysis of Thermoelasticity by the Boundary Element Method, Engn. Analysis, Vol.2. pp. 221–229, 1985.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Computational Mechanics Publications

About this chapter

Cite this chapter

Sladek, V., Sladek, J. (1992). Advanced Thermoelastic Analysis. In: Wrobel, L.C., Brebbia, C.A. (eds) Boundary Element Methods in Heat Transfer. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2902-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2902-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-726-0

  • Online ISBN: 978-94-011-2902-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation