Methods of Modeling

  • Chapter
Microwave NDT

Part of the book series: Developments in Electromagnetic Theory and Applications ((DETA,volume 10))

  • 370 Accesses

Abstract

This chapter deals with the basics of numerical modeling as these relate to the microwave domain. None of the methods described is specific to NDT, but rather, general methods for modeling. The unique aspects of NDT are manifest in the way the techniques are used and the material properties and geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. M. Morgan (ed.), “Finite Element and Finite Difference Methods in Electromagnetic Scattering”, Elsevier, New York, 1990.

    MATH  Google Scholar 

  2. R. D. Richtmyer and K. W. Morton, “Differential Methods for Initial Value Problems,” John Wiley, 1967.

    Google Scholar 

  3. G. E. Forsythe and W. R. Wasow, “Finite Difference Methods of Partial Differential Equations”, Wiley, 1964.

    Google Scholar 

  4. R.V. Southwell, “Relaxation Methods in Theoretical Physics”, Oxford, London, 1946.

    Google Scholar 

  5. M. L. James, G. M. Smith and J. C. Walford, “Applied Numerical Methods for Digital Computation,” Harper and Row, Publ., New York, 1977.

    Google Scholar 

  6. E. A. Erdelyi and E. F. Fuchs, “Nonlinear magnetic field analysis of D.C. machines -Part I: theoretical fundamentals,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-89, pp. 1546–1554, 1970.

    Google Scholar 

  7. E. A. Erdelyi and E. F. Fuchs, “Nonlinear magnetic field analysis of D.C. machines -Part II: application of the improved treatment,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-90, pp. 1555–1564, 1970.

    Google Scholar 

  8. J. L. Sieminieniuch and I. Gladwell, “Analysis of explicit difference methods for a diffusion-convection equation,” International Journal for Numerical Methods in Engineering, Vol. 12, No. 6, pp. 899–916, 1978.

    Article  MathSciNet  Google Scholar 

  9. E. C. Dufort and S. P. Frankel, “Stability conditions in the numerical treatment of parabolic differential equations,” in Mathematical Tables and Aids to Computation,Vol. 7, pp. 135–152, 1953.

    Google Scholar 

  10. K.J. Binns and P.J. Lawrenson, Analysis and Computation of Electric and Magnetic Field Problems, Pergamon Press, 1973.

    Google Scholar 

  11. J. T. Oden, “A general theory of finite elements I: Topological considerations,” INternal Journal for Numerical Methods in Engineering, Vol. 1, No. 2, 1969, pp. 205–221.

    Google Scholar 

  12. J. T. Oden, “A general theory of finite elements II: Applications,” International Journal for Numerical Methods in Engineering, Vol. 1, No. 3, 1969, pp. 247–259.

    Article  MATH  Google Scholar 

  13. K. H. Huebner, The Finite Element Method for Engineers, Wiley-Interscience, John Wiley & Sons, Inc., New York, 1975.

    Google Scholar 

  14. O. C. Zienkiewicz, The Finite Element Method in Engineering, third edition, McGraw-Hill Book Co., London, 1977.

    Google Scholar 

  15. C.W. Steele, “Numerical Computation of Electric and Magnetic Fields”, Van Nostrand Reinhold Co., New York, 1987.

    Google Scholar 

  16. P.P. Sylvester and R.P. Ferrari, “Finite Elements for Electrical Engineers”, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  17. J.C. Sabonnadierre and J.L. Coulomb, “Finite Element Methods in CAD”, Springer Verlag, NY., 1989.

    Google Scholar 

  18. S.R.H. Hoole, “Computer-Aided Analysis and Design of Electromagnetic Devices”, Elsevier, NY, 1989.

    Google Scholar 

  19. D.A. Lowther and P.P. Sylvester, “Computer Aider Design in Magnetics”, Springer Verlag, NY, 1986.

    Book  Google Scholar 

  20. N. Ida and J. Bastos, “Electromagnetics and Calculation of Fields”, Springer Verlag, NY, 1992.

    Book  Google Scholar 

  21. P. L. Arlet et al, “Application of finite elements to the solution of Helmholtz’ equation”, Proceedings of the IEE, Vol. 115, No. 12, Dec. 1968.

    Google Scholar 

  22. Y. V. Vorobyev, “Method of Moments in Applied Mathematics”, Gordon and Breach Science Publishers, New York, 1965.

    Google Scholar 

  23. R.F. Harrington, “Origin and development of the method of moments for field computation”, IEEE Antenna and Propagation Society Magazine, Vol. 32, No. 3, 1990, pp. 31–36.

    Google Scholar 

  24. R. F. Harrington, “Field Computation by Moment Method”, The Macmillan Company, London, 1967.

    Google Scholar 

  25. J. Moore and R. Pizer, (eds.), “Moment Methods in Electromagnetivs, Techniques and Applications”, John Wiley and Sons Inc., New York, 1984.

    Google Scholar 

  26. W. A. Imbriale, “Applications of the method of moments to thin-wire elements and arrays”, in Numerical and Assymptotic Techniques in Electromagnetics, R. Mitra, Ed., Springer-Verlag, New York, 1975, pp. 5–88.

    Chapter  Google Scholar 

  27. A.J. Poggio and E.K. Miller, “Integral equation solution of three-dimensional scattering problems”, in R. Mittra, (ed,), Computer Techniques for Electromagnetics, Ch. 4, Pergamon Press, London, 1973.

    Google Scholar 

  28. R. Mitra and C. A. Klein, “Stability and convergence of moment method solutions”, in Numerical and Assymptotic Techniques in Electromagnetics, R. Mitra, Ed., Springer-Verlag, New York, 1975, pp. 129–165.

    Chapter  Google Scholar 

  29. T. K. Sarkar, “A note on the weighting functions in the method of moments”, IEEE Transactions on Antennas and Propagation, Vol. AP-33, No. 4, April 1985, pp. 436– 441.

    Google Scholar 

  30. D. R. Wilton and S. Govind, “Incorporation of edge conditions in moment method solutions”, IEEE Transactions on Antennas and Propagation, Vol. AP-25, No. 6, November 1977, pp. 845–850.

    Google Scholar 

  31. M. M. Ney, “Method of moments as applied to electromagnetic problems”, IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-33, No. 10, October 1985, pp. 972–980.

    Google Scholar 

  32. A. Taflove, (ed.), “Special issue on numerical methods for electromagnetic wave interactions”, Wave Motion, Vol. 10, No. 6, 1988.

    Google Scholar 

  33. R. F. Harrington, “Matrix methods for field problems”, Proceedings of the IEEE, Vol. 55, No. 2, 1967, pp. 136–149.

    Google Scholar 

  34. R.F. Harrington, “The method of moments in electromagnetics”, Journal of Electromagnetic Waves and Applications, Vol. 1, No. 3, 1987, pp. 181–200.

    Article  Google Scholar 

  35. E.K. Miller, “A selective survey of computational electromagnetics”, IEEE Transactions on Antennas and Propagation, Vol. 36, No. 9, 1988, pp. 1281–1304.

    Google Scholar 

  36. D. K. Reitan and T. H. Higgins, “Accurate determination of the capacitance matrix of a thin rectangular plate,” AIEE Transactions, January 1957, pp. 761–766

    Google Scholar 

  37. T. J. Higgins and D. K. Reitan, “Calculation of the Capacitance of a circular annulus by the method of subsurfaces,” AIEE Transactions, Vol. 70, 1951, pp. 926–933.

    Google Scholar 

  38. J. E. Storer, “Impedance of thin wire loop antennas, ” AIEE Transactions, November 1966, pp. 606–619.

    Google Scholar 

  39. J.C. Toler, “Special issue on electromagnetic wave interactions with biological systems”, IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-32, No. 8, Jan. 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ida, N. (1992). Methods of Modeling. In: Microwave NDT. Developments in Electromagnetic Theory and Applications, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2739-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2739-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5215-3

  • Online ISBN: 978-94-011-2739-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation